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Abstract

Modern quantum chemical methods involve a trade-off between accuracy and com-
putational cost/complexity. As an alternative, deep learning methods are used as
shortcuts to create accurate predictions with small computational complexity. Such
models proved to be highly effective in predicting closed-shell systems (where all
electrons are paired). However, little focus has been given to predicting open-shell
systems (where there are unpaired electrons), despite their importance in describ-
ing species like radicals and reaction intermediates. We introduce OrbNet-Spin,
built upon OrbNet-Equi, a geometric- and quantum-aware deep learning model
for representing chemical systems at the electronic structure level. OrbNet-Spin
incorporates a spin-polarized treatment into the underlying semiempirical quantum
mechanics orbital featurization and adjusts the model architecture accordingly
while maintaining the geometrical constraints. OrbNet-Spin can accurately de-
scribe both closed and open-shell electronic structures. We validate OrbNet-Spin’s
performance using the QMSpin dataset of open-shell carbenes, achieving a mean
absolute error below the chemical accuracy in both singlet and triplet carbenes.

1 Introduction

Understanding molecular properties is vital for applications in drug design, materials optimization,
and atmospheric chemistry [24, 13, 5]. Quantum chemical methods like density functional theory
(DFT) offer high accuracy but are computationally prohibitive for large molecular systems [3, 28, 15].
In contrast, semiempirical approaches are computationally efficient but sacrifice accuracy [7].

AI-based predictive systems are emerging as high-throughput alternatives for predicting molecular
systems of arbitrary size [5, 6]. These models, when trained, are orders of magnitude faster than
quantum chemical simulations, while still delivering reasonably accurate predictions. However, the
use of these models is often restricted to the chemistry of their training data or their architectural
capabilities. For instance, while several models have been developed for closed-shell molecular
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systems [10, 8, 17, 18, 26, 31] (where all orbitals are fully paired), there are relatively few successful
predictive approaches for open-shell systems. In contrast to closed-shell systems, open-shell systems
feature unpaired electrons and accurately characterizing these systems requires accounting for both
the spatial and spin degrees of freedom in the calculated orbitals [27]. Open-shell systems play
a critical role in various areas of chemistry, such as describing radicals, reaction intermediates,
transition metal complexes, and other applications involving unpaired electrons [12, 11].

Cheng et al. [1] developed a machine learning method called molecular-orbital-based machine
learning (MOB-ML) that utilizes Fock (F), exchange (K), and Coulomb (J) matrices, and the
localized molecular orbitals to represent molecular structures. This representation is used as the input
of a Gaussian Process Regression (GPR) to perform molecule-level predictions. MOB-ML utilizes the
restricted open-shell Hartree-Fock (ROHF) method. In general, MOB-ML shows accurate predictions
with several different datasets, for both closed-shell and open-shell. Unke et al. [32] introduced
SpookyNet, a deep learning model that constructs force fields via self-attention. It represents a
molecular structure as a combination of atomic numbers, Cartesian coordinates, total charge, and
total angular momentum. Although SpookyNet shows good generalization to open- and closed-shell
systems, its performance drops when applied to unknown conformations. Finally, Tavakoli et al.
[30, 29] developed a chemically informed predictive model specifically for restricted open-shell
reactions. Their model is data-driven and is designed to predict radical interactions, rather than just
single-molecule representations.

Predictive models achieve greater accuracy by incorporating a system’s physical and geometrical
properties [10, 8, 17]. Leveraging invariance or equivariance to spatial transformations (e.g., SE(3))
and physics-based representations, such as the Schrödinger Equation, enhances model performance.
OrbNet-Equi is a QM- and geometry-aware deep learning model that maps molecular electronic
structure to physical quantities [18]. Qiao et al. [18] represents electronic structures using atomic
orbitals features obtained from the low-cost semiempirical method GFN1-xTB. This model has
demonstrated strong potential, achieving accuracy comparable to the DFT/B3LYP level of theory for
closed-shell molecules, as seen with the QM9 dataset [19].

Despite its potential, the OrbNet-Equi model cannot encode electron spin into its physics or geometry-
aware operations. Therefore, its use is limited to closed-shell systems. Here we introduce OrbNet-
Spin, built upon OrbNet-Equi, to enable an integrated representation of closed-shell and open-shell
molecules. We evaluate the performance of OrbNet-Spin and compare it to similar models, using the
QMSpin dataset [22, 23, 2] with quantum chemical information generated using the spGFN1-xTB
semiempirical method [16]. Our evaluations show that OrbNet-Spin outperforms other deep learning
models. Furthermore, OrbNet-Spin is the only model that achieved errors lower than the chemical
accuracy (1 kcal/mol) on the standard test sets of the QMSpin dataset while enabling chemical
simulations with significantly higher throughput.

2 Method

OrbNet-Equi is a geometry- and physics-informed model for predicting molecular energies using
atomic orbital (AO) features, which represent the electronic structure [18]. AO features -derived
from quantum chemical matrices during SCF convergence- form graph-structured data. The graph
undergoes SE(3) equivariant message-passing and atom-wise decoding operations which then can be
mapped to property space via a property-specific equivariant pooling operation.

While AO features can be derived from any method, using OrbNet to map features from cheaper
methods (e.g., semi-empirical) to more accurate, costly methods (e.g., DFT) is advantageous. For
instance, with the quantum mechanical information provided from GFN1-xTB [9], OrbNet-Equi
successfully predicts the chemical properties of the small organic molecules in the QM9 dataset
[19], calculated with DFT/B3LYP level of theory, achieving a mean absolute error (MAE) of 0.081
kcal/mol for the total energy.

OrbNet-Equi featurizes electronic structures of closed-shell systems using the Fock (F), density (P),
the Hamiltonian (H), and overlap (S) matrices, calculated using the GFN1-xTB method. Therefore,
the input tensor is T = [F,P,H,S]. However, such representation is not sufficient to describe
open-shell systems, as the Fock and density matrices split accordingly to spin degrees of freedom.

To develop OrbNet-Spin that can handle open-shell input representations, one needs to take into
account different spin orbitals. In closed-shell systems, the net spin (S) is zero. Therefore, all
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Figure 1: Schematic of the overall process of using the OrbNet-Spin framework to predict physical
properties using atomic orbital features generated from quantum mechanics (QM) simulations.

closed-shell molecules are “singlets”, which means the spin multiplicity is 1 (2S + 1 = 1). For
open-shell molecules with two unpaired electrons, where each electron contributes +1/2, the net spin
is S = +1/2 + 1/2 = 1. They have spin multiplicity of 3 (2× 1 + 1 = 3), and are called “triplets”.
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Figure 2: Illustration of energy lev-
els (E) of orbitals and electrons oc-
cupying the orbitals. α and β repre-
sent different spins.

Each spatial orbital accommodates two spin orbitals, and calcu-
lations in the spin basis can be performed using either restricted
or unrestricted treatments. In the restricted case, spatial orbitals
are constrained to be singly or doubly occupied, while in the
unrestricted case, orbitals can relax their spin degrees of free-
dom based on the initial guess in the SCF method. Figure 2
illustrates the energy levels for different spin and spatial or-
bitals. In this work, we use the unrestricted SCF procedure
for spin-polarized calculations in the GFN1-xTB, known as
the spGFN1-xTB method [16]. For closed-shell systems, only
the energy levels of spatial orbitals need consideration, allow-
ing the Roothaan and density equations to be formulated with
respect to spatial orbitals. In contrast, for unrestricted open-
shell systems, different spin orbitals occupy different energy
levels, requiring two Roothaan equations for opposite spins, as
follows:

FαCα = SCαϵα, FβCβ = SCβϵβ . (1)

Here, α and β denote different spins, C is the matrix of orbital coefficients, and ϵ is the diagonal
matrix of orbital energies. Hence, for unrestricted open-shell systems, there are two Fock matrices for
the different spins [27], rather than a single Fock matrix from spatial orbital interactions. Similarly,
two density matrices are obtained for the different spins, given by:

Pα
µν =

Nα∑
a

Cα
µa(C

α
νa)

∗, P β
µν =

Nβ∑
a

Cβ
µa(C

β
νa)

∗, (2)

where P and C are the individual elements of the density matrix and the orbital coefficients matrix,
respectively, the subscripts represent the position of elements, and Nα and Nβ are the number of
electrons with α spin and β spin, respectively [27].

The calculations of F and P for different spins also apply to closed-shell molecules, where matrices
for different spins are identical: Fα = Fβ = F and Pα = Pβ = 1

2P. Thus, we use the AO features
T = [Fα,Fβ ,Pα,Pβ ,S,H]. This representation allows us to consistently describe both closed-shell
and open-shell systems, with distinctions made by the different spin matrices. This featurization
generalizes the OrbNet-Equi framework to be able to process open-shell molecules, as well as closed-
shell molecules. We name this framework OrbNet-Spin. Note that technically any SCF method
that solves the Roothaan equation can be used in this framework, but we use spGFN1-xTB method
[16] to generate AO features inexpensively. The method is implemented using the tblite package
[4]. Furthermore, for training, we apply the delta-learning strategy, which is to learn the difference
between the label energies and the energies calculated using the cheap method, spGFN1-xTB, in this
case, [20]. Since for creating AO features we also get the energies estimated using spGFN1-xTB, the
calculation of the energy differences requires no additional cost.
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Figure 3: Learning curves of delta-learning and direct-learning (left) and delta-learning for singlets,
triplets, and all (right). For training size N , the training set contains N/2 singlets and N/2 triplets.

3 Results
We train OrbNet-Spin using the QMSpin dataset [23, 22], which includes 4,981 singlet-optimized and
7,835 triplet-optimized carbene geometries, providing 25,632 energy points (12,816 singlet energies
and 12,816 triplet energies). The geometries are optimized via restricted open-shell B3LYP/def2-
TZVP, and the energies are obtained at MRCISD+Q-F12/cc-pVDZ-F12, which is orders of magnitude
more computationally expensive than DFT methods [1].

Table 1: Mean absolute error (MAE) in kcal/mol on total molecular energy when trained with 10,000
molecules in total on different training sets of the QMSpin dataset.

OrbNet-Spin (Singlets Only) OrbNet-Spin (Singlets + Triplets)

Test Data
All 4.604 0.786

Singlets 0.662 0.819
Triplets 8.545 0.753

OrbNet-Spin is evaluated on singlet and triplet systems through two training configurations: (1) a
model trained with 10,000 singlets (singlets-only) and validated on 500 singlets, and (2) a model
trained with 5,000 singlets and 5,000 triplets (singlets + triplets) and validated on 500 singlets and
500 triplets. Training, validation, and test sets are selected randomly, ensuring no shared geometries.
Both models are tested on three sets: (1) a combined set of 2,316 singlets and triplets (all), (2) 2,316
singlets, and (3) 2,316 triplets.

As Table 1 shows, OrbNet-Spin can learn from the combined electronic structures of singlets and
triplets. Specifically, the MAE is significantly improved when using both singlets and triplets as
training data. Additionally, the singlet + triplet model performs on par with the singlets-only model
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Figure 4: Error distribution histogram (left) and absolute error log distribution histogram (right) for
OrbNet-Spin predictions on the QMSpin test set, trained with 10,000 singlets and 10,000 triplets.
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when testing on singlets data. This indicates that OrbNet-Spin can interpret the spin-polarized AO
features to accurately predict the energies of different spin states. Furthermore, displayed in Figure
3, delta-learning consistently exhibits lower errors at all training sizes. For the QMSpin dataset
training, the delta-learning surpasses the chemical accuracy with a 10,000 training size, whereas
direct-learning requires > 20,000 training size. In addition, we observe small differences between the
errors of singlets and triplets for different training sizes, implying that OrbNet-Spin can describe the
different spin states equally well. We also present the error distribution histograms in Figure 4—the
prediction error (MAE) of OrbNet-Spin centers at zero, showing a near-Gaussian error distribution.

Table 2: Mean absolute error (MAE) in kcal/mol on total molecular energy when trained with 20,000
molecules (10,000 singlets and 10,000 triplets) for different models.

SpookyNet MOB-ML OrbNet-Spin (ours)

Test Data
All 1.568 [32] 0.872 [1] 0.597

Singlets - 0.623 [1] 0.582
Triplets - 1.120 [1] 0.611

Next, we compare the performance of the OrbNet-Spin to the related work discussed above. We use
the same training size as mentioned in Cheng et al. [1] and Unke et al. [32] which is 10,000 singlets
and 10,000 triplets. While SpookyNet trained a single model using the combined set (without using
the QM features), MOB-ML trained two separate models for singlets and triplets.

As it is shown in Table 2, OrbNet-Spin demonstrates the best performance, solely achieving mean
absolute errors (MAEs) below the threshold of chemical accuracy (1 kcal/mol) for both singlet and
triplet states. This is particularly impressive given that the MRCISD+Q-F12/cc-pVDZ-F12 level
of theory is used for the dataset, which is significantly more accurate than DFT. More importantly,
MOB-ML uses restricted open-shell Hartree-Fock (ROHF) with aug-cc-pVTZ basis to generate its
features [1]. On the other hand, we use the cheaper method of GFN1-xTB. This demonstrates that our
model not only provides much higher throughput compared to MOB-ML but also successfully maps
less accurate input representations to the MRCISD+Q-F12/cc-pVDZ-F12 level of theory. Overall,
OrbNet-Spin stands out as the only model that can describe molecules of different spin states with a
single model, while maintaining the error below the chemical accuracy.

Lastly, our method enables energy evaluation orders of magnitude faster than traditional approaches.
It consists of two steps: (1) AO feature creation, which takes milliseconds on a regular CPU, and
(2) neural network inference, with an average time of 0.367 ms per data point (batch size of 64) and
8.458 ms without batching using an RTX 4090. Thus, OrbNet-Spin’s inference time ranges from a
few milliseconds to ∼ 10 ms per data point, significantly outperforming MRCISD+Q-F12 (hours to
days) per convergence [14, 25, 21].

4 Conclusion

We introduced OrbNet-Spin, an extension of OrbNet-Equi with spin-polarized AO featurization
to handle both open-shell and closed-shell systems. This method differentiates molecules with
varying total spins using distinct Fock and density matrices. By training OrbNet-Spin using the
QMSpin dataset, we demonstrate its ability to describe singlet and triplet molecules, achieving mean
absolute errors below chemical accuracy and outperforming SpookyNet and MOB-ML. We believe
OrbNet-Spin can be extended to other open-shell systems, such as radicals and reaction intermediates.
Additionally, it could be utilized for high-throughput prediction of various other physical properties.
These promising directions are left for future work.

Finally, we stress the one critical limitation of our model over other atomistic ML models, which
is that whether the model can process data depends also on the convergence of SCF using the
semiempirical method. Atomistic ML models take atomic numbers and coordinates as inputs and
hence can process any data. However, our neural network functions with quantum chemical matrices
obtained from QM simulations, but if the SCF procedure fails to converge, the features cannot be
generated, making it impossible to acquire the prediction.
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