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Abstract

During training, weight matrices in machine learning architectures are updated
using stochastic gradient descent or variations thereof. In this contribution we
employ concepts of random matrix theory to analyse the resulting stochastic matrix
dynamics. We first demonstrate that the dynamics can generically be described
using Dyson Brownian motion, leading to e.g. eigenvalue repulsion. The level
of stochasticity is shown to depend on the ratio of the learning rate and the mini-
batch size, explaining the empirically observed linear scaling rule. We verify this
linear scaling in the restricted Boltzmann machine. Subsequently we study weight
matrix dynamics in transformers (a nano-GPT), following the evolution from a
Marchenko-Pastur distribution for eigenvalues at initialisation to a combination
with additional structure at the end of learning.

1 Introduction

The dynamics of weight matrices W during training is a topic of considerable interest, as it may
shed light on both the capacity and efficiency of machine learning (ML) architectures to learn and
generalise. Since most algorithms involve a level of stochasticity, e.g. due to the use of mini-batches
and sampling, the appropriate manner to analyse this dynamics is random matrix theory (RMT) [1–6].
In the presence of time evolution, as is the case for learning, one can then employ the framework
of Dyson Brownian motion [7] to express the dynamics of X = WTW in terms of a stochastic
evolution equation for the eigenvalues of X [8]. This equation includes an induced Coulomb term,
resulting in e.g. eigenvalue repulsion and the Wigner surmise.

Here we address the question how Dyson Brownian motion can be applied to stochastic weight
matrix updates, with observable consequences. Reducing the learning dynamics from the space of
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matrices to the space of eigenvalues naturally yields the picture in which the eigenvalues evolve
from an initial Marchenko-Pastur distribution to one determined by a so-called stochastic Coulomb
potential. This Coulomb potential contains both universal and non-universal aspects, which depend
on details of the minimisation landscape due to the loss function. Hence a study of the evolution of
eigenvalues provides insight into the latter. To demonstrate our analytical findings, we present results
in the Gaussian restricted Boltzmann machine (RBM), which can be understood completely, and for
transformers (a nano-GPT), where results are currently at an empirical level.

Related work RMT dates back to the analysis of nuclear spectra in the 1960s [1–6], but has been
proven to be widely applicable across disciplines. The notion that RMT is useful for the description
of weight matrices in ML has been observed previously, see e.g. Refs. [9–12] and the textbook [13].
As far as we know the connection between Dyson Brownian motion and the stochastic Coulomb gas
on the one hand and the eigenvalue dynamics of weight matrices on the other hand was first pointed
in Ref. [8]. RMT has also been used to study properties of data [14] instead of weight matrices.

2 Dyson Brownian motion and stochastic matrix dynamics

Stochastic gradient descent, or variations thereof, are widely used to minimise loss functions, L[W ],
via the update W → W ′ = W + δW = W −αδL/δW , where α is the learning rate. We follow here
closely our previous work [8]. Using stochastically chosen mini-batches B of size |B| and invoking
the central limit theorem, yields the stochastic update for weight matrices W

W ′
ij = Wij − α

(
δL
δWij

)
B
+

α√
|B|

√
Var

(
δL
δWij

)
ηij , (2.1)

where ηij ∼ N (0, 1), the subscript B denotes the true mean of the batch gradient, and there is
no summation over repeated indices. To apply RMT, it is beneficial to consider the symmetric
combination X = WTW , which has real and semi-positive eigenvalues (the squares of W ’s singular
values). The update of X can be written as

Xij → X ′
ij = Xij + δXB

ij +
1√
|B|

√
Var(δXij)ηij , (2.2)

where the various terms follow from Eq. (2.1) and the noise ηij is symmetric in this case. Note
that the actual update is carried out using Eq. (2.1): the semi-positive and symmetric matrix X is
constructed at each iteration by choosing X = WTW . Using now the framework of Dyson Brownian
motion [6, 7] yields a stochastic equation for the eigenvalues xi (i = 1, . . . , N ) of X , which reads

xi → x′
i = xi +Ki +

∑
j ̸=i

g2i
xi − xj

+
√
2giηi, (2.3)

where Ki and gi are linked to the deterministic and stochastic terms in Eq. (2.2) and again ηi ∼
N (0, 1). The Coulomb term results in eigenvalue repulsion. Making the learning rate and batch
size explicit by writing, c.f. Eq. (2.1), Ki = αK̃i and gi = (α/

√
|B|)g̃i (quantities with a tilde are

independent of the learning rate and batch size) yields the eigenvalue equation

xi → x′
i = xi + αK̃i +

α2

|B|
∑
j ̸=i

g̃2i
xi − xj

+
α√
|B|

√
2g̃iηi. (2.4)

At first sight, the scaling with α and |B| looks unwieldy. However, it falls into place when considering
the stationary distribution corresponding to the stochastic processes (2.3, 2.4), which is obtained via
the associated Fokker-Planck equation. This so-called Coulomb gas distribution reads

Ps({xi}) =
1

Z

∏
i<j

|xi − xj | e−
∑

i Vi(xi)/g
2
i , Z =

∫
dx1 . . . dxN Ps({xi}). (2.5)

Here it is assumed that the drift Ki can be derived from a separable potential Vi(xi), via Ki(xi) =

−dVi(xi)/dxi. By writing Vi(xi) = αṼi(xi), the learning rate and batch size can be made explicit
again, and the combination in the exponent reads

Vi(xi)

g2i
=

1

α/|B|
Ṽi(xi)

g̃2i
. (2.6)
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The first factor on the RHS indicates universal scaling with α/|B|, while the second factor depends
on the details of the loss function. The linear scaling rule, in which α/|B| is a parameter whose
tunability can be exploited, was previously observed empirically [15, 16]. Here it is shown that it is a
consequence of stochastic matrix dynamics, when cast in the framework of Brownian motion (see
Refs. [17, 18] for an alternative derivation). Reducing the level of stochasticity, by reducing α/|B|,
leads to a distribution with spectral weight concentrated more closely around the minima of Vi(xi).

3 Applications

The derivation above is rather general and the actual expressions for the drift Ki, the noise strength gi
and the Coulomb potential Vi may not be readily available. In this section, we apply the description
to two systems: the Gaussian RBM, in which the potential Vi(xi) can be given explicitly [8], and a
transformer, in which the analysis is at an empirical level.

3.1 Gaussian restricted Boltzmann machine

The Gaussian RBM, with continuous degrees of freedom ϕi (i = 1, . . . , Nv) and ha (a = 1, . . . , Nh)
on the visible and hidden layer respectively, is determined by the energy (see e.g. the review [19],
here we closely follow Refs. [8, 20])

E(ϕ, h) =
1

2
µ2ϕTϕ+

1

2σ2
h

hTh− ϕTWh. (3.1)

Here µ2 and σ2
h are hyperparameters and we have put a possible bias to zero. The rectangular weight

matrix W , with matrix elements Wia, connects the layers. The induced distribution on the visible
layer is determined by the matrix KRBM = µ211Nv×Nv

− σ2
hWWT . The target data is summarised

in an Nv × Nv matrix with eigenvalues κi. In the stochastic equation for the eigenvalues xi of
X = σ2

hW
TW , the drift is known explicitly [8],

d

dτ
xi = Ki(xi) +

∑
j ̸=i

g2i
xi − xj

+
√
2giηi, Ki(xi) =

(
1

κi
− 1

µ2 − xi

)
xi, (3.2)

where τ = 2σ2
ht (for notational simplicitly, we use here continuous time). The parametric dependence

of the stochasticity parameter g2i can be determined explicitly as well, with g2i ∼ (α/|B|)× κ2
iΩi,

with Ωi = (µ2 − κi)/κ
2
i , where, as stated above, the first factor is universal and the second factor is

model (µ2) and data (κi) dependent [8].

The Coulomb term in Eq. (3.2) leads to eigenvalue repulsion, with a strength proportional to α/|B|.
This is demonstrated in Fig. 1 (left). Only in the limit where α/|B| → 0 will the target spectrum be
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Figure 1: Gaussian RBM: Ratio of the RBM eigenvalues λi = µ2 − xi and the target eigenvalues κi

as a function of α/|B|, where α and |B| are independently varied, demonstrating eigenvalue repulsion
for non-vanishing stochasticity (left). Response of the mean level spacing ⟨S⟩ to variation of α
and |B|, presented in the combination

√
α/|B| times a non-universal function

√
κ2
iΩi =

√
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(right). Figures from Ref. [8].
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Figure 2: Gaussian RBM: Evolution of eigenvalues of X = σ2
hW

TW from the Marchenko-Pastur
distribution at initialisation (left) to the learned distribution around the target eigenvalues, indicated
with the vertical lines, at the end of training (right).

learnt exactly. The distribution of the nonzero level spacing Si = xi+1 − xi is known as the Wigner
surmise. The mean level ⟨S⟩ is proportional to

√
α/|B|, as is confirmed in Fig. 1 (right).

The drift in Eq. (3.2) can be integrated to yield the potential Vi(xi) = −
∫ xi dx′ Ki(x

′) = −x2
i /2κi−

xi − µ2 log
(
µ2 − xi

)
. With the initial matrix elements of W drawn from a normal distribution, the

process of learning can then be summarised neatly as the stochastic evolution of the eigenvalues of X
from the Marchenko-Pastur distribution initially, as shown in Fig. 2 (left) to the Coulomb gas (2.5)
with the potential Vi(xi) after training, as shown in Fig. 2 (right). See Ref. [8] for more details.

3.2 Transformer

In the Gaussian RBM the drift and potential in the Coulomb gas are known, resulting in full analytic
control. In more involved architectures, this is typically not the case. Here we consider a nano-GPT
(Generative Pretrained Transformer [21]), with 4 attention blocks each having 4 attention heads. The
total number of parameters is around 0.21M. Each attention head contains one key (K), one query
(Q) and one value (V ) matrix of shape M ×N = 64× 16, where M is the input feature dimension.
The model we use is based on Karpathy’s nano-GPT [22], using the AdamW optimiser [23]. With
highly adaptive stepsizes during training, the dependence on learning rate and batch size is more
involved. Hence we explore here the evolution of the eigenvalue distribution of X = WTW through
training, where W is one of the attention matrices, at an empirical level.

The initial matrix elements are drawn from a uniform distribution, bounded between ±1/
√
M . The

eigenvalue distribution of X at initialisation is then given by an Marchenko-Pastur (MP) distribution

PMP(x;σ
2, A) =

A

2πσ2rx

√
(x+ − x)(x− x−) θ(x+ − x)θ(x− x−), (3.3)

with x± = σ2(1±
√
r)2, r = N/M = 1/4, area A = 1 and σ2 = 1/3 for the uniform initialisation.

In Fig. 3 we show the evolution of the eigenvalue distribution of X = KTK, where K is the Key
matrix of the transformer’s first layer. To verify universal aspects, we show in the top row the
distribution P (s) of the normalised eigenvalue spacing, si = xi+1 − xi, after spectral unfolding.
The histograms are compared to the Wigner surmise, P (s) = (π/2)s exp(−πs2/4), observing good
agreement. This indicates that the eigenvalues undergo universal RMT fluctuations.

In the bottom row the evolution of the spectral density ρ(x) is shown. From the initial MP distribution,
one observes a shift of the spectrum to larger values, no longer described by an MP distribution
(note the different horizontal scales). The appearance of (heavy) tails has been noted also in other
architectures [10]. This evolution should be compared to the evolution in the RBM in Fig. 2, with the
notable difference that the “exact” spectrum or Coulomb gas potential are not known. To quantify
the evolution, we fit the spectral density to the MP distribution with fit parameters σ2 and area A.
The evolution of those is shown in Fig. 4 for the Key matrix of the first head for the four layers. As
more spectral weight moves to the tail, the area A of the part of the distribution still described by the
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Figure 3: Transformer: Evolution during training of the eigenvalue distribution of X = KTK, where
K is the Key matrix of the transformer’s first layer, at initialisation (left), iteration 1000 (middle) and
iteration 5000 (right). Above: distribution P (s) of the normalised eigenvalue spacing si = xi+1 − xi

after spectral unfolding, compared to the Wigner surmise. Below: spectral density ρ(x), compared to
fits to the Marchenko-Pastur distribution with fit parameters σ2 and area A.
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Figure 4: Transformer: Evolution of fit parameters area A (left) and σ2 (right) of the Marchenko-
Pastur distribution fit to the spectral density ρ(x) of X = KTK of the first head for all layers. To
determine the statistical uncertainty, training is repeated at least 50 times, using a bootstrap analysis.

MP distribution decreases. This is demonstrated in Fig. 4 (left), from which one deduces that the
tail carries 15-25% of the spectral weight. The MP distribution itself evolves, as is shown in Fig. 4
(right), with the σ2 parameter increasing from 1/3 to closer to 1, depending on the layer. This may
reflect further randomisation of the lower part of the spectrum, with Brownian motion leading to an
MP distribution with a larger domain (larger x+ ∼ σ2). Work to further understand the spectral form
of the tail is in progress, as is a study of the apparent non-monotonic behaviour of the area A.

4 Summary

We have argued that weight matrix dynamics should be viewed in the framework of Dyson Brownian
motion. This predicts a universal dependence on the ratio of learning rate over batch size. It
elegantly leads to a picture in which the process of learning is described as the stochastic evolution
of the eigenvalues of X = WTW from an initial Marchenko-Pastur distribution to a Coulomb
gas distribution with a model-dependent potential. This picture is fully confirmed in the Gaussian
restricted Boltzmann machine and supported empirically in a nano-GPT. Further analysis of the latter
is in progress.
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