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Abstract

Deconvolution of astronomical images is a key aspect of recovering the intrinsic
properties of celestial objects, especially when considering ground-based observa-
tions. This paper explores the use of diffusion models (DMs) and the Diffusion
Posterior Sampling (DPS) algorithm to solve this inverse problem task. We apply
score-based DMs trained on high-resolution cosmological simulations, through a
Bayesian setting to compute a posterior distribution given the observations avail-
able. By considering the redshift and the pixel scale as parameters of our inverse
problem, the tool can be easily adapted to any dataset. We test our model on Hyper
Supreme Camera (HSC) data and show that we reach resolutions comparable to
those obtained by Hubble Space Telescope (HST) images. Most importantly, we
quantify the uncertainty of reconstructions and propose a metric to identify prior-
driven features in the reconstructed images, which is key in view of applying these
methods for scientific purposes.

1 Introduction

The analysis of astronomical observations is affected by multiple sources of degradation and noise,
such as the point spread function (PSF) due to atmospheric interference and optical effects [37].
Although widely used, traditional deconvolution methods often encounter significant limitations,
including noise amplification, loss of resolution, and sensitivity to model assumptions [19, 5, 37, 21].

In this paper, we explore and evaluate the application of diffusion models (DMs) [34, 33, 35, 36, 14,
23], for astronomical image deconvolution, through the diffusion posterior sampling (DPS) algorithm
[7]. DMs have gained attention in recent years for their ability to model complex data distributions
through iterative denoising processes, often outperforming generative adversarial networks in image
generation tasks [8]. They provide a flexible and powerful approach to image restoration, either
through the use of plug-and-play algorithms [40, 12] or by directly conditioning the diffusion process
using a log-likelihood guidance term, ∇x log p(y|xt) [36]. DPS follows this latter approach.

The objective is to leverage realistic simulations to train a score-based diffusion model that can be
applied for deconvolution and noise removal on real images. We choose TNG100 simulations from
the TNG Illustris project [22, 6] to train our DM and HSC-PDR3 Survey [3] data to test the DPS.

We highlight the pros and cons of our approach, examining factors such as image quality, computa-
tional efficiency, robustness to noise, and tendency to hallucinate [18, 42, 29]. While our preliminary
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results suggest that our framework holds promise for improving deconvolution outcomes, we also
identify several areas where the model struggles, particularly in keeping physical consistency and
achieving real-time processing speeds.

2 Model and Datasets

Score-based diffusion model We follow the variance-preserving stochastic differential equation
(VP-SDE) approach from [36], focusing on the Denoising Diffusion Probabilistic Model (DDPM)
framework [33]. The general idea is to define the forward process F that perturbs the original data
x0 into a noisy version of itself xt at time t, and a backward process B that solves a reverse-time
stochastic process [4], written as:

F : dx = −β(t)

2
x dt+

√
β(t) dw, B : dx =

(
−β(t)

2
x− β(t)∇xt log pt(xt)

)
dt+

√
β(t) dw̄

where β(t) controls how much variance is added at each step, w is standard Wiener process and w̄ is
a backward Wiener process defined in [4].

When conditioning on an observation y, the posterior term p(xt|y) is introduced to guide the reverse
process [36]. Applying Bayes’ rule yields

dx =

(
−β(t)

2
x− β(t) [∇xt log pt(xt) +∇xt log pt(y|xt)]

)
dt+

√
β(t) dw̄ . (1)

The DPS algorithm approximates the likelihood p(y|xt) (intractable analytically [36, 7]) with
p(y|x̂0), where x̂0 is an estimate of the recovered data. Thanks to Tweedie’s formula [27, 38, 9, 15],
using the score of the prior learned during the training process s∗θ ≃ ∇xt

log pt(xt) and a cumulative
noise schedule ᾱ(t) that depends on β(t) [36], its expression is

x̂0 ≃ 1√
ᾱ(t)

[xt + (1− ᾱ(t)) s∗θ(xt, t)] .

Our publicly available DDPM and DPS implementation1 is based on [23] and [7], respectively, for
the training phase and deployment. Implementation details can be found in Appendix A.

TNG Illustris simulations The selected TNG100 simulated images have been made from snapshots
of the evolution of the simulated universe at specific redshifts z = 0.1527, 0.1693 and 0.1804 with
camera field-of-view face-on (also referred to as v0 in fits files). These snapshots have a fixed physical
resolution of 0.4 kpc/pixel. The images are cropped at center to a size of 256 pixels, and we consider
only the g,r and i bands. We refer to these images as the idealized TNG. This dataset is composed of
17852 images, that is split between a training and test with a 0.9/0.1 ratio. To increase the dynamic
range, we normalize the images and use an asinh stretch with a scale of 0.01.

To deconvolve real images y from the HSC survey, we define the operator A for which we assume
that the observation is defined as y = A(x) + σyn assuming n a standard Gaussian noise, and σy is
the noise variance. Our goal is thus to recover x.
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Figure 1: Schematic of the process to
transform an idealized TNG simulated im-
age into a HSC-like observation through
the operator A.

Due to projection effects, the apparent size of galaxies
(i.e. the size to which they appear to the camera) at
various redshifts is different; Since the model is trained
with a pixel scale of fixed physical units per pixel (the
idealized TNG data), one must then incorporate in the
operator A a redshift-dependent scaling to match their
apparent size. Furthermore, the matching of HSC pixel
scale p = 0.17 arcsec/pixel must be done before the
images are convolved with the HSC PSF Φ to simulate
an observation. In Figure 1, we produce a schematic of
that process, where the matching operations are grouped
under the fz,p function, and m := m(z, p) is the size of
the observed image.

1https://github.com/astrodeepnet/diffusion4astro.git
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HSC - PDR3 Survey data The Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP)2 is an
astronomical survey conducted using the Hyper Suprime-Cam (HSC) on the Subaru Telescope, a
powerful 8.2-meter optical telescope located in Hawaii. The data from this survey, particularly from
its third public data release (PDR3) [3], has been widely used in various research fields. We fetch
HSC images along with their approximated PSF3 and computed photometric redshift [39, 24, 25].

3 Experiments

The training process for the model required a total of 133 hours on 32 V100 GPUs. Following
300k training steps, an analysis revealed that the model exhibited a tendency toward mode collapse
[11]. This was identified by projecting the training dataset and the model predictions onto a lower-
dimensional manifold using UMAP [20] (refer to Appendix B for corresponding visualizations).
To mitigate this issue, the training was extended by an additional 225k steps, accompanied by an
increase in the batch size from 64 to 128 and the introduction of a random shift of up to 10 pixels in
any direction for the training images. This randomness enabled the model to generate galaxies that
were not perfectly centered, aligning more closely with real-world observations where object centers
are often uncertain.

To qualify the performance of our model, we computed the Fréchet Inception Distance (FID) [13], a
metric that indicates how well the generated samples match the features of the training images. The
values computed on 1024 images sampled from our models are shown on Table 1. The slight increase
between 450k and 525k may be explained by the random shift, which was not present in the training
set, for which all galaxies were perfectly centered. Since our work is the first to use this specific part
of the TNG Illustris dataset, we cannot compare these numbers with others, but they may be helpful
to set a benchmark future works.

Model training steps 300k 375k 450k 525k
FID value ↓ 317.3 235.3 119.4 132.6

Table 1: Performance of our model as a function of training steps (lower is better).

3.1 Results on simulated observations

Since our model has only been trained on simulated images, a first measure of the performance of
our algorithm is to deconvolve a simulated TNG image that has previously been convolved with a
realistic PSF to simulate an observation. This is possible due to the publicly available TNG dataset
[6] which not only provides the simulations we used to train our model but also contains HSC-like
images. These are indeed simulated TNG images that have been convolved with HSC PSF, set to the
HSC pixel scale, and put at a specific location in the HSC-SSP survey, providing a real background
to the simulated objects.

In Figure 2 we show respectively: the final step of the diffusion process xDiff
0 , the re-convolved

final step that can be compared to the TNG-HSC observation y, and the true TNG xIdeal
0 . Both the

TNG-HSC and TNG images are stretched with asinh and scale 0.01. We notice how the re-convolved
final step image, i.e. A(xDiff

0 ), is close to the observation y, which is an empirical proof that the
reconstruction process did not hallucinate by creating new information. In Figure 3 we show the
residual between the reconstructed xDiff

0 and the xIdeal
0 , from which we can see that the galaxy is well

reconstructed since most residuals are due to the artificially added HSC background.

Figure 2: Comparison of DDPM TNG-HSC deconvolved image (leftmost)
with Idealized TNG counterpart (rightmost). z = 0.1768

Figure 3: Residual

2Official website: https://hsc.mtk.nao.ac.jp/ssp/
3PSF Picker tool: https://hsc-release.mtk.nao.ac.jp/psf/pdr3/
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3.2 Comparing with space-based imaging

Thanks to the data publicly available through the PDR3 Survey UltraDeep layer [3], we can crop areas4

at known astronomical coordinates to retrieve the gri bands, the associated PSFs and photometric
redshifts. We chose an object in a location in the sky where we both have images from the COSMOS
project [31] and PDR3. We then apply the DPS algorithm with our DDPM model trained on idealized
TNG images and compare the result with the equivalent Hubble Space Telescope (HST - ACS)
images, downsampled at the HSC pixel-scale. The HST is only taken at channel i, i.e., the F814W
band, to provide a visual comparison.

In Figure 4 and 6, we show the ground-based observation (HSC) y, the space-based reference (HST),
and the final step of the diffusion process x0. Both the HSC and HST images are stretched with
asinh and scale 0.01. Each evaluation of the DPS takes ∼ 100 seconds on a single A100 GPU.
Indeed, the time consumption is a negative aspect of the DPS, which doubles the DDPM sampling
time due to the extra computation of the log-likelihood gradient term in Equation (1).

Figure 4: Comparison of DDPM HSC deconvolved
image (rightmost) with HST counterpart (middle).
Ra-dec coords (10h1m49.30s, 2°23’18.60") z = 0.2168

Figure 5: Posterior mean (left) and
variance-ratio (right) of pixel values over
256 samples from Figure 4.

Figure 6: Comparison of DDPM HSC deconvolved
image (rightmost) with HST counterpart (middle).
Ra-dec coords (10h 1m 34.77s, 2°4’19.02") z = 0.1665

Figure 7: Posterior mean (left) and
variance-ratio (right) of pixel values over
256 samples from Figure 6.

To provide a more insightful analysis, we sample 256 images from the posterior distribution and
compute the pixel-wise mean and variance (ratio). Figures 5, 7 show that the posterior mean represents
a reliable output for the inverse problem since it averages out the stochastic fluctuations. On the right,
the variance ratio image is produced by dividing the posterior variance by the prior variance, giving an
idea of the areas in which the uncertainty on the generated image is higher, i.e., the prior-dominated
areas. The fact that the central part of the variance ratio image is close to 0, means that the model is
not hallucinating when reconstructing the galaxy. However the reconstructed outskirts of the galaxy
seem to be much more prior-dominated, probably due to the nature of the TNG training dataset.

3.3 Limitations

Despite the good results, the model has limitations when the redshift z gets too high. Indeed, at
z > 0.7, we get images of size m(z, p) < 80. This means that when we try to solve the inverse
problem, we are both solving the deconvolution and the upsampling tasks, and an upscaling factor
higher than a factor 2 is problematic. We notice on Figure 8 how a single sampled galaxy at z > 0.8
is highly prior-dominated. In particular, a high number of features are created (hallucinated) all
around the galaxy, and are invisible on the HST counterpart. This is common when the solution to
the inverse problem requires injecting too much information from the prior (TNG idealized images).

Considering again 256 posterior samples for this galaxy and computing the mean and variance ratio,
demonstrate this prior domination on a large part of the image on Figure 9. The posterior mean is
still quite robust with fewer small TNG features than a single sample.

4Visual tool: https://hsc-release.mtk.nao.ac.jp/hscMap-pdr3/app
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Figure 8: Comparison of DDPM HSC deconvolved
image (rightmost) with HST counterpart (middle).
Ra-dec coords (10h0m2.86s, 2°2’13.92") z = 0.8463.

Figure 9: Posterior mean (left) and
variance-ratio (right) of pixel values over
256 samples from Figure 8.

3.4 Quantification of hallucinations

To better qualify the impact of the prior on the deconvolution, we define a metric based on the
posterior variance. Building on the results we explored on Figures 5, 7 and 9, we take the pixel-wise
posterior variance and prior variance over 256 samples, take their ratio and compute the average value
on a centered aperture or radius r (here we chose r = 30 pixels) that contains the central part of the
galaxy. To verify such metric is positively correlated with a prior-dominated reconstruction, we create
a test using simulated TNG images, which we artificially convolve with a Gaussian PSF and add a
fixed noise level σy measured on HSC images. The main point is to vary the signal-to-noise ratio
(SNR) by setting specific magnitudes to the galaxy (it will be lower when the magnitude is higher, i.e.
the galaxy fainter). We vary the magnitude from 18 to 23, and report the metric results in Table 2,
where we confirm such positive correlation when the noise starts dominating the galaxy signal.

We refer to Appendix C for the visual results at all magnitudes.

Simulated magnitude 18 19 20 21 22 23
SNR 699.3 278.4 110.8 44.1 17.6 7.0

Variance Ratio (r = 30) 0.0114 0.0116 0.0168 0.0346 0.0560 0.0685

Table 2: Signal-to-noise and variance ratio as a function of the simulated TNG galaxy magnitude.

4 Conclusion

By exploring diffusion-based methods in the context of astronomical image deconvolution, we aim to
provide a foundation for future research and development of signal processing in astronomy. Our
findings contribute to the growing body of works on applying advanced machine learning techniques
to astrophysical data analysis [16, 26, 1, 32]. In particular, one of our inspirations comes from the
work of [2], who first implemented DMs to tackle the astronomical deconvolution problem. Our work
builds on it by including the redshift and pixel scale as parameters of the inverse problem to adapt the
model to any dataset. We also propose an implementation of a general-purpose algorithm, the DPS,
to solve the deconvolution of astronomical observations and make it publicly available, allowing the
reproducibility of the results. Finally, we provide a metric to identify prior-driven features in the
generated solutions. We hope to take a step toward providing confidence to the scientific community
for applying these models to real-case scenarios.

Broader impact

Generative modelling for improving data quality in astrophysics has been investigated quite exten-
sively over the past decade [30, 41, 17, 10]. However, despite promising results, very few works
use these techniques for scientific applications because it is difficult to identify whether the model
outputs can be trusted. In this work, we try to go a step forward towards deployment by investigating
ways to track model hallucinations and prior-driven features. This opens the door to a systematic
application of these deconvolution methods on large-scale statistical samples of celestial objects to
infer physical properties. We plan to investigate the use of score-based deconvolution techniques to
resolve the internal structure of galaxies.
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A Training details

The model used to approximate the score function introduced in Section 2 is the UNet [28] model
defined in [23]. To train the network we used the following hyperparameters:

• –image_size 256
• –num_channels 192 This flag indicates the base number of channels used in the Unet’s

convolutional layers.
• –num_res_blocks 3 This specifies the number of residual blocks to use at each level in

the UNet architecture.
• –diffusion_steps 1000
• –noise_schedule cosine The model uses a cosine noise schedule. The cosine schedule

has been shown [23] to improve model performance by making the noise added to the images
more evenly distributed across the steps (as opposed to the traditional linear schedule).

• –lr 1e-4 This flag specifies the learning rate.
• –batch_size 64 or 128 This flag specifies the batch size used during training. We train

our model for 300k steps using a batch size of 64, and then we improve the results by
extending the training to 525k steps using a batch size of 128.
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B UMAP representation of the data

We use the low-dimensional manifold projection called UMAP [20] to visualize on the same manifold
the data distribution from the training set (blue dots) and the one sampled from the generative model
(red dots). We use the fact that the distribution of the sampled data is not as homogeneous as the one
from the training as a sign that the training is incomplete or collapses into specific modes as shown in
Figure (a). After additional training, the behavior improves as seen on Figure (b).

(a) UMAP 3D representation of the training dataset
(blue dots), as well as 1000 samples (red dots)
generated from the model after 300k steps. We
can spot a mode collapse at the top right.

(b) UMAP 3D representation of the training dataset
(blue dots), as well as 1000 samples (red dots)
generated from the model after 525k steps. Much
more homogeneous.
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C Visual quantification hallucinations

The Figures below start from the same idealized TNG image, whose magnitude is artificially changed
(second column). The two right-most images are the pixel-wise mean and variance ratio computed
over 256 samples from the model applied on the second image. The Figures are corresponding to the
values computed in Table 2.

Figure 11: Left to right: Idealized - Simulated at mag 18 - Pixel-wise mean - Variance ratio

Figure 12: Left to right: Idealized - Simulated at mag 19 - Pixel-wise mean - Variance ratio

Figure 13: Left to right: Idealized - Simulated at mag 20 - Pixel-wise mean - Variance ratio

Figure 14: Left to right: Idealized - Simulated at mag 21 - Pixel-wise mean - Variance ratio

Figure 15: Left to right: Idealized - Simulated at mag 22 - Pixel-wise mean - Variance ratio

Figure 16: Left to right: Idealized - Simulated at mag 23 - Pixel-wise mean - Variance ratio
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