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Abstract

Geometric machine learning incorporates geometric priors when modeling physical
systems, as particle or molecular systems. Clifford Algebra extends Euclidean
vector space by introducing algebraic structure and thus represents an appealing
tool to model geometrical features. An example of this model is the Clifford neural
network, an equivariant neural network based on Clifford Algebra. When modeling
distributions over geometric objects using Clifford Algebra, we need to define how
these distributions transform. We thus introduce probability density function over
Clifford algebra and their transformation based on gradients of functions defined
over Clifford Algebra. Here we show that the gradient of functions between Clifford
algebras on Euclidean spaces induces the canonical gradient of the functions
restricted to the base vector spaces. This ensures that the gradient of Clifford
neural networks coincides with that obtained through widely adopted automatic
differentiation modules such as Autograd. We empirically evaluate the benefit
of the gradient of Clifford neural networks and the transformation of distribution
over Clifford Algebra for the problem of sampling from distributions in scientific
discovery.

1 Introduction
Clifford neural networks [4, 6, 31, 36, 45, 48, 51], a class of geometric deep learning models [7],
have made promising progress in modeling the inherent interactions of physical systems, such as fluid
dynamics [4] and multibody interaction systems [45, 6], or geometrical quantities [5]. Clifford neural
networks have been applied to solve physical systems described by partial differential equations
(PDEs) [4, 51] or ordinary differential equations (ODEs) [6, 31, 45, 48]. The Clifford neural networks
are extremely effective in solving these equations since only a gradient with respect to the parameters
of the neural network is required, or forward problem. Other classes of problems associated with
physical systems require computing the gradient of the neural network with respect to their input.
Example applications include inverse-design [2, 50], flow-matching [8, 27], and normalizing flow
[39, 46]. We have a proper understanding of the forward manipulation of elements in the Clifford
Algebra, however, we believe that the notion of differentiability of Clifford neural networks with
respect to the Clifford Algebra and the definition of probability distributions over Clifford Algebras
have not been sufficiently understood.

Contributions. As a first step towards the application of Clifford neural networks to transformation of
probability distributions, i) we propose to interpret functions between Clifford algebras as continuous
functions between metric spaces; ii) we elucidate the differentiability of the functions by observing
the gradient of the functions is equivalent to the natural and canonical gradient of functions on
Euclidean spaces. As a corollary of the observation, iii) we also show that the gradient of Clifford
neural networks is compatible with that of the functions restricted on their base vector spaces, which
eventually ensures the validity of the usage of automatic differentiation modules such as Autograd
[41] to obtain the gradient of Clifford neural networks; iv) we introduce the definition of a probability
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distribution over Clifford Algebra based on this relationship; v) we introduce a new transformation
between probability distribution over the Clifford Algebras and the correspondent architecture,
Clifford NVP; and vi) we empirically validate the use of the gradient of Clifford neural networks
to model distribution changes with two experiments. The code for the experiments is provided in
https://github.com/nec-research.

2 Background
Clifford Algebra. We start by introducing Clifford algebra [35], also known as geometric algebra
[23], over a real vector space V of finite dimension n, and some of its key properties. We follow
similar notation and definition as in [45, 51]. The Clifford algebra Cl(V, q) with a quadratic form
q : V ! R is a vector space generated by the l-fold tensor product of a basis {ei}ni=1 of V with an
equivalence relation q(v) = v ⌦ v (8v 2 V ). Then, every element x 2 Cl(V, q) may be written
with finite indices Im = {i1 < · · · < im} ⇢ {1, 2, · · · , n}

x =
nX

m=0

X

Im

xImei1 ⌦q · · ·⌦q eim , xIm 2 R. (1)

Note that Im = ; for m = 0. The expression v⌦q w of elements v,w 2 V represents the geometric
product of v,w, which defines a product on Cl(V, q) and charactrizes Cl(V, q) as an algebra. The
product of x,y 2 Cl(V, q) runs all the pair of ei1 ⌦q · · ·⌦q eim composing respective x and y, but
some of the basis elements ei is reduced to a scalar because of the relation q(ei) = ei ⌦q ei,

(ei1 ⌦q · · ·⌦q eir )⌦q (ej1 ⌦q · · ·⌦q ejs) =
t�1Y

u=0

q(ekr+s�u)(ek1 ⌦q · · ·⌦q ekr+s�t). (2)

Clifford Neural Networks. Taking advantage of the flexible manipulation of geometric quantities
through the algebraic representation, Clifford algebra is incorporated into various kinds of machine-
learning models. Such models include Fourier neural operators [4], message passing neural networks
(MPNNs) [45], simplicial MPNNs [31], multilayer perceptron models [36], convolutional neural
networks [51], and transformers [6]. Typical building blocks of these neural networks form the
algebra R[X1, X2, · · · , Xc] of polynomials in coefficients of R (of any order) with c variables. The
sum and product of R[X1, X2, · · · , Xc] are defined as those of Cl(Rn, q), which also serve as a map
from the product space of Clifford algebras (of channel dimension c) to the Clifford algebra:

Cl(Rn, q)⇥ · · ·⇥ Cl(Rn, q)| {z }
c

F�! Cl(Rn, q), F 2 R[X1, X2, · · · , Xc].

3 Transformation of probability density functions over Clifford algebras
To introduce a transformation of distributions between Clifford Spaces, we define the differentiability
of functions between Clifford algebras. Differentiable function on Clifford algebra. Let gV be an
Euclidean metric for V , i.e., a symmetric, non-degenerate and positive bilinear form gV : V ⇥V ! R.
The metric induces a metric gCl(V,q) on Cl(V, q) of dimension 2n. With this induced metric, the
a-directional gradient of F at x0 2 Cl(V, q) in the direction a 2 Cl(V, q) is defined as

F 0
a(x0) = lim

�!0

F (x0 + �a)� F (x0)

�
, a 2 Cl(V, q). (3)

The original definition is given in [11, 22]. Here, the distance of the space, used when taking infinitely
small �, is defined by a norm ||x|| =

»
gCl(V,q)(x,x). We call F differentiable when the limit exists

for any directional vector a 2 Cl(V, q) and x0 (and its associated gradient is continuous). Another
prerequisite for this notion is detailed in Appendix B.

Connection on gradients between base space and associated Clifford algebra The quadratic
form q, as defined in Section 2, naturally defines a bilinear form b(v, w) = 1

2 (q(v +w)� q(v)�
q(w)) : V ⇥ V ! R. Throughout the rest of this paper, we assume the bilinear form b to be
an inner product of signature (p, q, r), i.e., b(v,w) = bp,q,r(v,w) = vT�p,q,rw with matrix
�p,q,r = diag(1, · · · , 1p , �1, · · · ,�1q , 0, · · · , 0

r
), which leads to the following equivalent relations;

if 1  i  p, then q(ei) = +1, if p+1  i  p+q, then q(ei) = �1, while if p+q+1  i  p+q+r
we have that q(ei) = 0. We also denote R[X1, · · · , Xc]p,q,r as the set of polynomial functions on
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the Clifford algebra whose geometric product ⌦q is associated with the bilinaer form with signature
(p, q, r). We claim that all functions in R[X1, · · · , Xc]p,q,r are differentiable for any signatures
(p, q, r). The claim can be seen as an extension of results in [11, 22]. The formal claim is given as
Proposition D.1 in Appendix D. With Proposition D.1, we further elaborate the connection between
gradients of functions between Clifford spaces and its base spaces: Suppose that we have the following
embedding (inc) and projection (proj) maps between V and Cl(V, q):

inc : V ,! Cl(V, q), v 7!
nX

k=1

gV (v, ek)ek, proj : Cl(V, q) ⇣ V,
nX

m=0

X

Im

vImeIm 7!
X

I1

vI1eI1 .

Corollary 3.1. For 8F 2 R[X]p,q,r, its restriction to the base space V by inc and proj

V
inc

,��! Cl(V, q)
F��! Cl(V, q)

proj
�����⇣ V

is a differentiable function between V with respect to the metric gV . In particular, when V = Rn and
its basis is the standard orthonormal basis, the function proj �F � inc is differentiable on Rn with
respect to the canonical differentiable structure on Euclidean space.
This corollary ensures that the gradient of proj �F � inc is the “standard” gradient defined on the
Euclidean spaces, as obtained through an automatic differentiation module such as Autograd [41].

Figure 1: Clifford Jacobian (J =
{@IF (J)}I,J ) with respect to the coordi-
nate system {e1, e2, e3}.

Coordinate system and Jacobian matrix of differen-
tiable Clifford functions When modeling continuous
normalizing flow, we need the definition of a probability
distribution over the Clifford Algebra. We consider thus
the special case of Corollary 3.1 with V = R2n , which
defines an isomorphism with Cl(Rn, q), with inccoord and
projcoord the corresponding mapping operators. The func-
tion f = projcoord �F � inccoord is defined implicitly from
the differentiable function on Clifford algebra F . We de-
fine the Jacobian of functions between Clifford algebras
via the directional gradient. Given a differentiable func-
tion F : Cl(Rn, q) ! Cl(Rn, q), the directional gradient
of the J-th component F (J) in the output space along the
direction eI in the input space is defined as follows:

@IF =
X

J

@IF
(J) 2 Cl(Rn, q), @IF

(J) = lim
�!0

F (J)(x+ �eI)� F (J)(x)

�
2 Cl(Rn, q).

We define the Jacobian of F as JF = (@IF )I = (@1F , . . . , @2nF )
T 2

Cl(Rn, q)2
n

, which is related to the the Jacobian of f in the coordinate system
through projcoord and inccoord via Jf = JinccoordJFJprojcoord

, where Jf = df(x)
dx =Ä�

@1f (1), . . . , @1f (2n)
�T

. . .
�
@2nf (1), . . . , @2nf (2n)

�Tä 2 R2n⇥2n .

Density functions over Clifford algebra. Since the Clifford algebra Cl(Rn, q) is equipped with the
Euclidean scalar metric gCl(Rn,q), we have a measure µ(x) on Cl(Rn, q), that is equivalent to the
canonical measure on R2n . Through this measure, we define a probability density function p(x) on
Cl(Rn, q) such that

R
Cl(Rn,q) p(x)dµ(x) = 1. We can then also build the same probability theory

on the space of Cl(Rn, q) as the Euclidean space, pCl(Rn,q)(x) = pcoord(projcoord �F (x)), and the
corresponding change in the probability distribution ln p(x1) = ln p(x0)� ln|detJf (x0)|.
Clifford-valued non-volume preserving (Clifford-NVP). Inspired by [10], we propose an extension
of Real-NVP to the Clifford Algebra. We therefore propose to transform probability distributions over
the Clifford Algebra, and use the algebraic structure of the gradient as we have presented, where the
Jacobian matrix for the proposed architecture has closed form. We first split the 2m input variables
as x0,y0 2 Cl(Rn, q)m, we then define the transformation element-wise, at the l step as

xl+1
i = xl

i, yl+1
i = yl

i exp
�
si,✓(x

l)
 
+ ti, , (x

l), i = 1, . . . ,m (4)

with si,✓ : Cl(R(p,q,r))m ! R ⇢ R(p,q,r), a trainable scalar function of x = (x1, . . . ,xm) and
ti, : Cl(R(p,q,r))m ! Cl(R(p,q,r)) a trainable translation function. The determinant of the change
of variable is therefore ln | det Jx,y| =

Pm
i=1 si,✓(x).
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4 Experiments
Sampling from distribution. Having introduced the gradients in the Clifford Algebra, we
consider continuous normalizing flow, where xt satisfies the gradient flow equation (Eq.5).

!" ℝ!, %
⋯ ⋯⋯⋯

!! = !" +$ %# !$ &'
!

"

Embedding Projection

! = 0 ! = 1

Continous Normalization
ℝ! ℝ!

&" &#&$

Figure 2: Schematic of Continuous Normalizing
Flow method. The samples are generated starting
from a random noise x0 ⇠ N(0, I) and integrated
using the vector field defined in the Clifford Alge-
bra by the Clifford Neural Network F . The log
probability is computed using the integral of the
Trace of the Jacobian of the transformation.

(Eq.7):

@xt

@t
= ft(xt), (5)

@ ln p(xt)

@t
= � tr

ß
@ft

@xt

™
, (6)

ln p(x1) = ln p(x0)�
Z 1

0
tr

ß
@ft

@xt

™
. (7)

The associated infinitesimal change of variable
(Eq.6) is given by [9] (Theorem.1), and the final
sample probability is computed by integrating
the infinitesimal change of variables. When the
initial samples are drawn from a given distribu-
tion x0 ⇠ p0(x), the generation process of the
final samples x1 ⇠ p1(x) is called the contin-
uous normalizing flow. CNF thus requires to
compute the trace of the Jacobian, i.e. the gradient with respect to the input variable, @ft

@xt
.

Table 1: Comparison of the Negative Log Likelihood on the
test partition on DW4 and LJ3 dataset.

DW4 (n = 2) LJ13 (n = 3)
# training samples 102 103 10 102

E-NF 8.31±0.05 8.15±0.10 33.12±0.85 30.99±0.95

E-NF (24⇥ 2n) 8.24±0.06 8.33±0.09 31.33±0.30 30.61±0.16

CGGNN (24) 8.80±0.32 8.56±0.04 31.36±0.55 30.35±0.18

We consider a Double Well (DW)
and Lennard-Jones (LJ) particle sys-
tems, as presented in [28], which
model the interactions among parti-
cles. DW4 consists of four particles
moving in a 2 dimensional space
whose energy depends on a pair of
particles. LJ13 consists of 13 par-
ticles and models the potential be-
tween molecules as Lennard-Jones
potentials. Following the experimental setup of [47], we use 103 samples for testing and validation,
while the training is performed on 10, 102 and 103 samples. We compare state-of-the-art E(n)-
equivariant flow architectures, whose details are given in Appendix G. Table 1 shows the results
of DW4 and LJ13 experiments. We observe that the performance of CNF with Clifford Group-
Equivariant GNN (CGGNN) [45] models is better or comparable to the other baselines. We also
compare the performance of CGGNN with that of Equivariant Normalizing Flow (E-NF), as proposed
in [47], with the increased number of hidden-channel dimensions, to ensure that both of the models
have a comparable number of hidden units for a fair comparison. The performance of CGGNN is still
comparable to or better than those baselines. These results indicate that the back-propagation through
Clifford neural networks can carry informative Jacobian to transform density functions across time.

Table 2: Comparison of different Normaliz-
ing Flow models over the hard-sphere dataset.
Generalization power is highlighted by a lower
drop in the log probability over the test data.

ODD Test
Model/Algebra (4, 1, 0) (3, 0 ,1)

Real NVP [10] -69.56% -398.67%
NSF_CL [13] -235.13% -259.87%
Clifford NVP [new] -1.99% -7.15%

Normalizing Flow over Clifford Algebra
To evaluate the ability to model transforma-
tions of distributions over Clifford algebra,
we experiment with Normalizing Flows by
extending the coupling layers of Real NVP
[10] to the Clifford algebra, in which the
Jacobian matrix has a closed form, as de-
fined by Equation 4. To compare the new
architecture, we consider generating a new
dataset, based on hard sphere simulation.
Figure 3 shows two snapshots at two differ-
ent timesteps (sweep) of the Monte Carlo
simulation of hard spheres, where some of
the spheres move independently (single) and others (connected with lines) moves in rigid-distance
pairs. In Table 2, we compare Clifford NVP with Euclidean RealNVP [10] and Neural Spline Flow
[13] over the new dataset represented in geometric algebras with signatures (3, 0, 1) and (4, 1, 0) with
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Figure 3: Visualization of the hard sphere dataset. Visualization of 100 single and pairs
of spheres at different sweeps of the Monte Carlo simulation. We can represent these objects
as elements of some Clifford Algebra, in particular spheres as points and pairs as lines (or
their dual) in Conformal Geometric Algebra (CGA) with signature (4, 1, 0) [11] or Projective
Geometric Algebra (PGA) with signature (3, 0, 1) [23].

3d hard sphere Monte-Carlo simulation [38] composed of either isolated spheres or pair of rigidly
connected spheres. The task is to evaluate the test dataset in terms of the percentage drop of the
log probability. Our results clearly show significant performance gain on the dataset that shows the
advantage of Clifford algebra to represent geometric objects.

5 Conclusions

In this paper, we use the gradient of functions between Clifford spaces to model transformation of
probability distributions defined over Clifford Algebra. We show that the gradient obtained through
Autograd coincides with the analytical gradient. We also provide empirical evidence of the utility of
using Clifford algebras in the context of sampling from probability distributions. We hope, that future
research would take advantage of the tools defined in the present work and investigate alternative
probability distributions properties that are now accessible.
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