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Abstract

This paper presents a machine learning (ML) approach to automate the identifica-
tion of a specific class of ion-scale coherent structures in the solar wind. Tentatively
identified as Alfvénic solitons, these structures are characterized by their distinctive
magnetic field profiles and are thought to play a role in driving the solar wind
turbulence cascade. Traditional detection methods, such as wavelet transforms
and non-Gaussianity analysis, are effective but labor-intensive, particularly when
handling vast datasets. Our supervised ML framework, trained on a small curated
dataset of 466 manually identified events and enhanced with data augmentation,
streamlines this process. Among the tested models, Random Forest (RF) stood out
for its practicality, prioritizing precision and returning fewer, more standardized
samples, making it ideal for human review. Applied to unseen Parker Solar Probe
data within 0.25 AU across three years, RF achieved a high precision of 0.92 at
a 0.9 classification threshold and identified approximately 500 new events. This
detection scale closely aligns with traditional methods while significantly reducing
analysis time. The study demonstrates that combining small, high-quality datasets
with ML techniques provides a scalable, efficient solution for detecting coherent
structures across decades of spacecraft data, paving the way for future discoveries
and accelerating research in space physics.

1 Introduction

The application of machine learning (ML) in the physical sciences has demonstrated significant
potential for automating complex data analysis tasks. In solar wind physics, the detection of ion-scale
coherent structures is critical for advancing our understanding of energy dissipation and plasma heat-
ing processes [Alexandrova et al., 2013, Bruno and Carbone, 2013]. This study focuses on Alfvénic
solitons, a rare class of ion-scale structures distinguished by their unique magnetic signatures. Recent
observations from the Solar Orbiter (SO) and Parker Solar Probe (PSP) have resolved their plasma
and magnetic profiles, suggesting they may propagate sunward and contribute to the turbulent cascade.
These findings underscore the need to expand their dataset for a more comprehensive understanding of
their physical nature. Traditional detection methods, such as wavelet transforms and non-Gaussianity
analysis, have proven effective but are time-consuming and labor-intensive, particularly when
processing large solar wind datasets. This challenge is compounded in the inner heliosphere, where
heightened turbulence complicates detection. To address these issues, we developed a supervised ML
classifier to automate the detection process, enabling efficient identification of events on a yearly scale.

Trained on an initial dataset of 466 manually identified events, we evaluated several ML models,
including traditional algorithms like Random Forest (RF) [Breiman, 2001] and neural network-based
models such as Convolutional Neural Networks (CNNs) [LeCun et al., 1998], Long Short-Term
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Memory (LSTM) networks [Hochreiter and Schmidhuber, 1997], and transformer-based architectures
(transformer)[Vaswani et al., 2017]. Among the models tested, although RF did not achieve the highest
evaluation metrics across all models, its conservative nature – returning fewer, more standardized
samples – made it particularly suited for human review. This inherent bias towards the clearest events,
combined with its highest precision as determined through sampling-based evaluation, aligns well
with our goal of curating a reliable dataset of well-defined events. When applied to unseen PSP data,
RF effectively identified new events in the inner heliosphere, expanding the dataset to nearly 1,000
events. This study makes two key contributions: (1) it streamlines the detection process, significantly
expanding the catalog of target ion-scale structures; and (2) it demonstrates the efficacy of ML in
identifying small-scale solar wind structures, providing a scalable framework for future studies of
similar phenomena in space physics.

2 Background and Related Work

Alfvénic solitons, the ion-scale coherent structures targeted in this study, were first reported by Rees
et al. [2006] using Ulysses magnetometer data. These rare solitary structures exhibit sharp magnetic
field enhancements and bipolar rotations in the field components, typically governed by ion inertial
scales. Minimum Variance Analysis (MVA) reveals their characteristic banana-shaped hodograms.
Our recent observations during the February 2022 PSP-SO alignment confirmed their presence across
various heliocentric distances, suggesting that these solitons could propagate sunward, contribute to
the decay of anti-sunward Alfvénic fluctuations, and drive the turbulent cascade. Example events
are provided in Appendix A.1. PSP and SO provide state-of-the-art magnetic and plasma data for
studying such ion-scale phenomena. PSP, the fastest human-made object, specializes in near-Sun
measurements, recording magnetic field fluctuations up to 20 kHz with the FIELDS suite and reaching
distances as close as 0.05 AU [Bale et al., 2016]. SO offers complementary heliospheric coverage,
capturing magnetic field measurements at resolutions up to 64 Hz [Horbury et al., 2020], and observes
a broader range of heliocentric distances. Leveraging data from these missions enables the detection
of magnetic events across diverse spatial and plasma conditions.

Coherent structures represent localized energy concentrations that deviate from Gaussian statistics
[Burlaga, 1991, Frisch, 1995, Biskamp, 2003, Miao et al., 2011]. Traditional detection methods
rely on frequency filtering techniques, such as wavelet transforms [Farge et al., 1992], followed
by non-Gaussianity analyses like Partial Variance of Increments (PVI) [Greco et al., 2018]. While
effective, these approaches are time-intensive and require substantial human effort, particularly for
analyzing large datasets over multiple years. ML offers a promising alternative. In space physics,
ML has been applied to specific tasks, including solar wind classification using k-nearest neighbors
[Camporeale et al., 2017], Gaussian Processes [Li et al., 2020], and unsupervised clustering via
k-means [Roberts et al., 2020]. However, ML applications for identifying solar wind coherent
structures remain underexplored. The closest effort, by Fordin et al. [2023], employed a 1D-CNN to
classify circularly polarized waves but focused on broader wave modes rather than specific ion-scale
structures like Alfvénic solitons. Furthermore, their study evaluated only CNNs, whereas this work
systematically explores a broader range of ML models to identify the most suitable approach, aiming
to optimize detection accuracy and robustness.

3 Methods and Results

The workflow involves three key stages: dataset creation, model training and validation, and evaluation
on unseen data. With only a limited number of clear events available initially, direct ML classifier
development was impractical. Thus, building a robust, high-quality dataset became a critical first
step. This involved addressing two key challenges: determining the dataset size necessary for reliable
model performance and ensuring its generalizability. Although the methods adopted here proved
effective, alternative strategies could be explored in future studies to further refine the approach.

3.1 Dataset Creation

Data Selection: The training data were sourced from SO burst-mode magnetic field data [Horbury
et al., 2020] spanning 2020 to 2023, and PSP magnetic field data [Bale et al., 2016] within 0.4
AU from 2020 and 2022. Unseen data for testing comprised PSP encounter data (<0.25 AU) from
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2019, 2021, and 2023. These selections allowed the model to be tested in highly turbulent magnetic
environments with elevated background fields. Data were accessed via the SunPy library [Mumford
et al., 2015]. Testing data were exclusively from PSP because all available SO burst-mode data were
used for training. Events from SO, typically observed at larger heliocentric distances with smaller
background fields, are clearer and easier to identify manually, making them ideal for building a
high-quality training dataset. Future work could extend the model to newly acquired SO observations
to evaluate its ability to detect new events and validate its performance across other datasets. Manual
Identification: Potential ion-scale coherent structures were identified by filtering fractional magnetic
field fluctuations (δB/⟨|B|⟩) around ion scales using wavelet transforms. A Mexican-Hat wavelet
was chosen as the mother function for its shape similarity to the target structure’s field enhancement.
For SO data, a 1.0-second timescale was used, while PSP employed a 0.5-second scale to account for
shorter-duration events near the Sun. A stringent 99.99th percentile threshold was applied to the
wavelet results from each day of magnetic field data, reducing the number of timestamps requiring
manual inspection to fewer than 20 per day. Each 30-second window containing potential events was
evaluated using magnetic field profiles (BR, BT , BN , |B|), MVA profiles (Bmin, Bint, Bmax), and
hodogram plots (Bint vs.Bmax) (see Appendix A.3). The selection criteria included: (1) significant
|B| enhancements, (2) clear bipolar rotations in at least one RTN or MVA component with associated
variations in others, and (3) distinct hodogram patterns resembling banana or quasi-circular shapes.
This process yielded 157 events from SO and 309 from PSP, resulting in a combined dataset of 466
events.

Feature Selection: Magnetic field features were included (BR, BT , BN , and |B|). To capture subtle
patterns not evident in raw data, additional features derived from MVA, Bmin, Bint, and Bmax, were
incorporated. These features reflect variations along the principal axes in the MVA frame, where
the characteristics of ion-scale coherent structures are often more distinct. Velocity and electric
field data, though potentially relevant, were excluded due to inconsistent availability and lower
cadence. Additionally, attempts to incorporate hodograms alongside time series data for training
did not yield significant improvements in model performance. Future studies could revisit these
approaches to evaluate their utility in enhancing ML-based detection. Time Window Selection: A
4-second time window was chosen to capture events ranging from 0.1 to 1 second. This duration
was not arbitrary but based on initial experiments testing window sizes between 3 and 5 seconds.
The 4-second window consistently demonstrated optimal performance on training and validation
datasets, effectively balancing event coverage and model accuracy.Each time window was segmented
into 250 data points, determined by the lowest sampling rate across the dataset to ensure uniformity.
Downsampling was applied where necessary to preserve the event’s essential characteristics while
avoiding artifacts introduced by upsampling. This approach ensured that the temporal resolution
remained adequate for detecting the targeted ion-scale features. Data Augmentation: To enhance
model robustness, two augmentation techniques were applied to the positive samples: space reversal
(parity) and time reversal. These transformations were chosen because they preserve the pseudovector
properties of the magnetic field, ensuring physical consistency (Appendix A.4). Space reversal flips
the sign of all magnetic field components, simulating the mirror image of the field structure. Time
reversal reverses the temporal sequence of the magnetic field profile while maintaining the spatial
relationships between the components. Together, these augmentations effectively doubled the size of
the positive sample set, allowing the model to better generalize to different orientations and temporal
patterns of ion-scale structures. True and False Sample Creation: Given the limited availability of
true samples, the above data augmentation was applied to produce two extra folds of true samples.
Additional true samples were generated using a high overlap ratio of 0.9 on either side of the original
event window. False samples were generated by selecting time windows adjacent to each true event
with overlapping ratios of 0.0 and 0.2, producing four false samples per event. To ensure a broader
representation of non-events, randomly selected time windows from unrelated regions of the dataset
were also included, resulting in eight false samples per event. These false samples were then randomly
down-sampled to match the number of true samples to prevent class imbalance. Data Combination
and Normalization: True and false samples were combined, shuffled, and normalized with a mean of
zero and variance of one. Dataset integrity was verified through label balance and visual checks. Each
sample now included seven features (BR, BT , BN , |B|, Bmin, Bint, Bmax) and 250 data points, with
examples shown in Appendix A.5. Validation results confirmed the merged dataset (4,194 samples
from 466 events) outperformed isolated datasets. (Appendix A.6)
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3.2 Model Selection, Training, and Validation

Algorithm Selection: A range of machine learning models were evaluated for multivariate time
series classification. These included traditional models, such as Random Forest (RF) [Breiman,
2001], XGBoost (XGB) [Chen and Guestrin, 2016], and Support Vector Machines (SVM-C) [Cortes
and Vapnik, 1995], as well as advanced architectures like Deep Neural Networks (DNN) [LeCun
et al., 2015], Long Short-Term Memory networks (LSTM) [Hochreiter and Schmidhuber, 1997],
Convolutional Neural Networks (CNN) [LeCun et al., 1998], and Temporal Convolutional Networks
(TCN) [Lea et al., 2017]. Transformer-based architectures [Vaswani et al., 2017] were also explored,
along with the Multivariate LSTM Fully Convolutional Network (MLSTM-FCN) and its attention-
augmented variant (MALSTM-FCN) [Karim et al., 2019], which are well-suited for capturing both
spatial and temporal dependencies. Model Training and Optimization: The dataset was split into
80% for training and 20% for a held-out test set, ensuring the test set was exclusively reserved for
final evaluation. The training data were further stratified to preserve the class distribution of positive
and negative samples. To optimize hyperparameters and prevent overfitting, five-fold stratified
cross-validation was performed on the training data. This ensured that each fold maintained the
original class proportions and provided robust validation across all splits. Traditional models (e.g.,
RF, XGB, SVM-C) required flattening the multivariate time series data into a single-dimensional
input format. Hyperparameter tuning followed a two-stage approach: first, a randomized search
explored a broad parameter space to identify promising configurations, followed by a grid search for
fine-tuning. Neural network models (e.g., CNNs, LSTMs) were optimized using systematic searches
over common hyperparameters, such as the number of convolutional filters, hidden units, and learning
rates, balancing computational efficiency with performance. To mitigate overfitting, early-stopping
and adaptive learning rate reduction were applied during training. Performance Evaluation: After
determining optimal hyperparameters, final models were retrained on the full 80% training set and
evaluated on the 20% held-out test set. Model performance was assessed using metrics such as
accuracy, precision, recall, F1-score, and AUC scores for both ROC and PR curves [Vujović et al.,
2021]. Detailed hyperparameter configurations and evaluation results are provided in Appendix A.7
and A.8, respectively.

3.3 Application to Unseen Data

For deployment, models were retrained on the entire labeled dataset to maximize exposure to data
variability and enhance generalization. Unseen PSP data were preprocessed identically to the training
data. This included wavelet transformation, segmentation into 30-second windows, normalization,
and reshaping to match the machine learning input format. Non-overlapping windows were used to
minimize redundancy, though this choice may increase false negatives by potentially excluding partial
events. Optimal classification thresholds were initially derived from the held-out test set, considering
metrics such as precision, ROC-AUC, and F1 score, as detailed in A.8. However, thresholds
optimized for precision often yielded too few positive predictions, while those favoring ROC-AUC or
F1 score resulted in excessive predictions, overwhelming human review capacity. To balance these
considerations, a threshold of 0.9 was selected for simplicity and practicality. At this threshold, we
observed that the RF model consistently returned fewer positive samples, yielding a manageable scale
of just a few hundred events. This scale is well-suited for human review and aligns closely with event
counts from previous manual identification methods. While this conservative approach may exclude
ambiguous events, it ensures the identification of clear and reliable examples, supporting our goal of
curating a high-quality dataset. To evaluate model precision, a proportional sampling strategy was
employed. Ten percent of positive predictions at the 0.9 threshold were randomly selected for manual
labeling, and precision was calculated from these samples. The standard error of precision was
estimated using a Poisson distribution, appropriate for rare and independent events (Appendix A.9).
RF achieved the highest precision under this evaluation method, with RF and XGB emerging as the
top-performing models. RF’s bagging approach and XGB’s boosting approach both underscore the
robustness of ensemble methods [Ganaie et al., 2022]. Future research could explore hybrid ensemble
techniques, such as majority voting, to integrate strengths from multiple models. Additionally, the
potential of neural networks like CNNs and LSTMs, which demonstrated strong F1 scores and
ROC-AUC metrics during evaluation, could be revisited to enhance generalizability and capture a
broader range of event types. Manual review of RF-identified samples at the 0.9 threshold yielded
true positive counts of 67, 229, and 212 for 2019, 2021, and 2023, respectively. These corresponded
to precisions of 0.96, 0.91, and 0.90, with an overall precision of 0.92 across all years. Approximately
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500 new events were identified, significantly improving detection efficiency compared to traditional
methods.

Model Precision Uncertainty
RF 0.89 0.12
XGB 0.68 0.03
SVC 0.47 0.03
DNN 0.38 0.02
LSTM 0.67 0.02
CNN 0.54 0.03
TCN 0.66 0.03
Transformer 0.53 0.02
MLSTM_FCN 0.43 0.04
MALSTM_FCN 0.42 0.02

Table 1: Precision and uncertainty for various ML models evaluated on unseen PSP data. Precision
was calculated using a proportional sampling approach at a 0.9 threshold, with 10% of positive
predictions manually reviewed. The standard error was estimated using a Poisson distribution,
assuming rare, independent events with variance equal to the mean number of true positives. The
top-performing model, RF, is highlighted in bold for its superior precision evaluated here.

4 Discussion and Limitation

This study demonstrates the potential of ML to automate the detection of ion-scale coherent structures
in the solar wind, significantly reducing manual effort while maintaining high precision. Among
the tested models, RF emerged as a strong performer, showcasing robust generalizability beyond
the training dataset and highlighting the value of combining small, high-quality datasets with ML
techniques. Additional feature importance analysis from the RF model identified |B|, BR, Bint, and
Bmax as the most significant predictors. These features, which capture key aspects of magnetic field
strength and rotational characteristics, align well with theoretical models of Alfvénic structures,
reinforcing the physical relevance of the model’s predictions.

While this study acknowledges several limitations regarding biases in dataset curation and event se-
lection, these choices were made with practical and scientific considerations in mind. Specifically, the
manual identification of events may over-represent well-defined structures while under-representing
subtler or more complex ones, introducing potential bias in the dataset. Furthermore, the exclusive
use of positive samples for validation precluded direct measurement of false negative rates, potentially
favoring the most easily recognizable events. Despite these limitations, these decisions were informed
by the need to create a clear, consistent, and high-quality dataset. Addressing these challenges in
future work could involve the use of unsupervised or semi-automated labeling techniques to expand
event diversity and enhance model recall. The workflow also relied on data from SO and PSP, with
unseen data exclusively drawn from PSP encounters. Although the RF model demonstrated strong
generalizability across PSP data, its performance under varying heliospheric conditions remains
untested. Incorporating newly acquired SO observations or data from other missions could validate its
broader applicability and further enhance the diversity of detected events. The decision to prioritize
a model, such as RF, that returns the fewest positive samples for manual verification significantly
reduced the time and labor required for event validation. While this approach may introduce a bias
toward detecting the clearest and most easily defined events, it aligns with the primary objective of
establishing a foundational understanding of these rare and underexplored phenomena. By focusing
on the most standard and well-defined events, this work built a reliable initial dataset for Alfvénic
solitons. Future research will seek to address these biases by expanding event diversity and exploring
detection techniques that capture a broader spectrum of these structures, paving the way for a deeper
understanding of their role in solar wind turbulence and energy dissipation.
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A Appendix

A.1 Alfvén Solitons: Physics Background and Examples

Figure 1 presents an Alfvén soliton event observed in Ulysses data as reported by Rees et al. [2006].
The magnetic field profile in Figure 1(a) exhibits a sharp enhancement, while the accompanying
banana-shaped hodogram in Figure 1(b) reveals characteristic magnetic field rotations, hallmark
features of Alfvén solitons.

Figure 2 illustrates examples of Alfvén soliton events identified in data from (a, b) Solar Orbiter
and (c) Parker Solar Probe. Each panel showcases distinct events, featuring sharp magnetic field
enhancements and bipolar signatures, which are defining characteristics of soliton structures in the
solar wind.
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(a)

(b)

Figure 1: (a) Magnetic field profile and (b) corresponding banana-shaped hodogram of an Alfvén
soliton event observed in Ulysses data, as reported by Rees et al. [2006]. The magnetic profile shows
a sharp field enhancement, and the hodogram exhibits the characteristic rotation of magnetic field
components.
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(a)

(b)

(c)

Figure 2: Magnetic field profiles of the solitary events observed by (a), (b), Solar Orbiter, and (c)
Parker Solar Probe. Each panel shows a distinct event, characterized by sharp magnetic enhancements
and bipolar field signatures indicative of the structure.
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A.2 Wavelet Transform

The wavelet transform is a powerful tool for analyzing localized, transient events in time-series data,
particularly useful in the context of solar wind turbulence [Roberts et al., 2013, Perrone et al., 2016].
We employed the Mexican Hat wavelet, also known as the Ricker wavelet, which is well-suited for
detecting Gaussian-shaped structures with two dips on either side, closely resembling the wavelet’s
form.

Specifically, the continuous wavelet transform was implemented in Python using the pywt.cwt
function from the PyWavelets library. This function applies the wavelet transform to time-series
data, capturing fluctuations in magnetic field strength across multiple scales. The transform is
mathematically defined as:

Ws(a, b) =
1√
a

∫ ∞

−∞
s(t)ψ∗

(
t− b

a

)
dt (1)

where Ws(a, b) represents the wavelet coefficient at scale a and position b, and ψ(t) is the wavelet
function. In this case, we used the Mexican Hat wavelet, which is defined as:

ψMexican Hat(t) =
1√
2π

(
1− t2

)
e−t2/2 (2)

The scale parameter a determines the level of detail, while the translation parameter b shifts the
wavelet over the time series to detect localized fluctuations. This wavelet transform was applied
to normalized magnetic fluctuations δB/⟨|B|⟩ using a 1.0-second scale for Solar Orbiter data and
a 0.5-second scale for Parker Solar Probe data, tailored to capture shorter-duration events around
ion-scales nearer the Sun.

A.3 Minimum Variance Analysis (MVA) and Hodogram

Minimum Variance Analysis (MVA) is used to transform magnetic field data into a coordinate sys-
tem aligned with the direction of minimum variance, enhancing the clarity of bipolar rotations within
the data. This technique works by calculating the covariance matrix of the magnetic field components
and performing an eigenvalue decomposition [Sonnerup, 1998]. The eigenvector associated with
the smallest eigenvalue identifies the direction of minimum variance, Bmin, where the magnetic field
varies the least. The other two eigenvectors correspond to the intermediate variance direction Bint,
and the maximum variance direction Bmax.

To visualize these results, hodograms are generated, graphically representing the changes in the
magnetic field’s direction and magnitude. In these plots, two components of the magnetic field data,
Bint andBmax, are plotted against each other over a specific time interval. Each point on the hodogram
corresponds to the magnetic field vector at a given time.

For an event to be classified as one of the target ion-scale coherent structures, the hodogram should
exhibit banana-shaped, elliptical, or nearly circular patterns, forming closed or nearly closed loops
with smooth and clean lines. Occasionally, hodograms with other patterns will be accepted if
the events satisfy the first two criteria: 1) a significant magnetic field enhancement, and 2) clear
bipolar rotations in the RTN or MVA components, accounting for the effects of turbulent solar wind
conditions. This signature helps distinguish ion-scale coherent structures from noise or unrelated
solar wind features. For each event, the local maxima in the field magnitude |B| were identified and
recorded as the event time.

A selection of event examples is presented in Figures 3 and 4.
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Figure 3: Three example events from the SO dataset identified using the MVA. Each row represents a
distinct event. The left panels display the RTN magnetic profiles and the associated MVA profiles
over time. The right panels present the corresponding hodograms, plotting Bint against Bmax. The
first two events show well-defined banana-shaped hodograms, while the third has a less smooth shape.
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Figure 4: Three example events from the Parker Solar Probe dataset identified using the MVA. Each
row represents a distinct event. The left panels display the RTN magnetic profiles and the associated
MVA profiles over time. The right panels present the corresponding hodograms, plotting Bint against
Bmax. The first two events exhibit well-defined banana-shaped hodograms, while the third shows a
more elliptical pattern.
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A.4 Data Augmentation: Space and Time Reversal Operators

We applied two key transformations for data augmentation: the space reversal operator and the time
reversal operator, both designed to preserve the fundamental physical properties of the magnetic
field while expanding the training dataset.

The space reversal operator (parity transformation) inverts the sign of the magnetic field components,
ensuring that the magnetic field vectors (BR, BT , BN ) and the MVA components (Bmin, Bint, Bmax)
maintain their physical meaning. Mathematically, this transformation is expressed as:

B⃗ → −B⃗ or B′
i = −Bi for i ∈ {R, T,N,min, int,max} (3)

The time reversal operator reverses the time sequence while simultaneously flipping the sign of
the magnetic field components. This transformation ensures that the physical properties of the data
remain consistent across temporal inversions. The time reversal operator is expressed as:

B⃗(t) → −B⃗(−t) or B′
i(t) = −Bi(−t) for i ∈ {R, T,N,min, int,max} (4)

Both space and time reversals were applied to the magnetic field components and MVA-derived
vectors, effectively doubling the training data while preserving the event’s inherent characteristics.
Figure 5 illustrates these transformations using synthetic magnetic field data.

Figure 5: Demonstration of space and time reversal operators applied to synthetic magnetic field data
(BR, BT , BN ) and the corresponding magnitude |B|. The left panels show the RTN components,
while the right panels display |B|. The first row presents the original data, the second row shows the
results after applying time reversal, and the third row illustrates the effects of space reversal.

A.5 ML Dataset Example

Figures 6 and 7 illustrate randomly selected data samples from the final shuffled event datasets for
SO and PSP, respectively. These examples showcase the key features used in training the machine
learning models.
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Figure 6: Ten randomly selected samples from the final shuffled SO dataset. Each row corresponds
to one sample, with seven sequentially plotted features: magnetic field components BR, BT , BN ,
the magnitude |B|, and MVA components Bmin, Bint, Bmax. The y-axis represents normalized values,
while the x-axis denotes the time steps (0–250) across 250 data points.
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Figure 7: Ten randomly selected samples from the final shuffled PSP dataset. Each row represents
one sample, displaying the magnetic field components BR, BT , BN , the magnitude |B|, and the
MVA components Bmin, Bint, Bmax. The y-axis represents normalized values, and the x-axis indicates
the time steps (0–250) across 250 data points.
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A.6 Validation of Merging Datasets

To assess whether merging the SO and PSP datasets would impact model performance, we trained
three Random Forest models: rf_model_so (trained on SO data), rf_model_psp (trained on PSP
data), and rf_model (trained on the combined dataset). Each model was evaluated on test sets
extracted from SO, PSP, and the merged dataset, using accuracy, precision, recall, and F1 score as
performance metrics.

Model Test Set Accuracy Precision Recall F1 Score
rf_model Full test set 0.921 0.936 0.924 0.930

SO test set 0.965 0.986 0.947 0.966
PSP test set 0.993 0.987 1.000 0.993

rf_model_so Full test set 0.814 0.930 0.727 0.816
SO test set 0.901 0.896 0.920 0.908
PSP test set 0.749 0.865 0.636 0.733

rf_model_psp Full test set 0.936 0.986 0.899 0.941
SO test set 0.838 0.933 0.747 0.830
PSP test set 0.946 0.953 0.947 0.950

Table 2: Performance metrics (accuracy, precision, recall, and F1 score) for three Random Forest
models: rf_model_so (SO data), rf_model_psp (PSP data), and rf_model (merged dataset). Each
model was evaluated on test sets from SO, PSP, and the merged dataset.

The rf_model, trained on the merged dataset, consistently outperformed the other two mod-
els, demonstrating enhanced generalization when combining SO and PSP data. By contrast,
rf_model_so and rf_model_psp underperformed on test sets derived from the other dataset,
indicating limited cross-dataset generalizability. The merged dataset offered the most robust and
reliable performance, supporting its use for further analysis.

A.7 Model Architecture and Hyperparameter

The architecture of each model was carefully designed to maximize predictive accuracy and computa-
tional efficiency, implemented using the Tensorflow library, with each of model’s architecture and the
final hyperparameters briefly specified as below:

• Random Forest (RF): An ensemble method using 500 decision trees to handle high-
dimensional data with the Gini criterion.

– Hyperparameters: criterion=’gini’, max_depth=24, max_features=’sqrt’,
min_samples_leaf=1, min_samples_split=10, n_estimators=500.

• XGBoost (XGB): A gradient boosting framework optimized with 500 boosting rounds and
decision trees as base learners.

– Hyperparameters: colsample_bytree=0.75, gamma=0.3,
learning_rate=0.042, max_depth=9, min_child_weight=1,
n_estimators=500, subsample=0.8.

• Support Vector Machine (SVM-C): A classification technique using a Radial Basis Func-
tion (RBF) kernel to find the optimal hyperplane.

– Hyperparameters: C=50, gamma=0.0005, kernel=’rbf’.
• Deep Neural Networks (DNN): A neural network with three hidden layers (224, 192, and

224 neurons) for modeling complex relationships.
– Hyperparameters: units_first=224, dropout_first=0.5, num_layers=1,
units_0=192, dropout_0=0.5, learning_rate=0.0001, units_1=224,
dropout_1=0.5, units_2=160, dropout_2=0.2.

• Long Short-Term Memory (LSTM): Recurrent neural networks with three LSTM layers,
designed to capture temporal dependencies in sequential data.

– Hyperparameters: units=(128, 128, 256), dropout_rate=0.2,
batch_size=16, learning_rate=0.001.
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• Convolutional Neural Networks (CNN): Designed for capturing spatial dependencies in
time-series data with three convolutional layers.

– Hyperparameters: filters=(128, 128, 256), dense_units=(128, 64),
dropout_rate=0.4, batch_size=16, learning_rate=0.001.

• Temporal Convolutional Networks (TCN): Utilizes dilated convolutions to capture long-
range dependencies in sequential data.

– Hyperparameters: nb_filters=64, kernel_size=3, nb_stacks=1,
dropout_rate=0.3, dilations=[1, 2, 4, 8, 16], learning_rate=0.001,
batch_size=16.

• Transformer-based Architectures (Transformer): Leverages self-attention mechanisms
for global dependency capture in sequential data.

– Hyperparameters: embed_dim=64, num_heads=8, ff_dim=64, rate=0.2,
learning_rate=0.001, batch_size=32.

• Multivariate LSTM Fully Convolutional Network (MLSTM-FCN): Combines LSTM
and fully convolutional networks for spatial and temporal modeling.

– Hyperparameters: filters1=64, filters2=256, filters3=128,
kernel_size1=3, kernel_size2=3, kernel_size3=3, lstm_units=64,
dense_units=64, dropout_rate=0.2, learning_rate=0.001,
batch_size=32.

• Multivariate Attention LSTM Fully Convolutional Network (MALSTM-FCN): Extends
MLSTM-FCN by incorporating attention mechanisms within LSTM layers.

– Hyperparameters: filters1=128, filters2=256, filters3=64,
kernel_size1=3, kernel_size2=3, kernel_size3=3, lstm_units=64,
dense_units=64, dropout_rate=0.2, learning_rate=0.001,
batch_size=16.

A.8 Model Evaluation on Test Set

Below are commonly used metrics for classification model comparison. While test set performance
provides some indication of effectiveness, it’s important to recognize that a model’s performance
on the test set may not fully reflect its actual ability to classify true instances in an unseen dataset.
[Raschka, 2018]

Threshold-Based Evaluation Metrics [Vujović et al., 2021]

• Accuracy: Proportion of correctly classified instances out of the total instances.

Accuracy =
True Positives + True Negatives

Total Observations
(5)

• Precision: Ratio of true positive instances to the total predicted positive instances. High
precision indicates a low rate of false positives.

Precision =
True Positives

True Positives + False Positives
(6)

• Recall (Sensitivity): Ratio of true positive instances to the total actual positive instances,
reflecting the model’s ability to detect positive instances.

Recall =
True Positives

True Positives + False Negatives
(7)

• F1 Score: Harmonic mean of precision and recall, balancing both metrics.

F1 Score = 2 · Precision × Recall
Precision + Recall

(8)

Figure 8 compares the performance metrics across models on the test dataset, evaluated with a
classification threshold of 0.5. Bootstrapping with 500 resamples was applied to estimate the error
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margins for these metrics. Based on the results, CNN and LSTM models performed the best, ranking
in the first tier. TCN and Transformer models followed in the second tier, while Random Forest (RF)
and XGBoost (XGB) ranked in the third tier.

Figure 8: Comparison of model performance based on evaluation metrics (accuracy, precision, recall,
and F1 score) on the held-out test dataset using a classification threshold of 0.5 under a bootstrapping
process of 500.

Threshold-Free Metrics: ROC Curve, PR Curve, and AUC Scores [Vujović et al., 2021]

While threshold-based metrics are informative, threshold-free metrics such as the ROC curve, PR
curve, and their corresponding AUC (Area Under the Curve) scores provide a more comprehensive
evaluation of model performance across all possible thresholds. These curves visualize the trade-offs
between different metrics and can assist in identifying optimal thresholds.

• ROC Curve and AUC: The ROC curve plots the true positive rate against the false positive
rate across various thresholds. The AUC represents the model’s ability to discriminate
between positive and negative classes across all thresholds.

• PR Curve and AUC: The PR curve plots precision against recall across different thresholds,
particularly useful when dealing with imbalanced datasets. The AUC of the PR curve
highlights the balance between precision and recall, emphasizing model performance on
positive class predictions.
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Figure 9: left Panel: ROC curves, Right Panel: PR curves , each with AUC scores labeled on the
legend with standard deviations evaluated from bootsrapping with 100 resampling, plotted among
models for a direct comparison

Figure 9 presents the ROC and PR curves for each model, with AUC scores indicated in the legend,
including standard deviations calculated from 100 bootstrap resamples. Among the models, CNN
and LSTM achieved the highest AUC scores, demonstrating superior performance. The TCN and
XGB network emerged as a strong second tier, while RF and the Transformer models ranked in the
third tier.

Classification Threshold Selection

• Optimal Threshold from ROC Curve: This strategy selects the threshold closest to the
top-left corner of the ROC curve, achieving a balance between sensitivity and specificity.

• Threshold Maximizing Precision: This approach focuses on maximizing precision, which
is critical when minimizing false positives is a priority, ensuring the reliability of positive
predictions.

• Threshold Maximizing F1-Score: This method balances precision and recall to provide a
comprehensive evaluation of model performance.

Table 3 shows the optimal thresholds for each model based on different criteria.

Model ROC Turning Point Threshold Optimal F1 Threshold Optimal Precision Threshold
RF 0.507 0.439 0.980
XGB 0.688 0.688 0.999
SVC 0.485 0.419 0.968
DNN 0.590 0.237 0.998
CNN 0.496 0.496 0.966
LSTM 0.587 0.587 0.998
TCN 0.739 0.628 0.999
Transformer 0.663 0.374 0.995
MLSTM-FCN 0.323 0.201 0.992
MALSTM-FCN 0.817 0.475 0.999

Table 3: Optimal thresholds determined for each model using the ROC turning point, optimal F1, and
precision thresholds.

A.9 Application to Unseen Data

1. Number of Samples Above Threshold Across Models
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Figure 10 shows the number of samples exceeding the classification threshold for each model. It is
evident that the RF model consistently identified the fewest samples for further review, particularly
across thresholds ranging from 0.6 to 1.0.

Figure 10: Comparison of the number of samples exceeding the classification threshold across models
for unseen data from the PSP in 2019, 2021, and 2023.
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2. Precision Uncertainty Evaluation

To estimate the uncertainty in precision, we assume a Poisson distribution, appropriate when true
positives are relatively rare and occur independently. The variance of a Poisson-distributed variable is
equal to its mean, so the standard deviation of the expected number of true positives, denoted as λTP,
is given by

√
λTP. To calculate the standard error of the precision, this standard deviation is scaled by

the total number of predicted positives N in the dataset, resulting in:

Standard ErrorPrecision =

√
λTP

N
(9)

Here, λTP = Precision ×N represents the expected number of true positives among the predicted
positives in the dataset, based on the observed precision in the sample. This approach allows us to
express precision as λTP

N ±
√
λTP
N , providing a confidence interval around the estimated precision.

A.10 Additional Dataset Examples

This research culminated in a dataset comprising 974 identified events. Additional examples, includ-
ing their magnetic profiles and corresponding hodograms, are provided to highlight two key aspects:
(1) the rationale for not imposing overly strict event selection criteria, and (2) how these criteria
facilitate the discovery of comparable structures by the ML model.

The magnetic structures in the dataset can be categorized into four distinct types based on their
hodogram shapes:

• Banana-Shaped Hodogram: Characterized by a banana-like curvature (Figure 11).

• Elliptical-Shaped Hodogram: Forms an elongated elliptical shape, primarily along the
Bint axis (Figure 12).

• Triangle-Like Hodogram: Resembles a triangular pattern (Figure 13).

• Irregular Hodogram: Displays an irregular and less structured pattern (Figure 14).

These categories capture varying levels of loop completion and smoothness, ranging from well-
formed structures to more dynamic and complex configurations. Figures in this section illustrate
representative examples from each category, showcasing both distinct, well-formed patterns and less
defined structures. The upper panels in each figure correspond to events included in the manually
curated ML training set, while the lower panels depict events discovered by the Random Forest
classifier. This juxtaposition demonstrates the variety and complexity of events captured within the
dataset, underscoring the robustness of the ML approach in identifying diverse solar wind structures.
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Figure 11: Examples of banana-shaped hodograms. The upper panel shows an event from the 2023
SO dataset, and the lower panel shows a similar event identified by the RF classifier from the unseen
2021 PSP data. Left panels display the RTN magnetic field profiles and the associated MVA profiles
over time, while right panels present the corresponding hodograms, plotting Bint v.s. Bmax.
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Figure 12: Examples of elliptical-shaped hodograms. The upper panel illustrates an event from the
2022 PSP dataset, while the lower panel depicts an event identified by the RF classifier in the unseen
2019 PSP dataset. Left panels display the RTN magnetic field profiles and the associated MVA
profiles over time, while right panels present the corresponding hodograms, plotting Bint v.s. Bmax.
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Figure 13: Examples of triangle-shaped hodograms. The upper panel represents an event from the
2022 PSP dataset, while the lower panel shows an event identified by the RF classifier from the
unseen 2019 PSP dataset. Left panels display the RTN magnetic field profiles and the associated
MVA profiles over time, while right panels present the corresponding hodograms, plotting Bint v.s.
Bmax.
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Figure 14: Examples of irregular-shaped hodograms. The upper panel shows an event from the 2022
PSP dataset, while the lower panel shows an event identified by the RF classifier from the unseen
2023 PSP dataset. Left panels display the RTN magnetic field profiles and the associated MVA
profiles over time, while right panels present the corresponding hodograms, plotting Bint v.s. Bmax.
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