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Abstract

The advent of next-generation radio interferometers like the Square Kilometer
Array promises to revolutionise our radio astronomy observational capabilities.
The unprecedented volume of data these devices generate requires fast and accu-
rate image reconstruction algorithms to solve the ill-posed radio interferometric
imaging problem. Most state-of-the-art reconstruction methods lack trustworthy
and scalable uncertainty quantification, which is critical for the rigorous scien-
tific interpretation of radio observations. We propose an unsupervised technique
based on a conformalized version of a radio-augmented equivariant bootstrapping
method, which allows us to quantify uncertainties for fast reconstruction methods.
Noticeably, we rely on reconstructions from ultra-fast unrolled algorithms. The
proposed method brings more reliable uncertainty estimations to our problem than
existing alternatives.

1 Introduction

Radio interferometry [1] combines signals from multiple antennas to obtain images with very high
resolutions. The next-generation radio-interferometry devices, such as the Square Kilometer Array
(SKA) [2], will have the potential to unlock scientific discoveries thanks to their unprecedented angular
resolution and sensitivity. However, this comes with the computational challenge of processing the
incoming data deluge [3]. Interferometric data comprises an incomplete coverage of the Fourier
domain (uv-space), which, added to the observational noise, makes the reconstruction problem an
ill-posed inverse problem, known as radio interferometric (RI) imaging.

Most families of RI imaging methods, like CLEAN-based [4–6], sparsity-based [7–10], Bayesian
approaches[11–14], or learned iterative algorithms [15], suffer from drawbacks such as bad recon-
struction quality, due to constraints of the model considered, or long computing times, due to the
iterative nature of their algorithm. Learned end-to-end algorithms use recent deep-learning tech-
niques to offer ultra-fast and accurate image reconstructions [16–19]. However, these models lack
interpretability, making the attempt to quantify the reconstruction’s uncertainty an arduous task.

It is essential to rigorously quantify our reconstruction’s uncertainties to conduct scientific studies and
make decisions based on these reconstructions. The high dimensionality of the RI data makes many
standard uncertainty quantification (UQ) techniques, like MCMC sampling-based techniques [20]
or conformal prediction [21], impractical or ineffective. Existing UQ methods rely on the Bayesian
framework exploiting approximations [22] to avoid sampling [23, 24], but still rely on iterative
optimisation techniques and do not exhibit tight bounds on the estimated uncertainty intervals.
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Alternative UQ methods rely on Gaussian priors [11, 12] and exploit variational inference [13].
Recent methods, based on ensemble techniques, only quantify the model uncertainty [25, 26], failing
to take into account the predominant source of uncertainties that stem from the forward operator’s
large null space due to the partial Fourier coverage. Recent methods based on score-based priors
[27–29] obtain good results and provide UQ but are not adapted to the large-scale problems raised by
SKA-type interferometers as they rely on sampling schemes.

We propose to use a fast and performant learned end-to-end reconstruction method, based on an
unrolled architecture, equipped with a conformalized equivariant bootstrapping method adapted to the
RI imaging problem. The equivariant bootstrap method is well suited to the RI imaging problem as,
by selecting group actions adapted to the forward model’s null space, we can reduce the bootstrapping
estimation error, providing us with tight uncertainty bounds and excellent coverage plots. In addition,
the subsequent conformalization procedure provides statistical guarantees to the estimated intervals.

2 Radio-interferometric imaging problem

We consider the simplified convolutional form of the observational model for the RI imaging problem,
which writes

y = M ∗ x⋆ + n, (1)
where y ∈ Rd×d represents our observations, i.e., the backprojected visibilities, M ∈ Rd×d the
point spread function (PSF) models the acquisition process including the incomplete uv-coverage
(see Appendix B for examples), x⋆ ∈ Rd×d is the ground truth image, ∗ denotes convolution, and
n ∈ Rd×d models the observational and instrumental noise, which we suppose, for simplicity, to be
white Gaussian additive noise with zero mean and a known standard deviation.

The most computationally expensive operation in RI imaging is applying the forward model due
to the (de)gridding operations for the large number of visibilities observed. Therefore, drastically
limiting the number of applications of the forward model is mandatory when considering large-scale
applications like SKA. Most current RI imaging methods are iterative algorithms, e.g., sparsity-based
and Plug-and-Play (PnP) [30], that require many applications of the forward operator for convergence.
In this work, we rely on an unrolled architecture [31, 32], where a fixed number of iterations of convex
optimization algorithms [33] are unfolded by representing all its operations as layers of a neural
network. This choice is computationally efficient allowing it to achieve ultra-fast reconstructions
while leveraging the knowledge of the forward operator and obtaining state-of-the-art reconstruction
qualities [19]. We use the EVIL-Deconv [19] reconstruction method, where the authors build an
unrolled architecture based on LISTA-CP [34] using a DRUNET [35] for denoising. The EVIL-
Deconv method uses the PSF as input and the model is trained on a set of PSFs covering various
synthetic observational configurations. Therefore, it does not need to be retrained for a change in
PSF. A more detailed description of the method can be found in Appendix A.1. Despite the good
performance of the method, the reconstruction lacks UQ.

3 Uncertainty Quantification Methods

We start by summarizing the standard parametric bootstrapping procedure. In our forward model
Eq. (1), y can be seen as a realization of the probabilistic model, Y ∼ P (M ∗x⋆) := P (M̄x⋆), where
P represents the noise distribution, and M̄ a matrix representing the convolution by M . Starting from
the reconstructed image x̂(y), we draw bootstrap measurements yi using the model in Eq. (1) and
replacing x⋆ with x̂(y). Using the same reconstruction method, we then compute xi = x̂(yi), which
we can compare to x̂(y). From the collection of N bootstrap samples, {xi}Ni=1, we build confidence
regions for x⋆. In this work, we consider the confidence region Cα using qα the top α-quantile of the
samples {|xi− x̂(y)|}Ni=1, with Cα = {x : |x− x̂(y)| < qα}. This conventional parametric bootstrap
tends to underestimate the uncertainties in imaging problems where considerable uncertainties span
from the forward operator’s large null space[36, §3], as is the case in RI imaging.

Equivariant bootstrap [36] is based on recent developments in the equivariant imaging framework
[37, 38] exploiting symmetries in the set of signals X , with x⋆ ∈ X . Let us define G as a finite group
acting on X with group actions represented by Tgi ∈ G, an invertible mapping. Assuming that X is
G-invariant, we can have access to multiple virtual forward operators, M̄Tgi , with possibly different
null spaces if M̄ is not G-equivariant. The bootstrap method consist of drawing a random group
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action Tgi ∈ G, to then generate a bootstrap measurement ỹi from Ỹi ∼ P (M̄Tgi x̂(y)). Later, we
compute x̃i = T−1

gi x̂(ỹi). Finally, we can use the generated bootstrap samples {x̃i}Ni=1 to construct
a confidence region Cα as before, but using q̃α the top α-quantile of the samples {|x̃i − x̂(y)|}Ni=1.
If Tgi is properly chosen based on the particularities of X and M̄ , the composition M̄Tgi can have
different null spaces than M̄ helping to probe the variability of the estimator x̂(Y ) and characterize
its uncertainties with respect to x⋆.

3.1 Conformalized Augmented Radio Bootstrap (CARB)
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Figure 1: 1D radial visualization of
shelving filters.

We created a set of group actions calibrated to the RI imaging
problem considered for our method, coined Conformalized
Augmented Radio Bootstrap (CARB). First, we calibrate and
include standard transformations as circular shift transforma-
tions not exceeding 2 pixels, image flips over the horizontal
and vertical axis, and rotations of 90-degrees multiples, bring-
ing the best results. Based on a convolution, the forward
operator M̄ is equivariant to translations. However, as the
reconstruction operator is not, the composition M̄Tgi(x̂(y))
spans a different subspace than M̄x̂(y), making the trans-
lation actions useful. We then consider the group of invertible 2D filters in the specific form of
low-shelving and high-shelving filters, as shown in Figure 1. These filters attenuate low or high
frequencies without cutting them off completely, assuring their inverses exist. The filters prove helpful
and adapted to our model as they change the frequency response of the original filter represented
by the PSF convolution. The resulting filter, a combination of the shelving filter and the PSF, will
probably span a different subspace than the PSF alone. The change in the resulting filter helps to
improve the characterisation of the errors from our estimation method, x̂(Y ). The probability of
applying each of the two filter transformations is 0.5. The high and low drop-off frequencies are
selected from two Gaussian distributions around frequencies we have calibrated for the RI imaging
problem, with standard deviations of 5. We add a constraint to ensure that the low drop-off frequency
stays below the high drop-off frequency. The final group action used to generate the bootstrap samples
in CARB is a random composition of the aforementioned transformations, where each transformation
is applied with a given probability. This composition allows us to significantly expand the number of
possible group actions, helping to estimate uncertainties better.

By constructing the confidence region with the α-quantile, we could expect that for most images,
only 100(1 − α)% of their pixels would have absolute residuals above the estimated uncertainty
value. Once the confidence regions are estimated, we want to calibrate them to statistically guarantee
that the uncertainty intervals around each pixel contain the true value with a particular user-chosen
error rate, δ, as is done in [39] on heuristic-based uncertainties. Therefore, we include a subsequent
conformalization procedure [21] based on Risk-Controlling Prediction Sets (RCPS) [39], which we
describe with more details in Appendix C. In practice, we fix the error rate δ to 0.1 in our numerical
experiments.

4 Numerical experiments

We compare the proposed UQ method, CARB, with quantile regression [40], conformalized quantile
regression (CQR) [41], a standard parametric bootstrap, the equivariant bootstrap [36] (including
rotations, flips, and up to 2-pixel translations), and a version of CARB without conformalization.
All the bootstrap-based methods use 500 samples, which was selected based on a study shown in
Appendix D. To train our quantile regression method, we keep the same architecture of our unrolling
network as the reconstruction, and replace the last layer with two learned neural networks. These
networks are trained with the 5th and 95th quantile losses, which is a standard procedure [21, 41].

Data We use 64× 64 patches from Hubble space telescope observations as ground truth images
to keep the expensive numerical experiments in our computational budget. The simulated PSFs are
based on the MeerKAT radio telescope [42] antenna array. We train our unrolled architecture for an
SNR range between 30 to 60dB. We use an SNR of 40dB for the rest of the paper and suppose it is
known. For all methods comparisons, 10000 images were used to have statistically significant results.
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Figure 2: RI image reconstruction result for the unrolling algorithm. From left to right, the figures
correspond to: the ground truth observation; the simulated point spread function (PSF); the observed
image after the application of the PSF and the observational noise; and the reconstructed image from
EVIL-Deconv.

4.1 Results

We show an example of a RI image reconstruction result with the unrolled architecture in Figure 2,
with additional results in Appendix E. We then include a quantitative performance comparison with
other state-of-the-art reconstruction methods in Appendix A.2.

In Figure 3, we compare the oracle, or ground truth, estimation error with each method’s 90-th
quantile estimation to provide a pixel-wise UQ visualization of the reconstruction. We observe a high
mismatch between the quantile regression and the oracle error. The confomalization procedure in the
CQR tries to correct the mismatch by greatly inflating the quantiles, making them impractical for any
interpretation. The equivariant bootstrap-based methods provide error maps with high correlation
to the oracle error and tight error bars, which can be further calibrated with the conformalization
procedure.
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Figure 3: Pixel-wise uncertainty quantification represented by the 90-th quantile estimation. Subfigure
(a) shows the oracle absolute residuals. Then, the estimation of each method is presented: (b) quantile
regression, (c) conformalized quantile regression, (d) parametric bootstrap, (e) equivariant bootstrap,
(f) augmented radio bootstrap and (g) conformalized augmented radio bootstrap.

Table 1: Uncertainty quantification performance comparison
based on the average ℓ2 norm ratio between the 90% con-
fidence interval length and the ground truth image, and the
empirical coverage percentage of the interval.

Method Length ratio Coverage

Quantile Regression (QR) 0.15 14%
Conformalized QR 204.08 92%
Parametric Bootstrap 0.07 0%
Equivariant Bootstrap 0.13 7%
Augmented Radio Bootstrap 0.29 87%
CARB 0.34 91%

The average time to construct con-
fidence regions for each image is
around 735ms for all bootstrapping
techniques, compared to 153ms for
the quantile regressions. The quantile
regressions provide reduced times as
it is a direct inference of the quan-
tile. The draw of each bootstrap
sample is independent of each other
once the reconstruction x̂(y) is ob-
tained. This fact allows us to ex-
ploit extremely easy parallelization
techniques for the bootstrap sample
generation, which we currently do by
drawing 128 samples in parallel.
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Figure 4: Coverage plots for the equivariant bootstrap methods with different group actions.

A quantitative comparison of the UQ methods is presented in Table 1. We first compare the average
ℓ2 norm ratio between the confidence interval lengths and the ground truth image to study how
tight the error estimations are. We then compare an empirical coverage of the confidence interval
to verify if they are statistically valid. In other words, we empirically compute the expectation
Ey{P(Î−α (y) < x⋆ − x̂(y) < Î+α (y))|y} over all pixels in the image dataset, where α is set to 0.1,
and Î−α (y), Î+α (y) are the estimated lower and higher interval limits. The result should be greater or
equal to 1 − δ, with δ being the error rate. The parametric bootstrap significantly underestimates
the errors, which is also true for the standard equivariant bootstrap. The error estimation greatly
improves when adding the radio-spe cific transformations, showcasing the importance of setting
problem-specific group actions. The subsequent conformalization procedure calibrates the estimated
intervals such that the coverage verifies the required 1− δ probability, allowing CARB to obtain tight
bounds with correct coverage. We confirm that the CQR verifies the coverage probability but at the
expense of too large uncertainty intervals, making the final UQ less informative.

Lastly, we present in Figure 4 the coverage plots following [36] for the bootstrap-based methods and
show how the curve changes as we include different group actions. We estimate a confidence region
for x⋆, derived from the pivotal statistic ∥x⋆ − x̂(Y )∥22 related to the estimation’s mean squared
error. We then compute the empirical coverage probabilities on the test set, as measured by the
proportion of test images that lie within the confidence regions for a range of confidence levels. The
Augmented Radio Bootstrap method obtains an excellent coverage plot, although the probability is
slightly underestimated. This result is remarkable in the context of the recent study [43] showing that
Bayesian imaging methods are not reporting reliable probabilities for UQ.

One limitation of the current UQ method can be observed when the reconstruction algorithm used
catastrophically fails to recover a feature from the ground truth image. In that situation, even
if we draw bootstrap samples, the lost feature will not be recovered, and the uncertainty will
be misestimated. Another limitation is the need for a representative calibration dataset for the
conformalization procedure, which might not always be available in practice. In such a situation, the
non-conformalized version of CARB should be used.
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A Radio-interferometry image reconstruction using an unrolled algorithm

A.1 Unrolling method

Finding the image x⋆ ∈ X that minimizes the reconstruction error with the observed radio-interferometry data
is an ill-posed problem due to the form of the convolution operator M , or PSF, and the observational noise.
Consequently, it is expected to add a regularization term to the optimization problem, which leads to solving a
problem of the following form,

x̃ = argmin
x∈X

1

2
∥y −M ∗ x∥22 + λR(x), (2)

where the regularization R, can take the form of a simple sparsity constraint using a l1 norm [50], the total
variation function[51–53] or a more complex function by relying on neural-network-based learned denoisers [54,
15].

Several iterative methods have been designed to solve this optimization problem, such as proximal gradient
descent algorithms [33], where each iteration can be computed as

xl+1 = proxλα︸ ︷︷ ︸
regularization

(xl − αM∗(y −Mxl)︸ ︷︷ ︸
data fidelity gradient

), (3)

where prox() is the proximal operator [55] associated with the chosen regularization function and α is the step
size. In this work we follow the EVIL-Deconv method [19], and we unroll 10 iterations of Equation (3) resulting
in a neural network architecture with 10 layers. Each layer can be expressed as

xl+1 = pl(x
l +Φl(M)(y −M ∗ xl)), (4)

where pl and Φl are trainable operators. In practice, pl is a pretrained DRUNET [35] and Φl is a convolutional
neural network.

A.2 Unrolling results

In this section, we present performance results obtained using the unrolling architecture described in the previous
subsection, EVIL-Deconv [19], and compare it with two iterative methods, the CLEAN algorithm [4] and a
Plug-and-Play (PnP) method, where the denoiser, a DnCNN [56], is trained with a non-expansiveness constraint
following [15] to ensure convergence [57]. We study two reconstruction performance metrics: the Normalized
Mean Squared Error (NMSE), which we define as follows

NMSE [-dB] = −20 log10

(
∥x⋆ − x̂∥2
∥x⋆∥2

)
, (5)

and the Structural Similarity Index Measure (SSIM). The mean reconstruction time for each method is also
included to show the computational advantage of algorithm unrolling over iterative methods. Table 2 presents
the performance results, which were computed on the data described in Section 4. All numerical experiments
were done on two Nvidia Tesla V100 SXM2 16Gb GPUs.

Table 2: Performance comparison of RI image reconstruction algorithms.

Method Median NMSE [-dB] ↑ SSIM ↑ Time [ms] ↓
CLEAN 4.2 0.296 794
PnP 16.3 0.869 1110
EVIL-Deconv 19.9 0.970 51

B Point spread function and uv-coverage

The uv-coverages used are based on the MeerKAT [42] observatory antenna positions. To simulate the PSFs, we
use code from the nenupy [49] package. We present examples of uv-coverages and their associated PSFs in
Figure 5.

C Conformalization

We suppose we have access to a reconstruction function x̂(·) that maps an observed image y ∈ Rd×d and a
PSF M ∈ Rd×d to a reconstructed image x̂(y,M). Our task is to create uncertainty intervals around each

11



2 0 2
u

2

0

2

v

2 0 2
u

2

0

2

v

2 0 2
u

2

0

2

v

2 0 2
u

2

0

2

v

Figure 5: Examples of the simulated MeerKAT PSFs and their associated uv-coverage.

reconstructed image pixel. These intervals should contain the true pixel values with a user-specified probability.
Formally, we construct, for each pixel (m,n), the interval

I(m,n)(y,M) =
[
x̂(y,M)(m,n) − l̃(m,n)(y,M), x̂(y,M)(m,n) + ũ(m,n)(y,M)

]
, (6)

where l̃ and ũ are heuristic lower and upper interval lengths. These heuristics can, for example, be pixel-wise
Gaussian standard deviations [58], softmax output distributions [59], pixel-wise quantiles [40], or residual
magnitude regressions. In this work, we assume l̃ = ũ, and that they are both equal to the pixel-wise 90-th
quantile of the sampled bootstrap absolute residuals (see Section 3). The uncalibrated intervals are heuristic
because they do not contain the ground truth with the desired probability, as we made no assumptions about the
algorithm used to train l̃ and ũ.

In Risk-Controlling Prediction Set (RCPS) [39], the objective is to calibrate the interval I(m,n)(y,M) such that

P (E[S(X, I(m,n)(y,M))] > α) ≤ δ, (7)

where S is an inteval score defined as

S(Xi, I(m,n)(yi,Mi)) = 1−
|{(m,n) : Xi(m,n) ∈ I(m,n)(yi,Mi)}|

d ∗ d , (8)

which is the proportion of pixels where the ground truth is contained in the constructed intervals. The inner
expectation in Equation 7 is over a new test point, while the outer probability is over the calibration set. Once
calibrated, the intervals I(m,n)(y,M) will an (α, δ)-RCPS. Let us suppose that we dispose of a calibration
set (Xi, Yi,Mi)i∈J1;NCK, where NC is the calibration set size and X refers to the ground truth image we are
hoping to reconstruct. Our goal is to calibrate the intervals using conformal prediction such that they become
RCPS verifying Equation 7. We can obtain conformalized intervals as follows

I(λ)

(m,n)(y,M) =
[
x̂(y,M)(m,n) − λ ∗ l̃(m,n)(y,M), x̂(y,M)(m,n) + λ ∗ ũ(m,n)(y,M)

]
, (9)

where λ should be chosen such that if α ∈ [0, 1] is a user-selected risk level and δ ∈ [0, 1] is a user-selected
error level, then, the new intervals contain at least 1− α of the ground truth pixel values with probability 1− δ.
If we set α = δ = 0.1, then at least 90% of the ground truth images should have at least 90% of their pixels
within the constructed intervals.

In practice, we take NC = 1000 images with their corresponding PSFs. We then determine the heuristic
intervals I(λ)

i = I(λ)

(m,n)(yi,Mi) for each element of this set. Later, we compute a score for each of these

intervals Si(λ) = S(Xi, I(λ)
i ) using Equation 8. In order to pick the smallest λ̂ satisfying our goal, we follow

[39] and form Hoeffding’s upper-confidence bound

H(λ) =
1

NC

NC∑
i=1

Si(λ) +

√
1

2NC
log

(
1

δ

)
. (10)

We can then pick λ̂ = {minλ : H(λ) > α}.

D Choice of the number of bootstrap samples

We must choose the number of samples to use in the bootstrapping techniques. To accomplish this, we study
the average variation of the norms of pixel-wise uncertainty images as we increase the number of samples. In
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Figure 6: Variation of the 90-th quantile estimation in CARB when increasing the number of bootstrap
samples.

practice, we use the 90-th quantile error estimations described in Section 3. Figure 6 presents the curve obtained.
We select a number of samples such that the curve is close to stagnating, which means that adding more samples
to the bootstrap will not significantly change our confidence regions. This choice allows us to ensure sufficient
samples while minimizing the run time of our algorithm.

E Additional results

Figure 7 shows additional astronomical images with their reconstructions and two methods to visualize the
estimated CARB uncertainties. The first one takes the 90-th quantile of each pixel of our sampled estimated
errors, as shown in Figure 3 for all bootstrap methods. The second alternative way of visualizing the pixel-wise
uncertainties is to take the standard deviation of the computed bootstrap samples, as is done in [36].

13



Ground truth

0

50

100

150

200

PSF
0.0

0.2

0.4

0.6

0.8

1.0

Observed
20

0

20

40

60

Reconstruction

0

50

100

150

200

250

Absolute residuals

10

20

30

40

50

CARB 90-th quantile

10

20

30

40

50

60

CARB standard deviation

5

10

15

20

25

Ground truth

0

50

100

150

200

PSF
0.0

0.2

0.4

0.6

0.8

1.0

Observed

0

20

40

60

80

Reconstruction

0

50

100

150

200

250

300

Absolute residuals

20

40

60

80

CARB 90-th quantile

20

40

60

80

100

120

CARB standard deviation

5
10
15
20
25
30
35
40

Ground truth

0

50

100

150

200

PSF
0.0

0.2

0.4

0.6

0.8

1.0

Observed

0

10

20

30

40

Reconstruction
0

50

100

150

200

250

Absolute residuals

5

10

15

20

25

CARB 90-th quantile

10

20

30

40

CARB standard deviation
2

4

6

8

10

12

14

16

Ground truth
0

50

100

150

200

PSF
0.0

0.2

0.4

0.6

0.8

1.0

Observed
2

0

2

4

6

8

10

Reconstruction
0

50

100

150

200

Absolute residuals

1
2
3
4
5
6
7
8

CARB 90-th quantile
2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

CARB standard deviation
1

2

3

4

5

6

7

8

Ground truth
0

50

100

150

200

PSF
0.0

0.2

0.4

0.6

0.8

1.0

Observed

0

1

2

3

4

5

6

Reconstruction
0

50

100

150

200

Absolute residuals

2

4

6

8

10

12

14

CARB 90-th quantile

5

10

15

20

25

CARB standard deviation

2

4

6

8

10

Figure 7: Additional radio interferometric image unrolling algorithm reconstruction results with
uncertainty quantification from CARB. The first two columns show the ground truth images used
with their associated PSF. The third column presents the observation, and the fourth column is the
EVIL-Deconv reconstruction. The fifth column presents the oracle, or ground truth, absolute residuals.
The last two columns introduce the pixel-wise uncertainty estimated from the CARB using the 90-th
quantile and the standard deviation of the bootstrap samples.
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