
Testing Uncertainty of Large Language Models for
Physics Knowledge and Reasoning

Elizaveta Reganova
Helmholtz AI Team Matter

Helmholtz-Zentrum Dresden-Rossendorf
01328 Dresden Germany

lisa.reganova@gmail.com

Peter Steinbach
Helmholtz AI Team Matter

Helmholtz-Zentrum Dresden-Rossendorf
01328 Dresden Germany
p.steinbach@hzdr.de

Abstract

Large Language Models (LLMs) have gained significant popularity in recent years
for their ability to answer questions in various fields. However, these models have
a tendency to ”hallucinate” their responses, making it challenging to evaluate their
performance. A major challenge is determining how to assess the certainty of a
model’s predictions and how it correlates with accuracy. In this work, we introduce
an analysis1 for evaluating the performance of popular open-source LLMs, as well
as gpt-3.5 Turbo, on multiple choice physics questionnaires. We focus on the
relationship between answer accuracy and variability in topics related to physics.
Our findings suggest that most models provide accurate replies in cases where
they are certain, but this is by far not a general behavior. The relationship between
accuracy and uncertainty exposes a broad horizontal bell-shaped distribution. We
report how the asymmetry between accuracy and uncertainty intensifies as the
questions demand more logical reasoning of the LLM agent, while the same
relationship remains sharp for knowledge retrieval tasks.

1 Introduction

Large language models (LLMs) have demonstrated remarkable performance across various text
generation tasks, including question answering [1–3]. However, despite their impressive power and
complexity, the capabilities of LLMs are inherently limited. These limitations stem from the finite
nature of their training data, as well as the models’ intrinsic memorization and limited reasoning
capacities. Reliability is a critical component of LLM trustworthiness [4]. To build user trust, it is
essential that models provide clear and accurate answers, preventing the spread of misinformation.
One of the most significant challenges facing LLMs is the tendency to generate hallucinated responses
[5]. In tasks like question answering, it is crucial to determine when we can trust the outputs of
these models. Despite the recent advancements in natural language generation, there remains limited
understanding of uncertainty in foundation models [6].

Uncertainty estimation involves quantifying the degree of confidence in the predictions made by
a machine learning model [7–9]. Without proper measures of uncertainty, it is difficult to rely on
generated text as a trustworthy source of information. A common approach to evaluating model
performance is through the use of question-answering (QA) benchmarks, which come in various
formats [10]. Among available formats, multiple-choice questions, which present multiple candidate
answers alongside the input question, are the most popular. They offer a straightforward and efficient
means of assessing model performance [10].

1All code and data is made available. For details, see Appendix D.
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Uncertainty estimation for machine learning has progressed to a well-studied field, particularly in the
context of classification and regression tasks [8, 11]. In this work, we make an effort to assess the
uncertainty of answers by an LLM agent on a physics specific multiple choice question and answer
dataset [12]. Our contributions are as follows: (a) we obtain answers to high-school grade physics
questions by 3 open-source and one closed-source LLM, (b) we compare the variation of answers
between abovementioned LLMs and (c) we analyse the accuracy-certainty trade-off for each LLM in
five question categories.

To our knowledge, this is the first publication which focuses on the trustworthiness of LLM answers
in physics reasoning and physics related knowledge retrieval.

2 Method

2.1 Dataset

The mlphys101 dataset [12] for our study consists of 823 university-level physics multiple-choice
questions in English, each with five possible answers, among which one is correct. Corresponding
one-letter answers are provided. The questions are classified into five categories:

• D Replication of Definitions, 153 question-answer pairs
• F Replication of Physical Facts, 138 question-answer pairs
• C Conceptual Physics and Qualitative Reasoning, 238 question-answer pairs
• S Single-Step Reasoning, 223 question-answer pairs
• M Multi-Step Reasoning, 71 question-answer pairs

We emphasize that this is the first dataset to our knowledge, which contains a large number of question
and answer pairs tackling modern day physics topics up to the proficiency level of a physics bachelor
degree or advanced high school degree. In this way, the dataset can help to push our understanding
of how well LLMs are informed about the physical world in a language aligned with our current
scientific description of it. Two datasets coming close to this in spirit are [13, 14]. However they both
focus on situative physics effects rather than a vast range of topics in physics as a science. With this,
the dataset used here provides a unique opportunity to study the compressed physics knowledge of
LLMs and (hypothetically) their reasoning capabilities thereof.

For examples of the dataset, we provide one question and answer pair for each question category in
the appendix A.1.

2.2 Models

To facilitate our analysis, we accessed open-source models on the BlaBlador server infracture
provided by FZ Jülich (Germany). The infrastructure stores and runs a variety of LLM models.
We accessed these models through a REST API mechanism compliant with the openai-python
library. In this fashion, we were able to compare the performance of four LLMs: Llama3.1-8B-
Instruct, Mixtral-8x7B-Instruct-v0.1, Mistral-7B-Instruct-v0.3, and GPT-3.5-turbo. We have set the
temperature parameter for all models to a fixed value of 0.7.

All models were evaluated using a fixed few-shot prompting approach. They were asked one question
at a time as the user input field. For each question or repetition of a question, the chat session was
reset. To reduce the complexity of evaluation, we instructed the models to respond with only the
letter corresponding to the correct answer.

We manually created examples for few-shot prompting similar to those in the dataset, see appendix
B. To achieve this, we followed guidelines in [15]. After testing zero-shot, one-shot, two-shot, and
three-shot prompting, we chose the three-shot approach. This method proved effective as it allowed
not only Llama but also other models to follow instructions accurately. To create examples, we
requested GPT-4 to generate similar samples based on the real dataset.

Since different models are sensitive to various styles of prompting, we filtered out whitespace, newline
characters, and any potential explanations using regular expressions. Additionally, in a few instances,
the Mistral model returned two letters as a response. In such cases, or when the response did not
match the expected pattern, the replies were replaced with None and excluded from further analysis.

2

https://github.com/openai/openai-python
https://github.com/openai/openai-python


2.3 Uncertainty Estimation

In this work, we aim to evaluate the uncertainty of a LLM when generating answers to specific
questions. To achieve this, we prompt the model with each question from the mlphys101 dataset,
repeating each prompt N = 20 times to gather N responses on the same question. For each question,
we then assess the diversity in the model’s answers by calculating the frequency with which each
answer choice yi (yi ∈ {A,B,C,D,E}) appears across the N = 20 responses. This frequency
serves as an approximation of the probability for each response choice in our discrete setting:
p(yi|x, h) = count(yi)

N .

Using these probabilities, we compute the entropy H(Y |x, h) of the model’s responses Y to quantify
the uncertainty for each question x when prompted with a specific three-shot prompt h:

H(Y |x, h) = −
∑
i

p(yi|x, h) ∗ ln[p(yi|x, h)]

This entropy measure allows us to gauge the level of consistency or uncertainty in the model’s answers
to individual questions.

3 Results and Discussion

In Figure 1, we show an overview of diversity of answers in all models regardless of whether the
answers are correct or incorrect. For Llama3.1-8B-Instruct, Mixtral-8x7B-Instruct-v0.1, and Mistral-
7B-Instruct-v0.3, our analysis shows a concentration of replies at entropy close to 0. Thus, these
models appear more likely to provide responses with low entropy (low diversity, high consistency).
In contrast, GPT-3.5-turbo tends to produce responses with higher diversity, i.e. more entries with
entropy H ≥ 1. In addition, Mixtral-8x7B-Instruct-v0.1 (being the largest model in use for our
analysis) demonstrates a majority of entries in the lowest entropy bin and thus provides answers with
minimal (if not vanishing) diversity. We can hypothesis at this point, that the degree of reliability is
lowest with GPT-3.5-turbo as all question-answer pairs only exhibit one correct answer.

Figure 1: Entropy obtained from the distribution of answers to single questions of the mlphys101
dataset [12] for all four models.
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In order to study this hypothesis, we calculated and compared the error rate in responses versus the
entropy of responses. This can provide direct insights in the degree of hallucination as LLM users
assume the model to be correct no matter how often a question is raised. Figure 2 summarizes the
results of this study.

The 2D histograms of ”1-Accuracy” (or Error Rate) versus Entropy for all models exhibit a similar bell-
shaped distribution (for a detailed mathematical explanation of the curve’s shape, refer to Appendix
E). In the bottom-left corner are questions where the models provide highly accurate answers with
very low uncertainty. Conversely, in the top-right corner, questions are located where models give low
accuracy responses with high uncertainty—indicating hallucinated answers. However, questions in
the top-left corner reveal instances where models provide incorrect results with high certainty - which
can also be attributed to the effect of hallucination. Figure 2 also illustrates that not all models are
created equal in this regard. Diversity is lowest in the results of Mixtral-8x7B-Instruct-v0.1. Diversity
is highest with GPT-3.5-turbo. We refer the curious reader to Figure 4 for a detailed account of this
analysis.

Figure 2: Two-dimensional Histogram of Error Rate (1 - Accuracy) vs. Entropy across Models. The
binning of entropy is identical to Figure 1.

Additionally, we examined the accuracy-certainty trade-off for each LLM across the five question
categories. Figure 3 summarizes our findings. The overall shape of the accuracy-certainty curve (Fig-
ure 2) remains consistent across a majority of categories for all models below 10 billion parameters.
A distinct behavior is visible, where diversity increases with the question category becoming more
complex (complexity increases from D to M). For single-step S and multi-step reasoning questions M,
GPT-3.5-turbo yields a minimal number of correct replies with high diversity. Mixtral-8x7B-Instruct-
v0.1 can provide correct and incorrect answers at low diversity. The remaining models perform in the
middle ground between these two extremes. We further suggest, that failure of LLMs in single and
multi-step reasoning questions is inline with findings from other fields [16, 17].

One of the main limitations of this work stems from the prompting approach. Previous studies have
shown that response accuracy is highly dependent on the prompting context and style used [18]. This
might explain the high diversity observed in the entropy plot for the GPT-3.5-turbo model, suggesting
the need for further experimentation with different prompting techniques. However, we hypothesize
that the observed variability is unlikely to affect the overall shape of the error rate versus entropy
curve. This consideration requires validation through additional testing and comparisons to other
datasets.
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Figure 3: Accuracy-certainty trade-off for each LLM in five question categories

4 Summary

Reliability of LLMs is an important component towards their trustworthiness. Hallucinations and
inconsistency of model’s reply may lead to incorrect replies and losing users’ trust. Hallucinations
may often appear in narrow domains possibly due to the lack of training data. For this reason we
have proposed a pipeline for evaluating an accuracy-uncertainty trade-off. We tested it on a physics
MCQ dataset for four popular LLMs. The dataset exposes questions and answer pairs at different
levels of complexity and reasoning demand. The experiment has shown the difference in consistency
of responses and hallucinating depending on model size and question complexity. A downstream
analysis has to be undertaken, to identify the root cause of these observations and compare these
findings to different datasets of similar nature.
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A Appendix

A.1 Dataset Examples

As discussed in section 2.1, our dataset consists of 5 classes of questions. We provide one example
for each here to provide a more comprehensive insight into the variety of topics and requirements for
an answer.

A.1.1 Replication of Definitions, D

Question The property of a moving object to continue moving is what Galileo called
Answer A velocity.
Answer B speed.
Answer C acceleration.
Answer D inertia.
Answer E direction.

A.1.2 Replication of Physical Facts, F

Question ____ are examples of vector quantities..
Answer A Acceleration and time
Answer B Velocity and acceleration
Answer C Volume and velocity
Answer D Mass and volume
Answer E Time and mass

A.1.3 Conceptual Physics and Qualitative Reasoning, C

Question If an object is moving, then the magnitude of its ____ cannot be zero.
Answer A speed
Answer B velocity
Answer C acceleration
Answer D A and B
Answer E A, B, and C

A.1.4 Single-Step Reasoning, S

Question A firefighter with a mass of 70 kg slides down a vertical pole, accelerating at 2m/s2. The
force of friction that acts on the firefighter is

Answer A 70N .
Answer B 560N .
Answer C 140N .
Answer D 700N .
Answer E 0N .

A.1.5 Multi-Step Reasoning, M

Question A bowling ball at a height of 36 meters above the ground is falling vertically at a rate of
12 meters per second. Which of these best describes its fate?

Answer A It will hit the ground in exactly three seconds at a speed of 12m/s.
Answer B It will hit the ground in less than three seconds at a speed greater than 12m/s.
Answer C It will hit the ground in more than three seconds at a speed less than 12m/s.
Answer D It will hit the ground in less than three seconds at a speed less than 12m/s.
Answer E It will hit the ground in more than three seconds at a speed greater than 12m/s.
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B Few-shot prompting

We use few-shot prompting to trigger the LLM for an answer. Here is an example prompt to illustrate
our strategy.

sys tem ( ’ ’ You ’ r e a h i g h l y knowledgeab l e p h y s i c s t u t o r . For each message ,
g i v e on ly t h e l e t t e r o f t h e c o r r e c t answer w i t h o u t any
e x p l a n a t i o n s o r a d d i t i o n a l i n f o r m a t i o n . ’ ’ ) ,

u s e r ( ’ ’A b a l l r o l l s down a s l o p e and a c c e l e r a t e s u n i f o r m l y
a t 2 m/ s ^ 2 . I f i t s t a r t s from r e s t , what w i l l be i t s speed a f t e r
3 s e c o n d s ? A. 3 m/ s , B . 4 m/ s , C . 5 m/ s , D. 6 m/ s , E . 7 m/ s ’ ’ ) ,

a s s i s t a n t ( ’ ’D’ ’ ) ,

u s e r ( ’ ’A c y c l i s t a c c e l e r a t e s u n i f o r m l y from r e s t t o a speed
of 10 m/ s i n 5 s e c o n d s . What i s t h e i r a c c e l e r a t i o n ?
A. 1 m/ s ^2 , B . 2 m/ s ^2 , C . 3 m/ s ^2 , D. 4 m/ s ^2 , E . 5 m/ s ^ 2 ’ ’ ) ,

a s s i s t a n t ( ’ ’B’ ’ ) ,

u s e r ( ’ ’A r o c k e t a c c e l e r a t e s from r e s t a t a c o n s t a n t r a t e o f
6 m/ s ^ 2 . What speed w i l l i t r e a c h a f t e r 4 s e c o n d s ?
A. 12 m/ s , B . 18 m/ s , C . 24 m/ s , D. 30 m/ s , E . 36 m/ s ’ ’ ) ,

a s s i s t a n t ( ’ ’C’ ’ ) ,

u s e r ( ’ ’ < q u e s t i o n t o e v a l u a t e goes here > ’ ’ ) ,

Details on how the few shot prompts were created are given in section 2.2.

C Error rate vs. Entropy 2D Histogram with exact values

Figure 4: Two-dimensional Histogram of Error Rate (1 - Accuracy) vs. Entropy across Models with
counts per bin. Entries are identical to Figure 2.
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D Code and Data Availability

We make our analysis software available at here. The mlphys101 dataset is available here until it has
been published in a peer-reviewed journal.

E Shape of the Curves

To analyze the shape of the curve, let us consider different scenarios of a model’s response patterns
separately:

1. The model generates only correct responses for a given question.
2. The model generates only incorrect responses.
3. The model generates two distinct responses, one of which is correct and the other incorrect.
4. The model generates three or more distinct responses, with at least one being correct.

When the model consistently produces correct responses, both the entropy and the error rate are zero
(accuracy equals 1). On the curve, this scenario corresponds to the bottom-left corner. A higher
density of points in this region indicates that the model often generates accurate and consistent
responses.

When the model fails to generate any correct responses, all points align along the horizontal line
where the error rate equals 1. The top-left corner of the curve represents scenarios where the model’s
responses are consistently incorrect.

In the case where the model produces only two different responses - one correct and one incorrect —
the entropy H(Y |x, h) is given by:

H(Y |x, h) = −p(ycorrect|x, h) ∗ ln[p(ycorrect|x, h)]− p(yincorrect|x, h) ∗ ln[p(yincorrect|x, h)].

Substituting p(ycorrect|x, h) = accuracy and p(yincorrect|x, h) = 1 − accuracy, the entropy can be
expressed as:

H(Y |x, h) = −(accuracy) ∗ ln(accuracy)− (1− accuracy) ∗ ln(1− accuracy),

H(Y |x, h) = −(1− error_rate) ∗ ln(1− error_rate)− error_rate ∗ ln(error_rate). (1)

The resulting curve is illustrated in Figure 5(A). This pattern can also be observed in the curves for
the Mistral and Llama models (see Figure 1).

When a model’s responses include correct replies and more than one distinct incorrect replies
(i.e., two or more versions of incorrect output), we obtain families of parameterized curves with
(# of incorrect types − 2) parameters.

For example, in the simplest case, let us consider three distinct responses: p(ycorrect|x, h),
p(yincorrect_1|x, h), and p(yincorrect_2|x, h). The probabilities can be defined as follows:

p(ycorrect|x, h) = accuracy = 1− error_rate,

p(yincorrect_1|x, h) = p(yincorrect_1|x, h) = p_i1,

p(yincorrect_2|x, h) = error_rate − p_i1.

In this case, the entropy H(Y |x, h) is given by:

H(Y |x, h) = −(1− error_rate) ∗ ln(1− error_rate)− p_i1 ∗ ln(p_i1)−
−(error_rate − p_i1) ∗ ln(error_rate − p_i1). (2)

Examples of such curves, for p_i1 = {0.1, 0.3, 0.5, 0.7, 0.9}, are shown in Figure 5(B).

Similarly, the equations for four and five distinct responses among replies to a single query can be
expressed as follows:

For four types of responses:

H(Y |x, h) = −(1− error_rate) ∗ ln(1− error_rate)− p_i1 ∗ ln(p_i1)−
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Figure 5: A. Two-dimensional histogram of (1 - Accuracy) vs. Entropy for the Mistral 7B model,
shown alongside the theoretical curve (red) representing the scenario where the model provides only
two distinct responses, one of which is correct (see Equation1). B. Theoretical curves for binary
responses (red) and three distinct responses (blue) with p_i1 = {0.1, 0.3, 0.5, 0.7, 0.9} (see Equation
2). Curve intensity increases as p_i1 increases. C. Theoretical curves (Equation 3) for three (blue) and
four (red) distinct responses, with p_i1 = 0.3 and p_i2 = {0.05, 0.1, 0.3, 0.5, 0.65}. Curve intensity
increases as p_i2 increases. D. Theoretical curves based on the general equation 4 with parameters
p_i1, pi2, and pi3 varying within {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.

−p_i2 ∗ ln(p_i2)− (error_rate − p_i1 − p_i2) ∗ ln(error_rate − p_i1 − p_i2). (3)

For five types of responses:

H(Y |x, h) = −(1−error_rate)∗ ln(1−error_rate)−p_i1 ∗ ln(p_i1)−p_i2 ∗ ln(p_i2)−p_i3 ∗ ln(p_i3)−

−(error_rate − p_i1 − p_i2 − p_i3) ∗ ln(error_rate −−p_i1 − p_i2 − p_i3). (4)

All the equations previously described in this section are special cases of Equation 4, where some of
the probabilities are equal to zero (see Figure 5(D)).
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