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Abstract

Galaxy morphologies play an essential role in the study of the evolution of galax-
ies. The determination of morphologies is laborious for a large amount of data
giving rise to machine learning-based approaches. Unfortunately, most of these
approaches offer no insight into how the model works and make the results difficult
to understand and explain. We here propose to extend a classical encoder-decoder
architecture with invertible flow, allowing us to not only obtain a good predictive
performance but also provide additional information about the decision process
with counterfactual explanations.

1 Introduction

Galaxies are the primary building blocks of the universe, composed of stars, stellar remnants,
interstellar gas, dust, and dark matter. A key objective in galaxy research is to elucidate how galaxies
have evolved from their early stages to the diverse and large forms observed today [1]. Specifically,
analyzing the morphology and structure of galaxies is essential for understanding their evolution,
as these aspects are intricately linked to their evolutionary history and are crucial for exploring the
physical parameters of galaxies. Morphological features are essential for interpreting its evolutionary
history and determining a galaxy’s current dynamic state, such as the distribution and movement of
stars, gas, and dark matter.

Significant efforts have been dedicated to designing galaxy morphology classification schemes and
data collection methods. For example, Galaxy Zoo [2] and its successor Galaxy Zoo 2 [3], classify
galaxies from the Sloan Digital Sky Survey (SDSS) [4] into basic types. Recently, the classification of
galaxy morphologies can be predicted with CNN-based models [5–8]. These automated approaches
surpass previous methods and have been applied across multiple surveys [9–11]. The drawback of
these methods is their black-box characteristics, limiting the application of these methods because
of the lack of interpretability and explainability. In this work, we target this issue with validating
and insightful counterfactual explanations, demonstrating the importance of certain features for the
decision-making process.

2 Data and Methodology

Visual counterfactual explanations Visual counterfactual explanations (CEs) [12, 13] seek to
make only semantically meaningful modifications to an input image in order to obtain a similar image
with a target label prediction outcome.

For a given image x, the objective is to find a counterfactual proposal xcf that has low counterfactual
(CF) loss:

Lcf (x
cf ) = f(xcf , ycf ) + s(x,xcf ) (1)
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where a function s(x,xcf ) quantifies the perceptual distance between x and xcf and function f
yields a lower loss when the classifier predicts a label for the counterfactual that is closer to the
target label ycf . In other words, a counterfactual explanation reveals what should have been different
in x to observe a diverse outcome with label ycf instead of y. Thus, the approach offers deeper
insights into the features that significantly contribute to the model’s decision-making. CEs accentuate
class-relevant features, illustrating how alterations to these features shift the prediction from one class
to another.

While counterfactual explanations provide insights into the differences between predicted classes,
generating them presents challenges. First, counterfactuals must align with the data distribution,
meaning they need to look realistic within the context of the original dataset. For example, generating
a counterfactual image (e.g., turning a cat into a dog) requires a robust generative model capable
of maintaining natural, coherent results. Second, irrelevant features must remain unchanged during
the generation process. Altering irrelevant or unrelated features can lead to explanations that are
misleading or uninformative. For example, if a counterfactual explanation changes the background of
an image when the focus should be on the object itself, the explanation may fail to provide useful
insights about the model’s decision-making process. Finally, extracting meaningful representations
from high-dimensional data, such as images, poses a significant challenge. In such cases, identifying
the most relevant features to adjust while preserving the overall structure is difficult due to the
complexity of the feature space. In this work, we address these challenges.
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Figure 1: Architecture of our model. Left panel: training phase. Right panel: explanation phase.

Model architecture To obtain robust counterfactuals, we construct a model that exploits invertible
flows such that counterfactuals obtained in latent space can be translated back to image space. The
proposed model includes three components: an encoder E, decoder D, and invertible flow F [14].
Briefly, F enables bijective mapping through a specific architecture (see below). As shown in Figure 1
(left panel), the encoder maps the image to latent space Z , and the decoder maps latent vectors back
to the image space. The invertible flow converts the latent distribution to a Gaussian Mixture Model
(GMM) [15], clustering vectors with the same label in a hidden space H. The input image is classified
by the closest cluster mean in H. The entire model can be trained in an end-to-end way.

Compared to commonly used traditional classification methods, the encoder E acts as feature
extraction, with an invertible flow replacing MLP. This design reduces the dimensionality of the
image data and simplifies the decision boundary to a straight line between two Gaussian means. It
also ensures a bijective mapping between latent space Z and hidden space H, enabling counterfactual
explanations. As shown in Figure 1 (right panel), the input image maps to a latent vector z, then
to a hidden vector h for classification. A counterfactual latent vector zcf is created by pushing h
across the decision boundary and mapping it back to latent space. The decoder D then converts zcf
to image space. The latent space is regularized with Maximum Mean Discrepancy (MMD) [16] (see
also Equation 2) to keep the encoding function E Lipschitz continuous, ensuring interpolability and
meaningful counterfactuals [17].

This intervention enables us to achieve an arbitrarily low f loss in Equation 1. However, minimizing
the distance between the original and counterfactual images s(x,xcf ) is still necessary, which
translates to minimizing the distance between their latent vectors due to the Lipschitz continuity of
the encoding function. We achieve this by splitting the latent vector into class-dependent z1 and
class-independent z2 components, where only z1 is used by the invertible flow F for classification.
Additionally, we train the invertible flow with an information bottleneck objective [18] (see also
Equation 2 and 4) to reduce mutual information between latent and hidden spaces, ensuring that F
focuses on essential classification information with minimal alteration to z1 similar to pixel-level
counterfactual generation by [19]. Note that the decoder may ignore z1 completely if z2 contains
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duplicated information to z1. Applying MMD constraints in the latent space removes the redundancy
in the latent vector [20], making the generated image respond to the modification in z1. The details
of the model and training procedure can be found in Appendix A.1.

Invertible Flow An Invertible flow, or Invertible Neural Network (INN) [14, 21, 22], is a type of
neural network architecture designed so that its forward and backward operations are both computa-
tionally feasible and reversible. This means that given the output, the original input can be accurately
reconstructed. INNs achieve this by using specific structures that ensure bijective (one-to-one) map-
pings between the input and output spaces, called coupling layers. In a coupling layer, the input data is
split into two parts. One part of the data remains unchanged, while the other part is transformed using
a function conditioned on the first part. This approach ensures that the transformation is invertible
and the Jacobian determinant of the transformation is easy to compute.

Loss Functions As previously mentioned, the objective comprises two key aspects: firstly, the
model is required to generate in-distribution images, and secondly, decision-irrelevant features should
remain unchanged. To accomplish this, we design the loss functions as follows:

L = LR(x̃,x) + LMMD(z,n) + LIB(z1, y) (2)
Here, LR(x̃,x) = Φ(x̃) − Φ(x) denotes the reconstruction loss between the generated image (x̃)
and the input image (x), where Φ represents a VGG16 model pre-trained on the ImageNet dataset
[23]. This model captures meaningful representations, as discussed in [24].

The second term, LMMD, describes the Maximum Mean Discrepancy loss, which encourages the
latent vector (z) to approximate a Gaussian distribution. This ensures the interpolability of the latent
space so that the generated image with the modified latent vector is still in-distribution. The loss is
empirically estimated [16] by

LMMD(z,n) =
1

m(m− 1)

m∑
i=1

∑
j ̸=i

k(zi, zj)− 2

m2

m∑
i=1

m∑
j=1

k(zi,nj) (3)

+
1

m(m− 1)

m∑
i=1

∑
j ̸=i

k(ni,nj)

where m is the batch size while training. The term zi = E(xi) denotes the latent vector of i-th input
data xi, ni represents the i-th sample from the target Gaussian distribution, and k is the kernel, more
precisely a Radial Basis Function (RBF) in this work. Together with the reconstruction loss LR, these
components constitute the MMD-VAE [17], a generative model known for its strong reconstruction
quality.

The last term in the loss function L (Equation 2) represents the information bottleneck loss [18, 25].
On high-level, it is expressed as:

LIB = I(Z,H)− βI(H,Y) (4)
The first term in Equation 4 on the right-hand side minimizes the mutual information I between the
latent space Z and the hidden space H, while the second term maximizes the mutual information
between the hidden space and the class label Y . The combination of both components ensures
that only essential information is used for classification. The parameter β controls the trade-off
between preserving relevant information and discarding irrelevant details. Higher β values emphasize
task performance, leading to better classification accuracy but potentially less robust uncertainty
quantification. Lower β values prioritize compression, resulting in improved uncertainty calibration
and out-of-distribution detection, at the cost of some classification accuracy. In this work, an
intermediate value of 3 is used. For the detailed implementation of this loss function, readers are
referred to the original paper [18]. Note that this loss connects the input data x to its corresponding
class label y and is applied only to the class-dependent component z1.

Galaxy10 DECaLS We study Galaxy 10 DECaLS1 with 17,736 DESI Legacy Imaging Surveys
(DECaLS) [26] images (g, r and z band) and labels from Galaxy Zoo Release 2 [3] describing galaxy
morphology in ten distinct classes. Figure 2 shows examples of each class. We normalize the images
from [0, 255] to [0, 1], rotate the image randomly, and resize it to 256 x 256 after cropping the central
region.

1The data is publicly available online
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3 Results

Metrics We evaluate the model with regard to accuracy and similarity. Our trained model reports an
accuracy of ∼ 80%. The accuracy for each class varies between 70% to 90% except for the disturbed
galaxy, which has an accuracy of about 41% reflecting its complexity. The similarity between the
counterfactual and original images is high, with Mean Squared Distance of 0.006 and Structural
Similarity Index Measure (SSIM) [27] of 0.96. SSIM is designed to better align with human visual
perception compared to traditional metrics. Details in Appendix A.2.

Figure 2: Sample images for each class of Galaxy 10 DECaLS and number of instances.
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Figure 3: Original images aligned across diagonal (red boxes) with counterfactuals displayed in the
same row classified according to column labels. Due to limited space, a complete image grid is shown
in Appendix A.3.

Counterfactual Explanation Results are visualized in Figure 3 by overlaying the difference
between counterfactual xcf and reconstructed image x̃ on the input image x, i.e. x + (xcf − x̃).
Notably, decision-relevant areas can be emphasized as in other Explainable AI methods, by calculating
the difference between the counterfactual and the reconstruction, xcf − x̃ (Example in Appendix A.3).

When comparing round and cigar-shaped smooth galaxies, we notice the change in shape from
round to more elongated as expected. Similarly, edge-on galaxies with and without bulge are
clearly distinguishable by the central galaxy bulge. Barred and unbarred spiral galaxies can be
distinguished by their central structures, with barred spirals featuring elongated central objects and
unbarred spirals having rounder central regions. Please note that there is no change in background
during reconstruction. Thus it can be concluded that the encoder correctly distinguishes between
class-dependent and class-independent latent features.

We observe that the spiral morphologies, i.e., barred tight/ loose and unbarred spiral, and their
visual counterfactual explanations, displayed in the right panel, look very similar. As the image
is compressed in feature space before classification, the fine structures are gradually removed.
Therefore, the invertible flow and the decoder have no information about fine structures like spirals.
The remaining information is likely shared in their latent features. As a result, the groups are close to
each other in the latent space and the distance to the nearest sample of the neighboring class is very
small (see Figure 4), corresponding to a minimal difference in the image.

4



Latent Space Analysis The latent space learned by our model is further analyzed with t-SNE plots
[28], see Figure 4. The left and right t-SNE plots illustrate the latent space features z1 and z2. While
z1 shows at least a few connected groups, z2 hardly shows any groupings corresponding to the classes.
This is a desired behavior since the information in z2 should be independent of the classifications.
Hidden space features h1, i.e., z1 transformed with F contain mostly clearly separable clusters,
indicating a separation of the latent space features regarding their classes. The clusters that cannot be
separated are Unbarred Loose Spiral (green) and Unbarred Tight Spiral (cyan). As already observed
above, the model is challenged regarding very fine details in the images, e.g., spirals. The remaining
similarities of the classes reflect on the positioning of the clusters in latent space.

The t-SNE plot does not reveal any information about samples belonging to the Disturbed (dark
green) class. These galaxies tend to be diffuse and resemble different classes, rendering them hard
to group. This is reflected in the accuracy of 41% for Disturbed galaxies. Even though there are
few orange points in z1’s t-SNE plot due to the few included Cigar Shaped Smooth samples in the
dataset, there is a well-visible cluster formed in the t-SNE plot according to h1. This demonstrates
the model’s ability to handle imbalanced classes.

Figure 4: t-SNE plots for class-dependent (z1), hidden (h1) and background (z2) features.

4 Discussion

Previous works employed Explainable AI techniques to astrophysical use cases, such as identifying
informative latent space representations of galaxy spectra with SHAP values [29] or detecting
ultra-compact dwarfs and globular clusters using Localized Generalized Matrix Learning Vector
Quantization (LGMLVQ) to provide feature importance for each class, class-wise representative
samples and the possibility for non-linear visualization of the data [30]. Bhambra et al. [31]
explain galaxy morphology classification with saliency maps. In contrast to our approach, they apply
SmoothGrad to illustrate which pixels contribute to classification. Their findings show that the trained
ensemble, consisting of the three architectures VGG16, ResNet50v2, and Xception, sometimes
disagrees with the target labels in Galaxy Zoo assigned by citizen science. They show examples
indicating that the ensemble might be more correct than the ground truth.

Our approach is sensitive to mislabeled samples, as the latent space feature vectors are changed and
thus the bias is shifted towards the counterfactuals. This effect can be investigated by analyzing the
distributions determined by invertible flow F . Closer examination of h1, see Figure 4, can identify
problematic classes for further reviewing. This is a desirable property as it identifies possible issues
of the pipeline, i.e., data or model, that might not be discovered otherwise.

5 Conclusion

We present a new approach to produce realistic counterfactual explanations for galaxy morphologies
by adjusting the class-dependent latent space features. In future work, we aim to address the current
limitation related to capturing fine details within the images. Additionally, we are interested in
exploring the interpretability that the distributions inside F hold, as this could offer valuable insights
into the relationships between the classes and reveal any limitations of the classifier or the data when
the classes cannot be clearly distinguished from each other.
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