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Abstract

We present a way to capture high-information posteriors from training sets that are
sparsely sampled over the parameter space for robust simulation-based inference.
In physical inference problems, we can often apply domain knowledge to define
traditional summary statistics to capture some of the information in a dataset. We
show that augmenting these statistics with neural network outputs to maximise the
mutual information improves information extraction compared to neural summaries
alone or their concatenation to existing summaries and makes inference robust in
settings with low training data. We introduce 1) two loss formalisms to achieve
this and 2) apply the technique to two different cosmological datasets to extract
non-Gaussian parameter information.
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Figure 1: Schematic for learning a hybrid summary statistic s with a choice of mutual information
maximiser and existing static t. Black boxes denote neural functions to be learned.

1 Introduction

Implicit (simulation-based) inference makes solving otherwise intractable inverse problems possible
by employing neural compressors which can flexibly map big data vectors into informative summaries
(Cranmer et al., 2020; Hoffmann & Onnela, 2023). These mappings can be made optimal (Charnock
et al., 2018; Makinen et al., 2021, 2024; Lanzieri et al., 2024; Jeffrey et al., 2020), but often require
large numbers of simulations to achieve convergence.
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For many physics problems, such as large N-body and hydrodynamical solvers, forward simulations
are expensive to generate, so networks tasked to compress these data for parameter inference must
learn informative features using sparsely-sampled training sets, especially when large numbers of
parameters are varied. Introducing informative priors in data feature (Battaglia et al., 2018; Ivanov
et al., 2024, e.g.) or likelihood (Modi & Philcox, 2023) space can simplify the task of a neural
network to learn an objective.

Main Contributions. We present a way to obtain highly informative summaries over parameter space
in low-training data settings that boost information extraction from data beyond existing statistics
and the mere concatenation of neural summaries learned separately and traditional summaries. These
“hybrid" statistics are neural summaries that are learned to maximise the mutual information (MI)
beyond an existing summary of the data and the parameters of interest.

Summary of Results. We present two equivalent objectives that maximise MI information between a
new, neural summary, and an existing summarisation of the data over parameter space. We apply this
technique to two different cosmological problems where information can be lost to existing summary
functions–21cm Epoch of Reionisation (21cm) and weak gravitational lensing (WL) parameter
inference. We show that hybridised summaries are far more robust in settings with low available
training simulations, indicating improved network optimisation over parameter space.

2 Formalism

In inference problems, we aim to infer quantities of interest θ from data d. In the physical sciences
we often have domain knowledge which allows us to design a summary statistic of the data t(d) that
capture some, but not all, of the information in a dataset. To enhance the information extraction,
we aim to learn additional summaries s(d) that are complementary to t. We can formalise the extra
information beyond t captured by s as the conditional mutual information I(s; θ|t), which measures
how much the uncertainty about θ is reduced by knowing s given a static t. Evaluating the conditional
mutual information can be difficult. However, using the chain rule of MI we can write

I(s; θ|t) = I([s, t]; θ)− I(t; θ) (1)

where I(t; θ) is a constant and [a, b] denotes concatenation. We can then maximise the additional
information captured by s by maximising I([t, s]; θ). There are various ways to maximize MI; here,
we focus on two specific objectives, detailed in Appendix A. The first, referred to as the Posterior
Entropy (EPE) objective, is given by:

min
s,q

L = −Ep(θ,d)

[
log q

(
θ
∣∣[s(d), t(d)]

) ]
, (2)

where s(d) is a neural network and q is a neural density estimator. Hoffmann & Onnela (2023)
demonstrate that this loss unifies many information-theoretic losses into a stable objective. This
mutual information objective can also be parameterised as a cross-entropy classification problem by
employing the Jensen-Shannon divergence (Chen et al., 2021; Devon Hjelm et al., 2018; Nowozin
et al., 2016):

min
s,c

L(s, c) = Ep(θ,d) [sp(−c(θ, [s(d), t(d)]))] + Ep(θ)p(d) [sp(c(θ, [s(d), t(d)]))] , (3)

where s is the summarizer, c is a classifier tasked with distinguishing between data from p(θ, x) and
p(θ)p(x) and sp(z) = log(1 + ez) is the softplus function. We refer to this as the Cross Entropy
(CE) loss.

To test the information capture in learned summaries we employ a two-step process, illustrated in
Fig. 1. We first optimise a neural compression (embedding network) to a few additional numbers
conditional on the specified (not learned) existing summary t, using either EPE or CE losses (denoted
MI maximiser in Fig. 1). For the EPE loss we train a simple mixture density network (MDN) with two
small hidden layers to approximate q(θ|[s, t]). For the CE loss we train a classifier fully-connected
network with hidden sizes [128, 64, 64] to one output. We then take the static learned and existing
summaries and parameterise a separate posterior estimator using a masked autoregressive flow (MAF)
to minimise p(θ|[s, t]) from the LtU-ILI package2 (Ho et al., 2024). We feed comparison summaries
(power spectrum and competing network schemes) into the same MAF architecture to obtain a
consistent comparison of information capture. We detail exact configurations in Appendix B.

2https://github.com/maho3/ltu-ili
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Figure 2: Both 21cm and weak lensing data exhibit non-Gaussian features (upper and lower left
panels). Both EPE and CE loss formalisms result in consistent, tighter posteriors than power spectrum
alone indicating information extraction from non-Gaussian features in the 21cm data (right). The
black dashed line represents the true parameter values.

3 Experiments

21cm Parameter Inference & Loss Comparison. The 21 cm signal is non-Gaussian due to
reionization patchiness. Therefore, the power spectrum alone cannot fully capture the information
contained in images of the 21 cm signal. While many previous studies have focused on designing
new summaries, we show that adding just a few supplementary features to the power spectrum can
significantly enhance the extracted information content.

The reionization parameters we vary are (1) ζ, the ionizing efficiency. It primarily determines the
timing of the EoR, with higher values leading to earlier ionization of the Universe. We vary ζ as
10 ≤ ζ ≤ 250, and (2) Tvir, the minimum virial temperature of halos that host ionizing sources. Tvir

controls the timing of astrophysical epochs and influences the scales of heated and ionized regions.
We vary this parameter as 4 ≤ log10 (Tvir/K) ≤ 6. More details can be found in Appendix B.

In this initial experiment, we compare tree types of summaries, assuming a sufficiently large training
set (10,000 samples): 1) Power spectrum only (11 k-bins). 2) Hybrid method: Power spectrum +
two learned supplementary features (EPE Loss). 3) Hybrid method: Power spectrum + two learned
supplementary features (CE Loss). One of the resulting inferences is shown in Figure 2. The results
show that both approaches capture non-Gaussian information and improve inference performance,
yielding consistent posteriors. The slight difference in posterior recovery is likely due to differences
between classifier and MDN network architectures for each loss, but each yielded similar convergence
times in training. This suggests we can learn two additional parameters instead of new summaries,
maintaining power spectrum interpretability while achieving near-optimal inference. The agreement
also confirms both loss functions are effective, converging to the same results.

Tomographic Weak Lensing Inference & Ablation Study. Weak gravitational lensing (WL) alters
the trajectories of photons as they pass through massive structures of visible and dark matter. This
observable is sensitive to (Ωm, S8), parameters that control the universe’s matter content and dark
matter clustering, respectively. Here we test hybrid summaries on noisy tomographic WL convergence
image data of shape (128, 128, 4) presented in Makinen et al. (2024) varied over a wide uniform
prior. As an existing summary, we repeat Makinen et al. (2024)’s procedure and histogram all auto-
and cross-power spectra for each redshift bin into a vector of 60 numbers for each simulation. The
simulations are also subject to additive shape noise, which we add to the noise-free simulations
on-the-fly during network training (details in Appendix B).

We perform an ablation study to demonstrate the effectiveness of the hybrid statistics over neural-only
methods and display results in Fig. 3. The embedding network in the hybrid setting is the lightweight
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Figure 3: Hybrid summaries are able to capture more non-Gaussian parameter information in settings
with both high (left) and low (right) numbers of training simulations than summaries from a larger
network trained with the same loss separately from and then concatenated to the Cℓ statistic for the
final inference in step 2. When reducing the total available simulation volume all inferences suffer,
but the hybrid statistics are most robust to this change, indicating that the MI objective improves
capture of non-power spectrum features.

CNN with symmetric kernels adapted from Makinen et al. (2024) to output 3 additional numbers
alongside the Cℓs. For comparison, we train a larger, more expressive CNN embedding network
under the same EPE loss without access to the Cℓ vector to output 3 numbers, and then for the density
estimation (step 2) concatenate its outputs to the Cℓs (green contours; network (separate) + Cℓ). Step
2 probes the information content captured in the static network and Cℓ summaries. We train the
networks and density estimators from scratch first using all 5000 simulations available (split into 70%
train and 30% validation sets). We then reduce the total number of available simulations to 1000 and
further to 500 and re-learn the embeddings and posteriors from scratch. When the simulation budget
is reduced, all inferences suffer, but the hybrid statistic formalism encourages the smaller network to
find non-Gaussian features in the dataset that are more robust to this change. We also note that the
more expressive, separately-trained CNN inference degrades almost to the level of the Cℓ contour in
the lowest-data setting, even when concatenated to the Cℓ vector in the density estimation step.

4 Conclusions & Outlook

We detailed a method to learn compressed summary statistics that explicitly complement an existing
summary of the data through mutual information maximisation. We show that these techniques can
capture non-Gaussian information in two cosmological applications using two different loss criteria
to significantly improve parameter information capture.

We additionally demonstrate that these hybridised summaries improve information capture when the
training simulation budget is limited. This suggests that requiring a network to find patterns in the
data that are explicitly complementary to a provided summary “tells it where to look" and improves
the compression optimisation in smaller datasets over wide parameter space.

We note that MI can also be used as a static metric to quantify the information content in arbitrary
summaries as in Sui et al. (2023). This technique could be extended towards exhaustive information
studies to measure how much more information might be unlocked with multiple traditional or neural
statistics.

5 Data Availability

All code, tutorials, and relevant simulations can be found at https://github.com/tlmakinen/
hybridStats�.
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A Mutual information maximization

Conditional mutual information (MI) is defined as

I(s; θ|t) =
∫∫∫

p(θ, s, t) log
p(θ|s, t)
p(θ|t)

dsdtdθ, (4)

which measures how much the uncertainty about θ is reduced by knowing s given t. Using the chain
rule of MI we can write

I(s; θ|t) = I([s, t]; θ)− I(t; θ) (5)
where I(t; θ) is a constant and [a, b] denotes concatenation. We can then maximise the additional
information captured by s by maximising I([t, s]; θ). Mutual information is defined as

I(θ; z) = DKL(p(θ, z)∥p(θ)p(z)) = Ep(θ,z)

[
log

p(θ|z)
p(θ)

]
. (6)

where we package z = [s, t]. Most of the time, the true posterior p(θ|z) is unknown. To address this,
we approximate the posterior with a neural density estimator q(θ|z), which provides a tractable lower
bound on the MI (Barber & Agakov, 2004; Poole et al., 2019):

I(θ; z) = Ep(θ,z)

[
log

q(θ|z)
p(θ)

]
+ Ep(z) [DKL(p(θ|z)∥q(θ|z))] ≥ Ep(θ,z)[log q(θ|z)] + h(θ). (7)

This leads to a calculable loss function for maximizing mutual information, with h(θ) fixed, leading
to the objective in Equation 2.

Additionally, since the exact value of mutual information is not required, we can use alternative
divergences that may offer better robustness and efficiency. By using the Jensen-Shannon divergence
and the variational representation from Nowozin et al. (2016), we can derive a lower bound that leads
to a cross-entropy loss (Equation 3), frequently used in representation learning (Chen et al., 2021;
Devon Hjelm et al., 2018).

B Experimental Details

B.1 21cm Simulations

The 21 cm signals are simulated using the publicly available code 21cmFAST3 (Mesinger & Furlanetto,
2007; Mesinger et al., 2011). The simulations were performed on a cubic box of 128 comoving Mpc
on each side, with 643 grid cells. For this work, we use coeval boxes at redshift 12, and extract a
single slice from each cube to form a 2D dataset.

Network details. To obtain hybrid summaries, we use a CNN with three convolutional layers
(32, 64, and 128 filters) followed by max pooling. The flattened output is processed through two
fully connected layers, with ReLU activations throughout. For classification, we use an FCN with
hidden layers of sizes 128, 64, and 64, each followed by ReLU activation. For the EPE loss, a
mixture density network (MDN) with a 64-unit hidden layer and output layers for mixing coefficients,
standard deviations, and means is employed. Mixing coefficients use softmax, standard deviations
are exponentiated, and means are directly outputted, with five components used.

Posterior Coverage. In Figure 2, we present the posterior for a single test sample. To demonstrate
that these results are not due to overfitting, we also show calibration results for a test set of 2,048
samples. Posterior coverage is used as a validation metric, as shown in Figure 4. The predicted
percentiles closely match the empirical percentiles, indicating that our summaries are robust and the
SBI inference is neither overly confident nor conservative in any case.

B.2 Weak Lensing Simulations

Here we test hybrid summaries on noisy tomographic WL simulations presented in Makinen et al.
(2024). The simulations were generated using the pmwd particle mesh code and then collected
into four redshift bins to form convergence image data of shape (128, 128, 4). The simulations are

3https://github.com/andreimesinger/21cmFAST

6



0.0

0.2

0.4

0.6

0.8

1.0

Em
pi

ric
al

 P
er

ce
nt

ile PS-only
log

Hybrid-EPE
log

Hybrid-CE
log

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Percentile

0.0

0.2

0.4

0.6

0.8

1.0
Em

pi
ric

al
 P

er
ce

nt
ile PS-only

log Tvir

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Percentile

Hybrid-EPE
log Tvir

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Percentile

Hybrid-CE
log Tvir

Figure 4: Posterior coverage for the 21 cm example across three summaries and two reionization
parameters. The blue lines represent the actual calibration using 2,048 test samples, while the black
dashed line indicates perfect calibration.

generated over a wide uniform prior in the parameters p(Ωm, S8) = U([0.15, 0.7] × [0.35, 1.52]).
As an existing summary, we repeat Makinen et al. (2024)’s procedure and histogram all auto- and
cross-power spectra for each redshift bin into a vector of 60 numbers for each simulation. The
simulations are also subject to additive shape noise, which we add to the noise-free simulations
on-the-fly during network training.

Network details. For obtaining hybrid summaries the convolutional neural network with symmetric
Multipole Kernels (MPK) was adapted from Makinen et al. (2024). The lightweight network is
initialised without pretraining for this analysis and contains 1, 615 learnable parameters. For the large
non-hybrid CNN we apply a 3× 3 kernel to embed the field into 16 filters, and then down-sample
with stride-2 convolutions with output filters [32, 64, 128]. The network is then mean-pooled in the
spatial axes and the flattened filters are passed to a dense network with a specified output size to be
fed into the mutual information maximiser (here a mixture density network for the EPE loss). This
results in 97, 971 learnable parameters. For both embedding networks we employ the smooth_leaky
activation function from Makinen et al. (2024). For the EPE loss configuration, a mixture density
network (MDN) with hidden layers of size [70, 70] and output layers for mixing coefficients, standard
deviations, and means is employed to parameterise a four-component mixture.
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