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Abstract

In recent years, increasing attention has been directed toward the study of swarm
dynamics in animals and cells in the fields of science and engineering. Notably,
significant progress has been made in observing and analyzing large-scale swarming
behavior, characterized by the collective movement of numerous individuals and
spanning up to several kilometers in size. Traditional analyses of such large-scale
swarming behavior have often focused on specific hierarchical levels, examining
the dynamics within these levels. However, understanding the interactions between
different hierarchical levels is equally critical, as swarming behavior emerges from
both intra-group and inter-group dynamics. In this study, we analyzed large-scale
swarm dynamics using topological data analysis based on persistent homology.
This approach enables the extraction of topological features across multiple scales
and provides a quantitative framework for understanding the relationships between
these features.

1 Introduction

Swarms of animals or cells that use internal chemical energy to form swarm patterns have attracted
much attention in science and engineering in recent years. Cavagna et al. [1] identified the presence of
a scale-free property in swarming behavior. Specifically, they observed that the ratio of the correlation
length of the velocity fluctuations among individuals in a flock to the flock size is constant regardless
of the flock size. This finding, derived from measurements and analyse of bird flocks, , suggests that
certain aspects of swarm dynamics exhibit characteristics of a critical system.

A series of models, known as boid models, have been proposed to reproduce swarming behaviors
using simple rules between individuals [2, 3, 4, 5, 6]. For example, Vcsek modeled the collective
motion of a flock of birds by drawing an analogy between the velocity vector of an individual bird
and the spin in a ferromagnet [5]. In this model, the existence of giant density fluctuations, in which
local particle density fluctuations in the collective motion layer exceed the values predicted by the
central limit theorem, has been confirmed. This discovery has led to numerous studies on the model,
as it exhibits various unique characteristic of non-equilibrium systems. However, the Vicsek model
does not produce the well-defined clusters observed in real swarms. In fact, chate et al. reported
that, in addition to the directional alignment effect of the Vicsek model, the addition of the effects of
attraction, which causes individuals to move closer together, and repulsion, which prevents collisions
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by causing individuals to move away when too close, results in movements more similar to natural
bird flocking in three-dimensional simulations [7].

Although many studies have explored swarming behavior, most have focused on the behavior of
a single swarm with population sizes ranging from 100 to 1,000 individuals. Few studies have
examined large populations where multiple swarms interact with each other simultaneously. In nature,
large flocks interact with one another [8, 9]. For example, in western herring flocks, it has been
observed that depending on their trophic state, the flocks separate into two groups, one in the upper
layer of the ocean and the other in the lower layer, and that the members of these two groups switch
between them as each individual’s trophic state changes [9]. Also, a large-scale swarm simulation was
conducted [10] using Reynolds’ boids model [3], which reproduces a swarm of birds by balancing
the attraction and repulsion between individuals and the alignment force. The study reported the
emergence of filament-like, relatively small swarms driven by velocity fluctuations, as well as larger
swarms driven by density fluctuations, despite all individuals sharing the same parameters [10, 11].
However, quantitative analyses of the hierarchical structures, such as interactions between swarms in
large-scale systems, remain scarce in studies of such swarm models.

This study aims to analyze large-scale swarming behavior through topological data analysis
(TDA) [12] and Wasserstein distance [13] to reveal the hierarchical nature of large-scale swarming
systems. Recently, topological data analysis (TDA) has been suggested as a useful tool for analyzing
swarming behaviors [14, 15, 16, 17], with prior studies focusing primarily on relatively small-scale
swarms. TDA is a data analysis method that achieves multi-level scale hole feature extraction by
adding hole scale information to the topological structure that extracts the number of holes. Therefore,
the application of TDA to large-scale swarming behavior is expected to enable the quantification of
swarming phenomena across multiple scales. TDA represents the extracted features as point cloud
data, called a persistence diagram. In this study, we propose an analytical framework to extract the
fluctuating structures of flock geometry by quantifying them as the Wasserstein distance between
the distributions of the persistence diagram data. This framework is applied to large-scale flock
simulation data to better understand the underlying hierarchical dynamics of swarming behavior.

2 Reynolds’ boid model

For the simulation conducted in this study, because generating flocks with well-defined shapes
is needed for multiple flocks to interact, a model incorporating three forces, as described in the
Introduction section, is deemed appropriate. In this study, the boid model proposed by Reynolds et
al. [3] was selected from among such models. Reynolds’ boid model is one of the earliest attempts to
replicate flock behavior based on interactions and has been shown to effectively reproduce complex
bird flocking behavior [3]. In Reynolds’ boid model, each individual moves accordingly to three
forces: attraction, which draws individuals closer; separation, which prevents individuals from
colliding; and alignment, which aligns an individual’s orientation with those nearby:
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where q := (q1, q2, q3), p := (p1, p2, p3), and j, k represent the index of an individual.
The attraction, separation, and alignment terms are represented by the first, second, and
third terms, and the forces have the interaction ranges and the angles of view, respectively.

Figure 1: Swarm structure formed by large-scale
simulation based on Reynolds’ boids model.

The parameters Wali, Wsep, Watt, rali, rsep, ratt,
θali, θsep, and θatt of Reynolds’ boid model can
be tuned to simulate the collective motion of
living things such as birds or fish [3, 18]. In
this study, we focused on a specific parameter
set (see Table 2) that simulates the large-scale
hierarchical structure described in [10, 11]. A
snapshot of the simulation is shown in Fig. 1. In
general, a narrower effective interaction range
reduces the computational cost of the simula-
tion because there are fewer pairs of interactions
to consider. However, in such a parameter re-
gion, the interaction in the whole system is weak
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Figure 2: The left panel shows the evolution of the simplicial complex corresponding to the increase
in radius, and the right panel shows the PD corresponding to the left panel’s series of figures.

and the swarm structure cannot form well. This
parameter, by taking an appropriately narrow
range of interactions, allows for a large, hier-
archical swarm structure with a small amount of computational cost. While there is no specific
swarming phenomenon that corresponds to simulation of this parameter, it is excellent in that it allows
discussion of the emergent nature of hierarchical structure in a swarming model, a model that reflects
the nature of swarming.

3 Analysis methods

TDA is a generic term for a group of data analysis methods that focus on the topological geometry
of data. Topological features are different from those commonly used in pattern structure analysis,
such as statistics and Fourier bases, in that they provide robust features that do not depend on small
differences in the input data [12]. One key feature used in TDA is persistent homology (PH). PH
represents a figure as a set of creation and annihilation of hole structures depending on a single
parameter such as parameter related to scale of holes (Fig. 2). In general, topological information
does not have distance information such as spatial scale, which is crucial for understanding physical
phenomena, but in PH, scale information can be added via a single parameter in its features. PH is
uniquely represented as a persistent diagram (PD) with the scale at which the hole occurred on the
horizontal axis and the scale at which it disappeared on the vertical axis (Fig. 2):

PDl = {(bk, dk) ∈ R2 | k = 1, 2 · · ·Nhole}, (1)

where l represents the dimension of holes and Nhole is the number of holes in the swarm structure. In
this study, we focused on three-dimensional holes l = 3.

We first performed a TDA of a given snapshot according to the pattern dynamics analysis procedure
proposed in [19]. The PD of the snapshot was calculated, and at the same time, the correspondence
between the structure on the PD and the geometric structure of the swarm in real space was explored
using the inverse analysis method [20, 21]. In the inverse analysis, the death simplices method was
used to extract the structure corresponding to the moment the hole died [20, 21]. The analysis of
snapshots helped understand the correspondence between PD and swarm structure.

Table 1: Parameters of this simulation

Parameter Value Parameter Value
range of cohesion 0.05 [unit] angle of cohesion π/2
range of alignment 0.05 [unit] angle of alignment π/3
range of separation 0.01 [unit] angle of separation π/2

field size 0.5 – 3.0 [unit] number of individuals 2,048 – 524,288
max speed 0.005 [unit/step] min speed 0.001 [unit/step]

Watt 0.008 initial velocity randomly distributed
Wrep 0.002 initial position randomly distributed
Wali 0.06 time step increment 1

density 16,384 [num/unit3] boundary condition 3D periodic
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Next, we analyzed the series of PDs that evolved over time according to the dynamics described in
[19]. We combined this with the results of the snapshot analysis to understand the time evolution of
the geometrical structure of the swarms. Before analyzing the PD series, we first checked whether
the PDs contained important information about swarm dynamics. For this purpose, we performed a
regression analysis with the vectorized PD as the explanatory variable and the corresponding time as
the objective variable. The vectorized PD, V(PD), is defined as,

V(PD) :=
{
h(rbirth, rdeath)| Ngridrbirth,Ngridrdeath ∈ Z, rbirth, rdeath ∈ Z, [rmin, rmax]

}
, (2)
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where, Ngrid = 128 for intra-fluctuation analysis and Ngrid = 12, 800 for inner-fluctuation analysis,
which will be defined in the following section. The range [rmin, rmax] = [minrbirth,maxrdeath] was used.
We inversely regressed vectorized PDs to their corresponding time of simulation. The predictive
performance of the regression model was evaluated using the fivefold cross-validation method [22].
If the model demonstrated sufficiently high performance, it suggests that dynamic information was
embedded in the PD series.

After confirming that the PD series encompassed the information, the time variation of the distribution
function, h(rbirth, rdeath), was evaluated using the inter-distributional distance to assess the time
variation of the geometric structure of the swarms. Concretely, using the mean distribution of
the PD series, hmean(rbirth, rdeath) := 1

Ntime

∑Ntime
t=1 ht(rbirth, rdeath), where ht represents the function h

in Eq.(2) computed from the PD at a given time t. In this study, Ntime was set to 100. We used
hmean as a reference, and the distances between each histgram ht and hmean were evaluated using the
1-Wasserstein distance [13]. From the series of distances, information about the fluctuation structure
of the swarm was extracted.

4 Results and discussion

By applying TDA to a snapshot of the swarm data, the PD shown in Fig. 3(a) was obtained. The PD
was observed to have a generator distribution (points on the PD) corresponding to long-lived holes in
large radius regions (Fig. 3(a)). When the micro-radius region of the PD was enlarged, a peculiar
structure with a relatively long lifetime was also observed in this region, as shown in Fig. 3(b). Upon

Inner-swarm
Inter-swarm

PD (dim3) of snapshot

(a) (b)

(c) (d)
Inverse analysis Inverse analysis

Figure 3: TDA of a snapshot of the swarms’ structure. (a) PD of the snapshot. (b) Close-up of the
PD’s small radius region corresponding to the swarms’ inner structure. (c) Results of the inverse
analysis of the PD in the large radius region (blue box). (d) Results of the inverse analysis of PD in
the small radius region.
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Figure 4: Analysis results of the time series of the swarming dynamics. (a) Example of a time
series of a swarm structure and the corresponding PD series. (b) Regression result from the PD
series with the corresponding time. The figure shows the predicted results for the test data using the
cross-validation method. (c) Time evolution of the Wasserstein distance between the PD series and
the average PD. The upper figure shows the results of the analysis of the PD region corresponding to
a large radius, and the lower figure shows the results of the analysis of the PD region corresponding
to a small radius. The red line is the curve obtained by smoothing at 20 time intervals.

applying inverse analysis to the PD regions with these unique generators, highlighted by the blue and
red rectangles in Fig. 3(a), it was confirmed that the long-lived generators in the large radius regions
corresponded to the inter-group hole structure (Fig. 3(c)), while the long-lived generators in the small
radius regions corresponded to the intra-group structure (Fig. 3(c)).

A regression analysis was performed to estimate each time from a series of PD histograms {ht}
100
t=1 . As

a result, a regression model with high accuracy was constructed for the prediction data (Fig. 4(b)).
This suggests that the series of PD contains sufficient information about swarm dynamics. Note that,
the resolution of the histogram used for this analysis was 12, 800 × 12, 800.

Finally, we analyzed the time evolution of the 1-Wasserstein distance between {Ht}
100
t=1 and Hmean. The

blue boxed area in Fig. 3(a) corresponding to the structure of the inter-swarm and the red boxed area
in Fig. 3(a) corresponding to the structure of the intra-swarm, respectively, were analyzed. The results
showed that the variation of the intra-swarm was less scattered with respect to the smoothing curve
(red lines) compared to the inter-group variation (Fig. 4(c)). This result suggests that the internal
structure of the swarm fluctuates while maintaining its average geometric structure. This finding is
consistent with results from previous studies, which show that large swarms are driven by density
fluctuations [10, 11]. Both inter- and intra-swarm smoothing curves varied systematically, which
suggests that there are dynamics with similar time constants inter- and intra-swarm, and thus the
possibility of interactions between inter- and intra-swarm structures is expected.

5 Summary

This study confirms the validity of analyzing large-scale swarm dynamics via a series of TDAs. In
ordinary analysis of swarm dynamics, identification of individual swarm structure is a technical
challenge, but the results suggest that TDA can be used to analyze swarm dynamics without going
through such a preprocessing step [10, 11].

This study did not provide a statistically precise discussion. For example, while the presence of
sufficient dynamical system information in the PDs was examined through regression analysis, the
adequacy of the regression performance could have been assessed more robustly, such as by comparing
it with random data. It is anticipated that refining these methods will facilitate the discovery of new
insights in the analysis of large-scale swarm dynamics.
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