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Abstract

We construct a surrogate loss to directly optimise the significance metric used in
particle physics. We evaluate our loss function for a simple event classification
task using a linear model and show that it produces decision boundaries that
change according to the cross sections of the processes involved. We find that the
models trained with the new loss have higher signal efficiency for similar values of
estimated signal significance compared to ones trained with a cross-entropy loss,
showing promise to improve sensitivity of particle physics searches at colliders.

1 Introduction

Particle physics experiments at the Large Hadron Collider (LHC) rely heavily on multivariate
classifiers to isolate signals from backgrounds. These investigations are generally of two types: 1)
measuring known processes/properties with improving precision and checking for anomalies [i.e.,
departures from the predictions of the Standard Model] and 2) looking for new processes (like looking
for hypothetical particles). In most cases, the need for multivariate classifiers comes from the sporadic
nature of the signal compared to the background. Generally, the signal plus background hypothesis
(H1) is tested against the null or background-only hypothesis (H0), and the disagreement between
them is expressed in terms of a p value. An equivalent interpretation of the p value is the significance
score (Z) defined such that a Gaussian-distributed variable found Z standard deviations away from
its mean has a tail-distribution probability equal to p [2]. Most sensitivity studies commonly use a
simple approximation of the median Z score as a measure of the estimated signal significance,

Z ≈ Ns/
√

Nb (1)

where Ns and Nb are the estimated numbers of signal and background events, respectively. (In the
rest of the paper, we shall refer to the med[Z] score as just the Z score.)

In this paper, we attempt to construct a loss function whose minimisation can directly enhance the
experimental sensitivity. Our motivation comes from two observations. First, not all event rates
are equal; some scattering processes have higher probabilities [parameterised as cross sections (σ),
calculable from theory. The number of events from a process (Ns,b) is calculated as Ns,b = σs,bL,
where L is the experimental luminosity] than others. Since a basic binary cross-entropy (BCE) loss
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treats all events equally, it might wrongly classify events of some types which is more detrimental
to the classifier performance than the other. Second, a loss that optimises the signal-to-background
ratio (r = Ns/Nb) may not necessarily maximise the significance as the Z score depends on the ratio
and the absolute number (i.e., set size) of signal or background events (Z ≈ √Ns ·

√
r = r

√
Nb).

Hence we ask, can we derive a loss function that maximises the Z score directly? The Z score
described in Eq. (1) is a set function. Therefore, we define a surrogate loss function using the Lovász
extension [1] to maximise it directly. We evaluate this loss with pseudo-data mimicking a typical
event classification task using a linear model and compare the decision boundaries to that model
trained on a BCE loss. We also compare the performance of models trained on a BCE loss.

2 Constructing the loss: submodularity and Lovász’s extension

We must consider some points before constructing a loss function based on the Z score. First, since
the Z score is not a differentiable function (it depends upon discrete quantities), it needs a smooth
interpolation. Second, the metric operates on datasets instead of individual samples—particularly,
count data. Therefore, we must either develop a method to directly optimise the set function or assign
contributions to specific samples within the set to optimise.

We look for a smooth submodular function. A submodular function is a function that captures the
concept of diminishing returns. It is defined on sets and has a property similar to concavity. Formally,
submodularity can be defined as:

Submodularity: A set function ∆ : {0, 1}p → R is submodular if for all sets A,B ∈ {0, 1}p,

∆(A) + ∆(B) ≥ ∆(A ∪B) + ∆(A ∩B), (2)

or, equivalently for B ⊆ A and i /∈ A, i /∈ B,

∆(A ∪ {i})−∆(A) ≤ ∆(B ∪ {i})−∆(B). (3)

The submodular functions can be optimised using greedy optimisation techniques, and it is to find
optimal solutions in polynomial times. However, these discrete optimisation techniques cannot be
used directly without a gradient. The Lovász extension allows us to associate a continuous, convex
function with any submodular function:

Lovász extension: For a set function ∆ : {0, 1}p → R, the Lovász extension ∆̄ : [0, 1]p → R is
defined as

∆̄ : m ∈ Rp 7→
p∑

i=1

mi gi(m) (4)

where m ∈ Rp
+ is the vector of errors (which we discuss in the next section), gi(m) =

∆({π1, . . . , πi}) − ∆({πi, . . . , πi−1}) and π is a permutation ordering the components of m in
decreasing order, i.e., xπ1

≥ xπ2
≥ · · · ≥ xπp

[1]. For the Lovász extension to be applicable, the set
function must be submodular.

Additionally, the Lovász extension of a submodular function preserves submodularity, i.e., the exten-
sion evaluated at the points of the hypercube still follows submodularity. Using the Lovász extension,
we can directly compute the tight convex closure of a submodular function within polynomial time
[O(p log(p)) time complexity]. This convex extension is amenable to a host of efficient optimisation
methods, especially gradient-based approaches.

2.1 Submodularity of the Z score

We modify the Z score defined in Eq. (1) by setting Nb = ϵ+Nb to prevent the term from diverging
at Nb = 0. We also add a minus sign to make it suitable for minimisation. The surrogate set function
for the Z-score is then given by,

∆Z(y, ỹ,σ,v,L) =
∑
i∈S

σiL√
ϵ
−

∑
i∈S

vi−ni

vi
σiL√

ϵ+
∑

i∈B
pi

vi
σiL

(5)
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where y stands for the ground-truth labels of a set of events and ỹ for the labels predicted by a
model on the set; Py and Pỹ represent the set of positive labels and positive predictions and vi is the
number of events of process type i where i ∈ S ∪B, where S,B are the set of signal and background
processes. The constant term

(∑
i∈S σiL/

√
ϵ
)

is added to ensure ∆Z(∅) = 0. The function ∆Z

is submodular on the set of mispredictions (n, p), where n is the number of false negatives, and p
is the number of false positives (which can be calculated from Py and Pỹ). The proof is presented
in Appendix A. Even though here we consider only one signal process, the proof can be trivially
generalised to the cases with multiple signal processes (n1, n2, . . . , nr) as well. From Eq. (4), we see
that for ∆Z to be a loss function, the vector m must be the error vector in the prediction; ∆̄Z , then
naturally emerges as the surrogate loss to optimise the Z score.

Choice of m error: There are a few choices in the literature for modelling the error vector m. To
illustrate the working of the Z-score loss for this paper, we pick a hinge (Max Margin) error similar
to Ref. [4]. The labels are considered signed (yi ∈ {−1, 1}). The model outputs a score Fi(x) for
each sample x. The error is given by the hinge loss,

mi = max(1− Fi(x)yi, 0), yi ∈ {−1, 1}. (6)

The vector m could also be modelled as a sigmoid error or cross-entropy error, for example. We plot
the Z-score loss landscape for all these errors in the appendix for the toy problem (described below)
in Appendix B.

There is only one free parameter in our loss: ϵ. Other quantities like σi and L are set by the process
under consideration (i.e., the particular classification task) and the collider experiment. Assuming
we perform the classification for rare signals, we set ϵ = σsL, the theoretically predicted number
of signal events (which is also the maximum number of estimated signal events) for testing the loss.
Algorithm 1 provides a simple pseudocode to calculate the gradient g(m) from Eq. (4) using Eq. (5)
as the loss.

3 Testing the loss
Algorithm 1 Gradient of Lovász Z loss ∆̄Z

Require: vector of errors m ∈ Rp
+, ground truth labels δ,

sample weights w = {w1, w2, . . . , wp} calculated from
σi and counts.

Ensure: g(m) gradient of ∆̄Z from Equation (4)
1: π ← decreasing sort permutation for m
2: δπ ← (δπi

)i∈[1,p]

3: numerator← 1 - cumulative_sum(δπ) w
4: denominator← 1 + cumulative_sum(1 − δπ) w

5: g ← σ − numerator/
√

denominator
6: if p > 1 then
7: g[2 : p]← g[2 : p]− g[1 : p− 1]
8: end if
9: return gπ

We analyse the loss function with a
simple toy problem which can be eas-
ily mapped to the problem of event
classification at the LHC. Our goal is
to separate the signal (s) from back-
ground events using a linear classifier
in the presence of multiple (say, two,
b1 and b2) dominant background pro-
cesses, as is usually the case. The
datasets are modelled as normal dis-
tributions in two features, x1 and x2

which can be thought of as the kine-
matic features of the actual events. We generated roughly 50000 points for each process and the
optimisation was done in batches using RAdam optimiser. We train the linear classifier using the BCE
loss and ∆̄Z with the hinge error for the following two test cases:

Case 1: σb1 = 1 fb, σb2 = 100 fb; σs = 0.1 fb.
Case 2: σb1 = 100 fb, σb2 = 1 fb; σs = 0.1 fb.

with L = 3000 fb−1. We show the data distributions in Fig. 1. Since ∆̄Z has the event rate (the
true probabilities) information, we expect the decision boundaries to be different for the two test
cases—eliminating more events from the larger background will give better significance scores,
which ∆̄Z is designed to optimise. Fig. 1 confirms this.

Performance: To compare the performance of the BCE- and ∆̄Z-trained models, we show the
results of some scans in Case 1 in Fig. 2: the estimated Z score value for different model thresholds
(u, varying which essentially translates the decision boundaries in Fig. 1 along the axes) and the
variation of the estimated Z score with the signal efficiency (ε(u), the fraction of signal events
retained for the threshold u) against the Z score obtained. For the scan, we demand ε(u) ≥ 0.05 and
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Figure 1: Decision boundaries of the linear classifier when trained with the ∆̄Z loss with hinge
error for (a) Case 1 and (b) Case 2 (see Section 3). When trained with ∆̄Z , the classifier prioritises
reducing the background with the larger cross section.
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Figure 2: (a) The estimated Z score for the entire range of the linear model threshold, u. (b) The
distribution of the Z score with signal efficiency, the fraction of signal events retained. Both quantities
are functions of u. The model trained with ∆̄Z reaches the maximum Z score for higher values of
signal efficiency than that with the BCE loss. (c) Class efficiencies vs. u when trained with the ∆̄Z

loss with the hinge error. With increasing u, the larger background is eliminated first. For very high
u the drop in the subdominant background is less steeper than the signal, leading to the drop in Z(u)
in (a) for higher thresholds.

the number of background events beyond the threshold to be at least 5. Similar plots are obtained for
Case 2 also. From the figure, we see that ∆̄z maximises the Z score for a higher signal efficiency
than the BCE, i.e., where the estimated Z score peaks, the model retains more signal events than the
BCE-trained model. (For the ∆̄z model, the estimated Z score drops for high values of u because
there, for the datasets we consider, the major background is almost eliminated and further shifting the
decision boundary reduces the minor background slower than the signal).

4 Conclusions and Outlook

In this article, we showed how a loss function for directly optimising the signal significance can
be constructed. We obtained a surrogate for the median Z score, proved that it is a submodular set
function and derived a loss function that can be used to train a multivariate model in batches using the
Lovász extension. We showed that models trained with such a loss can cut the heavy background(s)
more than the ones trained on the BCE loss while retaining more signal events (and thus showing the
promise of enhancing experimental sensitivities).
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Limitations and scope: While our results are promising, further tests are needed to fully charac-
terise and understand the benefits and limitations of ∆̄Z . Here, our choice of using a linear classifier
on simple datasets was motivated by its simplicity and interpretability. However, for realistic charac-
terisations, one has to look beyond the linear classifier (e.g., use a deep neural network) and consider
a range of benchmark (new-physics) scenarios with different kinematics (features). For example,
there could be multiple (more than two) major backgrounds with highly overlapping features or the
signal size could be much smaller than the backgrounds (more than what we considered, as is the
case in some heavy particle searches).

Finally, we note that while it is possible to introduce rate-dependent weights directly in the BCE loss,
tuning them is an empirical task. The weights that yield the best performance need not be simply the
rates of the processes. In contrast, ∆̄Z presents a natural way to include the rates (cross sections) as
it is derived from the significance score used in collider searches.

5 Code availability

A PYTHON implementation for ∆̄Z is available at https://github.com/Jai2500/Z-Score-Loss.
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A Proof of sub-modularity of the Z score

For the proof, we take the scenario with a single signal process (|S| = 1, n = n1 = n) and a single
background process (|P | = 1, p = p1 = p) to simplify the expressions. But the result can be easily
extended to incorporate multiple signal and background processes due to the linearity of additional
signal processes and background processes. We will also drop the luminosity term as that will not
affect the core derivation.

For the proof, let us assume that we have two sets of misclassifications C (nC , pC) and D (nD, pD),
such that D ⊆ C, i.e.,

D ⊆ C, nD ≤ nC , pD ≤ pC (7)

The total number of events remains the same between C and D, i.e., vS for signal and vB for
background, and only the misclassifications on the total set change.

To establish the proof, we need to show that the diminishing return property of submodularity holds
under the addition of a new element i /∈ C.

Case I: Adding false negatives i /∈ C

We prove that ∆Z is submodular under the addition of false negatives:

∆Z(C ∪ {i}) = ∆Z(nC + 1, pC) (8)

=
σS√
ϵ
−

vS−nC−1
vS

σS√
ϵ+ pC

vB
σB

(9)

=

σS√
ϵ
−

vS−nC

vS
σS√

ϵ+ pC

vB
σB

+
1
vS

σS√
ϵ+ pC

vB
σB

(10)

= ∆Z(C) +
1
vS

σS√
ϵ+ pC

vB
σB

(11)

∆Z(C ∪ {i})−∆Z(C) =
1
vS

σS√
ϵ+ pC

vB
σB

(12)

Now since D ⊆ C, i.e., pD ≤ pC , we see from Eq. (12),

∆Z(C ∪ {i})−∆Z(C) ≤ ∆Z(D ∪ {i})−∆Z(D), i is a false negative (13)

Case II: Adding a false positive i /∈ C

We prove that ∆Z is submodular under the addition of false positives:

∆Z(C ∪ {i}) = ∆Z(nC , pC + 1) (14)

=
σS√
ϵ
−

vS−nC

vS
σS√

ϵ+ pC

vB
σB + 1

vB
σB

(15)

(16)

Now we have,

∆Z(C ∪ {i})−∆Z(C) =
vS−nC

vS
σS√

ϵ+ pC

vB
σB

−
vS−nC

vS
σS√

ϵ+ pC

vB
σB + 1

vB
σB

(17)

=

(
vS − nC

vS
σS

)
︸ ︷︷ ︸

T1

 1√
ϵ+ pC

vB
σB

− 1√
ϵ+ pC

vB
σB + 1

vB
σB


︸ ︷︷ ︸

T2

(18)
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Therefore it decomposes into a product of two terms. If we show that independently both of these
terms are independently smaller for C than for D, we will have our result.

First consider T1, we have

nC ≥ nD (19)
= −nC ≤ −nD (20)

=
vS − nC

vS
≤ vS − nD

vS
(21)

Therefore, T1 is indeed larger for D compared to C.

In order to check for term T2, we first simplify the expression and write HC = ϵ+ pC

vB
σB , (HC ≥ HD).

Now we can write term two as:
1√
HC

− 1√
HC + 1

vB
σB

(22)

We move to a continuous relaxation of the term such that:

f(x) =
1√
x
− 1√

x+ 1
vB

σB

(23)

f(HC) =
1√
HC

− 1√
HC + 1

vB
σB

(24)

which is the same as Eq. (22). Now differentiating Eq. (23) with respect to x, we get:

d
dx

f =
1

2

 1(
x+ 1

vB
σB

) 3
2

− 1

(x)
3
2

 (25)

which will always be less than zero for x > 0. Thus since d
dxf < 0, we have that T2 will be greater

for D compared to C.

Now since both T1 and T2 is greater for D compared to C, we have

∆Z(C ∪ {i})−∆Z(C) ≤ ∆Z(D ∪ {i})−∆Z(D), i is a false positive (26)

Therefore from Case I and Case II, we have shown that ∆Z is submodular for all the possible cases
and therefore is submodular for the set of misclassifications (n,p).

B Error Functions

We require a loss function to handle any vector of errors m ∈ Rp
+ since we are working with

continuous predictions, not only to discrete vectors of misclassifications in {0, 1}p. We consider four
cases for defining the vector of errors m to construct the surrogate losses using the Lovasz extension.

1. Hinge (Max Margin) Loss: Following Ref. [4], we implement a hinge loss to compute the
error in the prediction. The labels are considered signed (yi ∈ {−1, 1}). The model outputs
a score Fi(x) for each sample x. The error is given by the hinge loss,

mi = max(1− Fi(x)yi, 0), yi ∈ {−1, 1}. (27)

2. Sigmoid Error: Similar to Ref. [1], we also consider the sigmoid error. The model outputs
a probability Fi(x) for the sample x to be in the signal class. The error is given by

mi =

{
1− Fi(x), if yi = 1,

Fi(x), otherwise.
(28)

3. Cross Entropy Error: We also experiment with the BCE loss to measure the error mi. This
is similar to taking the logarithm of the error calculated in the Sigmoid Error. One could also
interpret this as a form of weighted cross entropy where the weights are calculated based on
the specific composition of the batch of events and misclassifications on that batch.
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Figure 3: Loss landscapes for the four error measures m in Sec.§ 2.1. The Z score loss is plotted with
ground truth, GT = [1, 0], σ = [1, 10]. The x, y axes denote the classifier output (F1(x), F2(x)). For
the Hinge Error, the GT labels are converted to their signed equivalent.
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4. Focal Loss Error: We also consider Focal Loss [3] as the measure for the error mi. This
loss function drives the network to focus on hard misclassified events.

Our formulation results in a convex loss with a global minimum, which we evaluate for a simple case
for all the error metrics as visualized in Fig. 3.

C ROC Curves for Case 1.

We plot the ROC curves for experiments for Case 1 in Fig. 4. Case 2 gives similar results. Let
NB1, NB2 represent the total number of BG1 and BG2 events generated in the dataset. Let nB1, nB2

represent the number of BG1 and BG2 events remaining after the threshold respectively. Let σB1, σB2

represent the cross sections of process BG1 and BG2 respectively. The total background efficiency is
given by,

nB1 + nB2

NB1 +NB2
,

and the true background efficiency is given by,(
nB1

NB1

)
σB1 +

(
nB2

NB2

)
σB2

σB1 + σB2
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Figure 4: (a) ROC Curve for dataset (total) background efficiency vs signal efficiency. (b) ROC Curve
for true background efficiency vs signal efficiency. The true background efficiency differs from the
total background efficiency in that it accounts for the cross sections of the background processes. We
observe that our loss performs better at removing background at a higher signal efficiency.
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