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Abstract

A new challenge has been set up that focuses on measuring the physics properties
of elementary particles with imperfect simulators due to differences in modelling
systematic errors. Additionally, the challenge has leveraged a large-compute-
scale AI platform for sharing datasets, training models, and hosting machine
learning competitions. Our challenge has brought together the physics and machine
learning communities to advance our understanding and methodologies in handling
systematic (epistemic) uncertainties within AI techniques. The challenge is ongoing
at the time of submission of this paper, it will be completed in March 2025, with
intermediate results available for NeurIPS 2024. A comparison of the various
methods used by participants and the first lessons will be presented at the workshop.

Introduction

For several decades, the discovery space in almost all branches of science has been accelerated dra-
matically due to increased data collection brought on by the development of larger, faster instruments.
More recently, progress has been further accelerated by the emergence of powerful AI approaches,
including deep learning, to exploit this data. However, an unsolved challenge that remains, and must
be tackled for future discovery, is how to effectively quantify and tackle uncertainties, including under-
standing and controlling systematic uncertainties (also named epistemic uncertainties in other fields).
This is widely true across scientific and industrial applications involving measurement instruments
(medicine, biology, climate science, chemistry, and physics, to name a few). A compelling example
is found in analyses to further our fundamental understanding of the universe through analysis of the
vast volumes of particle physics data produced at CERN, in the Large Hadron Collider (LHC).

High energy physics (HEP) relies on statistical analysis of aggregated observations. Therefore,
the interest in uncertainty-aware ML methods in HEP is nearly as old as the application of ML in
the field. Advanced efforts began with initial investigations in the use of Bayesian networks for
uncertainty quantification [1], as well as with the development of uncertainty-minimising inference
methods [2]. There have been several recent developments in this area, with the introduction of
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multiple uncertainty-aware methods capable of dealing with systematic uncertainties in a given
dataset [3, 4, 5, 6], as well as in the application of previous methods to actual measurement data [7].

We aim to address the issue of systematic errors within a specific domain. Yet, the techniques
developed by the challenge participants will apply to identifying, quantifying, and correcting system-
atic errors in other domains. This effort will also intersect with critical topics in machine learning,
including data bias and fairness. We plan to keep our submission platform accessible even after
the challenge concludes, establishing it as a lasting benchmark. This initiative should significantly
influence research in uncertainty-aware ML/AI techniques, which currently suffer from a critical
shortage of datasets and benchmarks dedicated to their research and development.

A more detailed description of the challenge shall be found in the FAIR Universe HiggsML Uncer-
tainty Challenge Competition whitepaper [8].

1 Novelty

Previous challenges concerning High Energy Physics ( HiggsML data challenge [9], the TrackML
Challenges (NeurIPS 2018 competition) [10, 11], the LHC Olympics [12] ) have not addressed the
issue of systematic biases. This challenge introduces a significant change w.r.t previous challenges
using simulated data that includes biases (or systematics) in the test dataset. In addition, participants
are not asked to provide a measurement but to provide a confidence interval on a measurement. We
have developed an innovative metric to assess their performance.

While there have been previous challenges focusing on meta-learning and transfer-learning, such as the
NeurIPS 2021 and 2022 meta-learning challenges [13, 14], Unsupervised and Transfer Learning[15],
challenges related to bias e.g. Crowd bias challenge [16], and those addressing distribution shifts,
like the Shifts challenge series, and CCAI@UNICT 2023 [17], to the best of our knowledge, this is
the first challenge that requires participants to handle systematic uncertainty.

2 Dataset

We are using a simulated particle physics dataset for this competition to produce data representative
of high energy proton collision data collected by the ATLAS experiment [18] at the Large Hadron
Collider (LHC) [19]. The dataset is created using two widely used simulation tools, Pythia 8.2
[20] and Delphes 3.5.0 [21]. We have organised the dataset into a tabular format where each row
corresponds to a collision event, the measurements recorded from a single proton bunch crossing
of interest. Each row has 28 features that describe the particle properties of the event. The events
are divided into two categories. The signal category includes collision events with a Higgs boson
decaying into tau pairs, while the background category includes other processes (subcategories)
leading to a similar final state.

Due to its complexity, the process of generating events is computationally intensive; use of a
supercomputer allowed to create a vast amount of data, about 80 million events, which is two orders
of magnitude larger than for the HiggsML competition. It will be made publicly available after
the competition under the Creative Commons Attribution license to serve as a benchmark after the
competition.

In addition, we have developed a biasing script capable of manipulating a dataset by introducing six
parameterised distortions (the systematics). For example, a detector miscalibration can cause a bias in
other features in a cascade way, or a new source of noise is added to a feature, or in another case, the
magnitude of a particular background (e.g. the tt̄) contribution can change so that the composition of
the background (thus the feature distributions) can be different. In both cases, the inference would be
done on a dataset not i.i.d to the training dataset. The biasing script is provided to the participants
so that they know what biases they should expect; the biases are "known unknowns". The case of
"unknown unknowns" is beyond this challenge.

3 Tasks and application scenarios

The participant aims to develop an estimator for the Higgs boson count in a dataset analogous to
results from Large Hadron Collider experiments. Such measurement is typical to those carried over
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at the Large Hadron Collider, which allows us to strengthen (or invalidate!) our understanding of the
fundamental laws of nature.

The primary metric, signal strength (µ), defaults to one, aligning with Standard Model predictions
for Higgs boson occurrences. The challenge involves estimating µ’s true value, µtrue, which may
vary from one and is inherently unknown. For challenge purposes, pseudo-experiments simulate data
across µtrue values from 0.5 to 3, evaluating participant estimators.

Participants are tasked with generating a 68% Confidence Interval (CI) for µ, incorporating both
aleatoric (random) and epistemic (systematic) uncertainties rather than a single-point estimate.

The primary simulation dataset assumes a µ of one. Participants receive a training subset, labelled
for particle identification, and unlabeled test sets, each with a different value of µtrue and biased
differently. For each test set, they must predict a CI for µ. The organizers provide the script to
generate test data from the primary simulation dataset.

In a machine learning context, the task resembles a transduction problem with distribution shift: it
requires constructing a µ interval estimator from labelled training data and biased unlabelled test data.
A potential approach involves training a classifier to distinguish Higgs boson from the background,
with robustness against bias achieved possibly through data augmentation via the provided script.

This challenge shifts focus from the qualitative discovery of individual Higgs boson events to the
quantitative estimation of overall Higgs boson counts in test sets, akin to assessing disease impact on
populations rather than diagnosing individual cases.

4 Metrics

Participants must submit a model to the challenge platform that can analyze a dataset to determine
(µ16, µ84), which represents the bounds of the 68% Confidence Interval (CI) for µ.

The model’s performance will be assessed based on two criteria:

• Precision: The narrowness of the CI (narrower is preferable).

• Coverage: The accuracy of the CI in reflecting the measurement’s uncertainty, meaning
there should be a 68%

To evaluate the model performance, we are using the very large dataset created to generate pseudo-
experiments, which are small datasets with a mixture of events representative of what could be
obtained in a real experiment. The number of events is Poisson-fluctuated, and events are drawn from
the large dataset so that features are randomised. In addition, the six biases are Gaussian randomised,
and different values of µ are tested. Nevertheless the model should calculate a (µ16, µ84) interval
which should include the true µ value 68% of the time. The score of the model is obtained from the
narrowness of the CI, penalised by how much the measured coverage departs from the nominal 68%
(see Fig.1b). Thanks to the large dataset and significant computing resources available, the participant
model is evaluated on 1.000 independent pseudo-experiments for each submission, increased to
10.000 independent pseudo-experiments for the final ranking of participants.

5 Baselines

A Starting Kit is available on the challenge website. This kit includes code for installing necessary
packages, loading and visualising data, training and evaluating a model and preparing a submission
for the competition.

The Baseline method estimates µ by merging standard techniques without addressing systematics
for simplicity. Initially, it utilizes a binary classifier (XGBoost Boosted Decision Tree or a simple
PyTorch neural network) trained on a subset of training data to filter events, enhancing signal event
density and reducing µ estimator variance. Although adjustable for variance optimization, the
classifier’s decision threshold is fixed heuristically. µ is then estimated from these filtered events,
assuming Poisson distribution for Large Hadron Collider events, enabling point-wise and interval
maximum likelihood estimation. Further refinement involves binning events as per classifier selection
and estimating µ per bin, akin to a voting ensemble. A reserved training dataset segment assesses
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(a) Histogram of events for Model Output: Unlabeled test
pseudo-data (black), hold-out data for (1) background events
Z → ττ (blue), (2) signal events H → ττ for µ = 1 (or-
ange), and (3) signal events fitted histogram to test pseudo-
data, leading to estimated µ = 2.883.

True μ

(b) Coverage plot: All predicted Confidence
Intervals (blue lines) for each pseudo exper-
iment generated for a given µtrue (vertical
dotted line).

Figure 1: Baseline method results

signal-background ratio per bin for µ=1. This calibration step then permits using unlabeled test
data (pseudo-data) for µ estimation. The alignment of maximum likelihood estimation (orange line)
with empirical data (black line), in particular in the right-most bins, which are the most signal pure,
indicates method success (Fig.1a). The maximum likelihood also yields the Confidence Interval.

To address the problem of systematic errors, participants are encouraged to enhance the Baseline
model, for instance, by adopting a Domain Adversarial Neural Network to improve resilience against
biases, attempting to directly model the biases, or refining the estimator through a bias-aware model.

Conclusions and Outlook

The challenge is ongoing at the time of submission of this paper, it will be completed in March
2025, with intermediate results available for NeurIPS 2024. Participants will have to submit detailed
documentation of their model in addition to the code they will have submitted during the challenge.
Hence we will be able to compare the different approaches and evaluate them in detail, beyond the
one metric used to rank them. What techniques are novel ? Which technique works best for which
bias? Which technique can maintain good results when training dataset size is reduced? Or when
fewer training computing resources is used ? Which technique is likely to be adopted by the field?
With the release of the large dataset associated with the biasing script allowing the simulation of the
impact of six distinct systematic sources, we believe the challenge will trigger new developments in
statistics and Machine Learning dealing with uncertainties.
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