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Abstract

Reconstructing cosmological initial conditions (ICs) from late-time observations is
a difficult task, which relies on the use of computationally expensive simulators
alongside sophisticated statistical methods to navigate multi-million dimensional
parameter spaces. We present a simple method for Bayesian field reconstruction
based on modeling the posterior distribution of the initial matter density field to
be diagonal Gaussian in Fourier space, with its covariance and the mean estimator
being the trainable parts of the algorithm. Training and sampling are extremely fast
(training: ∼ 1 h on a GPU, sampling: ≲ 3 s for 1000 samples at resolution 1283),
and our method supports industry-standard (non-differentiable) N -body simulators.
We verify the fidelity of the obtained IC samples in terms of summary statistics.

1 Introduction

The cosmic initial conditions – minuscule matter density perturbations seeded 14 billion years ago –
gradually evolved under gravity into the intricately woven filamentary structures of galaxies observed
in the Universe around us (e.g. [1, 2]). Modeling this process of cosmic structure formation by means
of N -body simulations is, in principle, relatively straightforward (albeit computationally demanding)
– at least when neglecting all non-gravitational effects (see [3, 4] for recent reviews).

An important task in cosmology addresses the inverse problem: given (simulated or observed)
cosmological present-day observations, can the cosmic ICs be reconstructed? Given a late-time
matter density field without velocity information, this problem is ill-posed due to the non-linear nature
of gravity, and the IC reconstruction is not unique [5–7]. Probabilistic (Bayesian) reconstruction
techniques have successfully been employed [8, 9]; however, they rely on Hamiltonian Monte Carlo,
which is slow due to the large number of parameters (= voxels) 106 ≲ d ≲ 107 and the complexity of
the forward model (which needs to be differentiable such that its gradient can be computed).

Recently, simulation-based inference (SBI, e.g. [10]) has gained significant traction in the astrophysics
and cosmology communities, driven by the recent advancements in machine learning (e.g. [11–27].
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SBI allows tackling inverse problems in situations where a forward model is available which describes
the mapping from input parameters (here: cosmic ICs) to observations (here: late-time matter
densities), whereas explicitly formulating a probabilistic model may be hard or even impossible.
Equipped with N -body simulations as an accurate forward model, SBI ideally lends itself for the task
of probabilistic cosmic IC reconstruction.

Our contribution. We present a fast (both in terms of training and sampling), simple, yet effective
SBI-based technique for drawing cosmic IC posterior samples constrained on late-time density fields.
The key components are 1) a trainable maximum a-posteriori (MAP) estimator µ̂θ and 2) a trainable
likelihood covariance matrix (QL

θ )
−1. Specifically, we model the posterior as Gaussian with a

diagonal covariance matrix in Fourier space, which enables near-instantaneous sampling.

Related work. Methods for inferring cosmological ICs from late-time observations can generally
be subdivided into deterministic and probabilistic frameworks. The former class reconstructs a single
‘best-fit’ IC field and relies either on traditional (analytic and numerical) techniques [5, 6, 28–33] or,
more recently, deep learning approaches (mostly involving U-Nets) [34–38], recurrent inference ma-
chines [39], and variational self-boosted sampling [40]. While probabilistic reconstruction techniques
have traditionally employed Bayesian modeling paired with Hamiltonian Monte Carlo sampling
[8, 9], score-based generative models have recently emerged as an accurate and much faster contender
[41–43], and see [44] for a first exploratory study based on SBI alongside autoregressive modeling.

2 Methodology

Simulation data. The simplicity of our method presented below does not demand the simulator to
be differentiable, which, in combination with the fact that a relatively small training set is sufficient,
does not require us to rely on approximation schemes in our forward model and enables the use of full
industry-standard cosmological N -body codes. As our training data, we employ 2000 pairs of initial
(at redshift z = 127) and present-day (z = 0) matter overdensity fields from the Quijote N -body
simulations suite [45] with varying random phases of ICs and fixed fiducial Planck cosmology
[46]. These simulations evolve 5123 collisionless particles with the Gadget-III TreePM code [47]
in a periodic cubic volume of (1 Gpc/h)3. The overdensity fields are computed by interpolating
the particles onto a grid with resolution of d = 1283, in total amounting to a ∼ 106-dimensional
parameter space for the inference.

Statistical model. The mentioned ill-posedness of the comological ICs reconstruction makes it
natural to formulate the problem in the probabilistic Bayesian setting:

p(z|x) = p(x|z)
p(x)

p(z), (1)

where x ∈ Rd is the observed final overdensity field, and z ∈ Rd are its ICs, whose distribution for a
given observation xobs we aim to infer. From observations of the Cosmic Microwave Background
[46], we know that the early-universe matter overdensity fluctuations had small amplitudes and to
a very high precision can be described as a Gaussian random field; therefore, we can write down
the prior as p(z) ∝ exp

{
− 1

2z
TQPz

}
, where the precision matrix QP is diagonal in Fourier space:

QP = F†DPF , with DP = 1/P (k) determined by the linear matter power spectrum P (k) at
z = 127, k := |k| being the wave vector k modulus, and F denoting the Fourier transform1.

A crucial component of any Bayesian cosmological reconstruction framework, which determines its
descriptive power, is the complexity level of the likelihood model. In SBI, the likelihood is implicitly
encoded in the forward model, for which reason it is typically not explicitly prescribed, but rather
accessed from the forward model by a neural network. In this work, however, we adopt a relatively
simple approach, in which we explicitly expand the log likelihood up to quadratic terms w.r.t. the
ICs z, with a diagonal likelihood precision matrix in Fourier space. We found this to be sufficient to
yield tight and statistically consistent posterior distributions within the selected scale range, while

1In practice, we make use of the closely related discrete Hartley transform rather than the discrete Fourier
transform because it has the advantage that it maps real values to real values, while still being unitary and
diagonalizing the precision matrix [48].
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vastly reducing the complexity and computational cost of our method. On sufficiently large scales,
this level of modeling extracts the full information content in the data, as all Fourier modes evolve
independently in the linear regime. On smaller scales, our approach neglects information from the
cross-correlations between Fourier modes (however, this information is leveraged when estimating
the MAP, see below), which should typically lead to conservative, rather than overconfident, posterior
estimates. Thus, the likelihood we use is defined as follows:

p(x|z) ∝ exp

{
−1

2
(z − ẑθ(x))

TQL
θ (z − ẑθ(x))

}
, (2)

where QL
θ = F†DL

θF with DL
θ being diagonal, ẑθ(x) is the x-dependent maximum likelihood

estimator (MLE), and the subscript θ denotes quantities which depend on the set of trainable
parameters θ.

Making use of Bayes’ theorem (1) with the likelihood defined in (2), after rearranging the terms one
obtains the following form of the normalized posterior distribution:

p(z|x) = exp
{
− 1

2 (z − µ̂θ(x))
T (QP +QL

θ )(z − µ̂θ(x))
}√

(2π)d det
(
QP +QL

θ

)−1
, (3)

where µ̂θ(x) is the MAP estimator related to the MLE by µ̂θ(x) = (QP +QL
θ )

−1QL
θ ẑθ(x). Moti-

vated by the linearity of cosmic structure growth on large scales, we model the MAP estimator µ̂θ(x)
as a combination of two terms, where the large-scale regime is captured by a simple multiplicative
scaling factor αθ(k), while the complex small-scale evolution is described by a 3D U-Net type [49]
neural network in the following way:

µ̂θ(x) = F† {αθ(k)⊙ [F{x}+ σ>kΛ(F{U-Netθ(x)})]} . (4)

Here, σ>kΛ
denotes a sigmoidal high-pass filter centered at the cut-off scale kΛ, which we conser-

vatively chose as kΛ = 0.03h/Mpc, αθ(k) is a trainable multiplier for each wave vector k, and
⊙ is the Hadamard (elementwise) product. We found that including αθ(k) slightly improves the
results while maintaining essentially the same speed of training. We implemented the U-Net from the
map2map package [50], slightly simplifying it by reducing the number of hidden channels from 64 to
16. To facilitate the training, before passing the z = 127 fields to the network, we found it beneficial
to divide them by the linear growth factor D(z = 127), effectively making the network learn the
residuals from the linear theory prediction.

Our training objective is to minimize the negative log posterior probability under the ansatz (3):

L =
1

2

N∑
i=1

{
(zi − µ̂θ(xi))

TQθ (zi − µ̂θ(xi))
}
− N

2
tr logQθ, (5)

where N is the number of samples in the training set, Qθ = QP +QL
θ , and we used the relation

log detQθ = tr logQθ, also leaving out an unimportant constant additive term. Altogether, the
trainable set θ of our model consists of the MAP estimator µ̂θ parameters (see Eq. 4) and the diagonal
part of the likelihood precision matrix DL

θ (in order to ensure the positivity of the latter, we store the
respective square root values as the parameters, and square them at inference). Due to its parallels
with approximate models encountered in the contexts of statistical physics (e.g. [51, Chap. 4]) and
variational inference [52], we refer to our method as ‘mean-field simulation-based inference’. While
our method, which focuses on the first two moments (mean and variance), is conceptually aligned with
the SBI framework outlined in [25], which employs a hierarchy of networks to estimate successive
moments of the posterior, our approach differs in both the training objective and the learning strategy.
Moreover, our approach is closely connected to uncertainty quantification methods that optimize the
Gaussian negative log-likelihood loss, as discussed in [53].

Training procedure. We train the model using a batch size of 8 on a single 40 GB Nvidia A100
GPU, starting with an initial learning rate of 10−2 and decreasing it by a factor of 10 after each
epoch where the validation loss does not decrease. Training continues until no further improvement is
observed in the validation loss, which, under these conditions, takes approximately 30 epochs and 1.5
hours to converge. The dataset was randomly split with 80% assigned to training and the remaining
20% reserved for validation. As a wrapper for our training implementation, we use the PyTorch
Lightning-based [54] code swyft [55, 56].
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Figure 1: Our method produces posterior IC samples constrained by a given late-time density field
(training: ≃ 1.5 h on a GPU, sampling: < 3 s for 1000 samples at resolution 1283). Top row: slices
of the initial and final overdensity fields of the target simulation. Bottom row: two examples of the
generated IC samples. All the shown slices are averaged over the depth of 100 Mpc/h in the third
axis direction. Rightmost column: power spectrum, transfer function, and cross-correlation of the
generated samples and the ground truth. Shaded regions correspond to 1σ and 2σ errors, and the
yellow C(k) line corresponds to the cross-correlation between the final and the initial density fields.
Note that the MAP estimate, which is the only quantity recovered by most other approaches, loses
significant power at small scales and is not fully able to describe the field’s statistical properties.

3 Results

The fact that the prior and the likelihood (and hence also the posterior) are Gaussian and diagonal in
the same Fourier basis allows us to obtain samples from the posterior in a very fast and simple way
after the training is done. We demonstrate our reconstruction method for one of the fiducial Quijote
simulations {ztruth,xobs} not contained in the training set (see Fig. 1). Given such an observation of
the final density field xobs, one evaluation of the MAP estimator (4) is required to obtain the mean of
the field µ̂θ(xobs) (≲ 1 s computation time), and having the Qθ = QP +QL

θ matrix then allows us
to obtain over a thousand posterior samples in a batched fashion within three seconds on a single
GPU, which is orders of magnitude faster than existing methods (see App. A for details on MAP
estimation and the uncertainty of the modes reconstruction).

To confirm that the generated samples have the correct statistical properties, we compute the power
spectrum P (k), transfer function T (k) and cross-correlation C(k) with respect to the ground truth
field ztruth using the Pylians [57] package (see App. B for definitions). We observe an agreement
in the power spectrum with the ground truth at ≲ 1 − 2% accuracy for all the scales up to the
Nyquist scale kNyq ≃ 0.4h/Mpc, and a high (≳ 50%) cross-correlation up to k ≃ 0.35h/Mpc.
Furthermore, in order to verify that the distribution of samples correctly covers the true posterior, we
perform a Bayesian coverage test for different ranges of k-values (see App. C).

4 Discussion and conclusions

We have presented and implemented a simple yet precise and effective method for Bayesian field-level
reconstruction of cosmological initial conditions. The simplicity of the method lies in the fact that the
posterior is modeled to be Gaussian with the covariance being diagonal in Fourier space and the mean
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determined by a non-linear neural network-based estimator µ̂θ(xobs). This turns out to be sufficient
to produce accurate results in the chosen range of scales and, after training, the estimator µ̂θ and
the covariance (QL

θ )
−1 allow us to produce posterior samples in a remarkably fast way. The method

does not require the simulator to be differentiable and is not reliant on approximation schemes.

Our method leaves a lot of promising future directions for investigation. First, we observe that
the trained QL

θ matrix contains a relatively small amount of scatter and can be approximately
described as a function of the wavenumber k, as expected from the physical rotational symmetry
(see App. A). This should make it possible to impose the constraint QL

θ (k) = QL
θ (k) from the start,

significantly reducing the number of trainable parameters and strengthening the interpretability of the
approach. Furthermore, since our proposed method is SBI-based, it has the ability to marginalize
over cosmological parameters or, alternatively, to infer them alongside the random phases of the ICs
field. Especially interesting enhancement in this context can be offered by sequential SBI techniques.

It is important to realize the present limitations of our approach. While we found the Gaussian
diagonal approximation for the posterior to be sufficient in the chosen range of scales k ≲ 0.4h/Mpc,
extending it to smaller scales might require a more complex modeling of the QL

θ matrix or to abandon
the Gaussian approximation altogether. Moreover, we demonstrate our method in the idealized
scenario where the observation consists of the full 3D matter overdensity field. In reality, what we
observe are galaxies— biased tracers of this field—and additionally, the observations are subject
to systematic effects such as redshift space distortions, lightcone effects, survey masks, and noise
contamination. While the presented SBI framework is well suited to incorporate all these effects, any
realistic application to observational data would require further robustness checks.

References
[1] Tully R. B., Courtois H., Hoffman Y., Pomarède D., 2014, Nature, 513, 71

[2] Tempel E., Stoica R. S., Martínez V. J., Liivamägi L. J., Castellan G., Saar E., 2014, Monthly
Notices of the Royal Astronomical Society, 438, 3465

[3] Angulo R. E., Hahn O., 2022, Living Reviews in Computational Astrophysics, 8, 1

[4] Vogelsberger M., Marinacci F., Torrey P., Puchwein E., 2020, Nature Reviews Physics, 2, 42

[5] Nusser A., Dekel A., 1992, The Astrophysical Journal, 391, 443

[6] Frisch U., Matarrese S., Mohayaee R., Sobolevski A., 2002, Nature, 417, 260

[7] Crocce M., Scoccimarro R., 2006, Physical Review D, 73, 063520

[8] Jasche J., Wandelt B. D., 2013, Monthly Notices of the Royal Astronomical Society, 432, 894

[9] Jasche J., Lavaux G., 2019, Astronomy & Astrophysics, 625, A64

[10] Cranmer K., Brehmer J., Louppe G., 2020, Proceedings of the National Academy of Sciences,
117, 30055

[11] Ho M., et al., 2024, The Open Journal of Astrophysics, 7, 001c.120559

[12] Mishra-Sharma S., Cranmer K., 2022, Physical Review D, 105, 063017

[13] Anau Montel N., Coogan A., Correa C., Karchev K., Weniger C., 2022, Monthly Notices of the
Royal Astronomical Society, 518, 2746

[14] Villaescusa-Navarro F., et al., 2021 (arXiv:2109.10360)

[15] Brehmer J., Mishra-Sharma S., Hermans J., Louppe G., Cranmer K., 2019, The Astrophysical
Journal, 886, 49

[16] Zhao X., Mao Y., Cheng C., Wandelt B. D., 2022, The Astrophysical Journal, 926, 151

[17] Cole A., Miller B. K., Witte S. J., Cai M. X., Grootes M. W., Nattino F., Weniger C., 2022,
Journal of Cosmology and Astroparticle Physics, 09, 004

5

http://dx.doi.org/10.1038/nature13674
https://ui.adsabs.harvard.edu/abs/2014Natur.513...71T
http://dx.doi.org/10.1093/mnras/stt2454
http://dx.doi.org/10.1093/mnras/stt2454
https://ui.adsabs.harvard.edu/abs/2014MNRAS.438.3465T
http://dx.doi.org/10.1007/s41115-021-00013-z
https://ui.adsabs.harvard.edu/abs/2022LRCA....8....1A
http://dx.doi.org/10.1038/s42254-019-0127-2
https://ui.adsabs.harvard.edu/abs/2020NatRP...2...42V
http://dx.doi.org/10.1086/171360
http://dx.doi.org/10.1038/417260a
http://dx.doi.org/10.1103/PhysRevD.73.063520
http://dx.doi.org/10.1093/mnras/stt449
http://dx.doi.org/10.1051/0004-6361/201833710
http://dx.doi.org/10.1073/pnas.1912789117
http://dx.doi.org/10.33232/001c.120559
http://dx.doi.org/10.1103/PhysRevD.105.063017
http://dx.doi.org/10.1093/mnras/stac3215
http://dx.doi.org/10.1093/mnras/stac3215
http://arxiv.org/abs/2109.10360
http://dx.doi.org/10.3847/1538-4357/ab4c41
http://dx.doi.org/10.3847/1538-4357/ab4c41
http://dx.doi.org/10.3847/1538-4357/ac457d
http://dx.doi.org/10.1088/1475-7516/2022/09/004


[18] Coogan A., Anau Montel N., Karchev K., Grootes M. W., Nattino F., Weniger C., 2024, Monthly
Notices of the Royal Astronomical Society, 527, 66

[19] Alvey J., Gerdes M., Weniger C., 2023, Monthly Notices of the Royal Astronomical Society,
525, 3662

[20] Lemos P., et al., 2024, Physical Review D, 109, 083536

[21] Gatti M., et al., 2024, Physical Review D, 109, 063534

[22] Tucci B., Schmidt F., 2024, Journal of Cosmology and Astroparticle Physics, 05, 063

[23] Abellán G. F., Cañas Herrera G., Martinelli M., Savchenko O., Sciotti D., Weniger C., 2024
(arXiv:2403.14750)

[24] von Wietersheim-Kramsta M., Lin K., Tessore N., Joachimi B., Loureiro A., Reischke R.,
Wright A. H., 2024 (arXiv:2404.15402)

[25] Jeffrey N., Wandelt B. D., 2020 (arXiv:2011.05991)

[26] Makinen T. L., Charnock T., Alsing J., Wandelt B. D., 2021, Journal of Cosmology and
Astroparticle Physics, 11, 049

[27] Modi C., Pandey S., Ho M., Hahn C., Blancard B. R.-S., Wandelt B., 2023
(arXiv:2309.15071)

[28] Weinberg D. H., 1992, Monthly Notices of the Royal Astronomical Society, 254, 315

[29] Gramann M., 1993, The Astrophysical Journal, 405, 449

[30] Croft R. A., Gaztanaga E., 1997, Monthly Notices of the Royal Astronomical Society, 285, 793

[31] Brenier Y., Frisch U., Hénon M., Loeper G., Matarrese S., Mohayaee R., Sobolevskiı̌ A., 2003,
Monthly Notices of the Royal Astronomical Society, 346, 501

[32] Schmittfull M., Baldauf T., Zaldarriaga M., 2017, Physical Review D, 96, 023505

[33] Feng Y., Seljak U., Zaldarriaga M., 2018, Journal of Cosmology and Astroparticle Physics,
2018, 043–043

[34] Jindal V., Liang A., Singh A., Ho S., Jamieson D., 2023 (arXiv:2303.13056)

[35] Shallue C. J., Eisenstein D. J., 2023, Monthly Notices of the Royal Astronomical Society, 520,
6256

[36] Flöss T., Meerburg P. D., 2024, Journal of Cosmology and Astroparticle Physics, 2024, 031

[37] Wang Z., Shi F., Yang X., Li Q., Liu Y., Li X., 2024, Science China Physics, Mechanics, and
Astronomy, 67, 219513

[38] Doeser L., Jamieson D., Stopyra S., Lavaux G., Leclercq F., Jasche J., 2023
(arXiv:2312.09271)

[39] Modi C., Lanusse F., Seljak U., Spergel D. N., Perreault-Levasseur L., 2021
(arXiv:2104.12864)

[40] Modi C., Li Y., Blei D., 2023, Journal of Cosmology and Astroparticle Physics, 2023, 059

[41] Legin R., Ho M., Lemos P., Perreault-Levasseur L., Ho S., Hezaveh Y., Wandelt B., 2023
(arXiv:2304.03788)

[42] Park C. F., Ono V., Mudur N., Ni Y., Cuesta-Lazaro C., 2023 (arXiv:2311.08558)

[43] Ono V., Park C. F., Mudur N., Ni Y., Cuesta-Lazaro C., Villaescusa-Navarro F., 2024, The
Astrophysical Journal, 970, 174

6

http://dx.doi.org/10.1093/mnras/stad2925
http://dx.doi.org/10.1093/mnras/stad2925
http://dx.doi.org/10.1093/mnras/stad2458
http://dx.doi.org/10.1103/PhysRevD.109.083536
http://dx.doi.org/10.1103/PhysRevD.109.063534
http://dx.doi.org/10.1088/1475-7516/2024/05/063
http://arxiv.org/abs/2403.14750
http://arxiv.org/abs/2404.15402
http://arxiv.org/abs/2011.05991
http://dx.doi.org/10.1088/1475-7516/2021/11/049
http://dx.doi.org/10.1088/1475-7516/2021/11/049
http://arxiv.org/abs/2309.15071
http://dx.doi.org/10.1093/mnras/254.2.315
http://dx.doi.org/10.1086/172377
http://dx.doi.org/10.1093/mnras/285.4.793
http://dx.doi.org/10.1046/j.1365-2966.2003.07106.x
http://dx.doi.org/10.1103/PhysRevD.96.023505
https://ui.adsabs.harvard.edu/abs/2017PhRvD..96b3505S
http://dx.doi.org/10.1088/1475-7516/2018/07/043
http://arxiv.org/abs/2303.13056
http://dx.doi.org/10.1093/mnras/stad528
http://dx.doi.org/10.1088/1475-7516/2024/02/031
https://ui.adsabs.harvard.edu/abs/2024Journal of Cosmology and Astroparticle Physics...02..031F
http://dx.doi.org/10.1007/s11433-023-2192-9
http://dx.doi.org/10.1007/s11433-023-2192-9
https://ui.adsabs.harvard.edu/abs/2024SCPMA..6719513W
http://arxiv.org/abs/2312.09271
http://arxiv.org/abs/2104.12864
http://dx.doi.org/10.1088/1475-7516/2023/03/059
http://arxiv.org/abs/2304.03788
http://arxiv.org/abs/2311.08558
http://dx.doi.org/10.3847/1538-4357/ad5957
http://dx.doi.org/10.3847/1538-4357/ad5957


[44] List F., Anau Montel N., Weniger C., 2023, in 37th Conference on Neural Information Processing
Systems. (arXiv:2310.19910)

[45] Villaescusa-Navarro F., et al., 2020, The Astrophysical Journal Supplement Series, 250, 2

[46] Aghanim N., et al., 2020, Astronomy & Astrophysics, 641, A6

[47] Springel V., 2005, Monthly Notices of the Royal Astronomical Society, 364, 1105

[48] Bracewell R. N., 1983, Journal of the Optical Society of America, 73, 1832

[49] Ronneberger O., Fischer P., Brox T., 2015, in Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015,
Proceedings, Part III 18. pp 234–241, doi:10.48550/arXiv.1505.04597

[50] Jamieson D., Li Y., de Oliveira R. A., Villaescusa-Navarro F., Ho S., Spergel D. N., 2023, The
Astrophysical Journal, 952, 145

[51] Yeomans J. M., 1992, Statistical mechanics of phase transitions. Clarendon Press,
doi:10.1093/oso/9780198517290.001.0001

[52] Blei D. M., Kucukelbir A., McAuliffe J. D., 2017, Journal of the American Statistical Associa-
tion, 112, 859

[53] Nix D., Weigend A., 1994, in Tesauro G., Touretzky D., Leen T., eds, Vol. 7, Advances
in Neural Information Processing Systems. MIT Press, https://proceedings.neurips.cc/
paper_files/paper/1994/file/061412e4a03c02f9902576ec55ebbe77-Paper.pdf

[54] Falcon W., The PyTorch Lightning team 2019, doi:10.5281/zenodo.3828935, https://github.
com/Lightning-AI/lightning

[55] Miller B. K., Cole A., Forré P., Louppe G., Weniger C., 2021, in 35th Conference on Neural
Information Processing Systems. (arXiv:2107.01214)

[56] Miller B. K., Cole A., Weniger C., Nattino F., Ku O., Grootes M. W., 2022, Journal of Open
Source Software, 7, 4205

[57] Villaescusa-Navarro F., 2018, Astrophysics Source Code Library, record ascl:1811.008

7

http://arxiv.org/abs/2310.19910
http://dx.doi.org/10.3847/1538-4365/ab9d82
http://dx.doi.org/10.1051/0004-6361/201833910
http://dx.doi.org/10.1111/j.1365-2966.2005.09655.x
http://dx.doi.org/10.1364/JOSA.73.001832
http://dx.doi.org/10.48550/arXiv.1505.04597
http://dx.doi.org/10.3847/1538-4357/acdb6c
http://dx.doi.org/10.3847/1538-4357/acdb6c
http://dx.doi.org/10.1093/oso/9780198517290.001.0001
http://dx.doi.org/10.1080/01621459.2017.1285773
http://dx.doi.org/10.1080/01621459.2017.1285773
https://proceedings.neurips.cc/paper_files/paper/1994/file/061412e4a03c02f9902576ec55ebbe77-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1994/file/061412e4a03c02f9902576ec55ebbe77-Paper.pdf
http://dx.doi.org/10.5281/zenodo.3828935
https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning
http://arxiv.org/abs/2107.01214
http://dx.doi.org/10.21105/joss.04205
http://dx.doi.org/10.21105/joss.04205
https://pylians3.readthedocs.io


0

200

400

600

800

1000

[M
p

c/
h

]

True initial MAP

10−2 10−1

k [h/Mpc]

0

20

40

60

80

100

120

140

160

D
θ
(k

)

Qθ diagonal part

0 200 400 600 800 1000

[Mpc/h]

Standard deviation
−3

−2

−1

0

1

2

3
×10−2

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3
×10−3

Figure 2: Top row: slices of the initial density field ztruth of the target simulation and the correspond-
ing MAP estimate µ̂θ(xobs). Bottom row left: diagonal values Dθ of the trained posterior precision
matrix Qθ = QP +QL

θ as a function of the wavenumber k. Bottom row right: the standard deviation
computed from 1000 samples.

A Appendix: MAP estimation and standard deviation

In Fig. 2 we plot the MAP estimate µ̂θ(xobs), the standard deviation computed from 1000 samples,
and the diagonal values Dθ of the trained posterior precision matrix Qθ = QP +QL

θ as a function
of the wavenumber k. The latter quantity allows estimating the precision in the reconstruction at
different scales. As expected, we find that Dθ is larger for the smallest k values (where evolution
is linear and easier to reconstruct), and then it sharply drops to a plateau that extends up to kNyq.
In addition, we see that Dθ shows little variation with the direction of k and can be approximately
described as a function of k. Hence, knowledge of this function Dθ(k) allows to transform any IC
point estimator into a fast sampler. Because of this property, the obtained samples for a given xobs

have the form of a MAP estimate with a Gaussian random field added on top of it, which causes the
standard deviation of samples to be nearly constant (as can be seen in Fig. 2).

In this work, we found that a very simple Fourier-diagonal x-independent precision matrix is enough
to get consistent posterior samples. However, it might be possible to improve our results by also
modeling the Qθ matrix as x-dependent, just as for the µ̂θ estimator. For other scenarios, one
could also consider alternative structures of the Qθ matrix. As an example, we experimented with
the convolutional matrix QL

θ = C†
θD

L
θ Cθ, where DL

θ is diagonal and Cθ denotes the convolution
operation of a certain kernel size, achieving altogether similar reconstruction results. Instead of
convolutions, one can also consider wavelets, scattering transform, etc. In those cases, the prior
and the likelihood precision matrices are diagonal in different bases, so sampling is no longer as
straightforward and fast, and one needs to resort to techniques such as data augmentation approaches
for sampling (see Appendix B of [44]).
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B Appendix: Summary statistics

Given a (dimensionless) 3D matter overdensity field δ(x) = ρ(x)/ρ̄− 1 at some fixed redshift, its
power spectrum P (k) is defined as follows

⟨δ̃(k)δ̃∗(k′)⟩ = (2π)3 P (k) δ(3)(k − k′), (6)

where δ̃(k) = F{δ(x)} denotes the Fourier transform of the field, the brackets ⟨...⟩ indicate the
average over many realizations, and the Dirac delta function follows from translational invariance.
The power spectrum is the Fourier transform of the matter field two-point correlation function, and
thus describes the density fluctuations of the Universe as a function of scale k.

Transfer function and cross-correlation between the two fields δa(x) and δb(x) are then defined as:

Tab(k) =

√
Pa(k)

Pb(k)
; Cab(k) =

Pab(k)√
Pa(k)× Pb(k)

, (7)

where the cross-power spectrum Pab(k) is defined analagously to (6) from ⟨δ̃a(k)δ̃∗b (k′)⟩. So, if the
two fields are identical, Tab(k) and Cab(k) are equal to 1 for all k, and the deviation of these quantities
from 1 provides a measure of discrepancy in terms of their amplitudes and phases, respectively,
between the two fields at different scales k.

C Appendix: Bayesian coverage test

We perform a coverage test to evaluate whether the IC samples generated by our method are statis-
tically consistent with the true posterior distribution, individually for different k-bins. Specifically,
we compute the difference between the Fourier transformed true ICs, z̃truth := F{ztruth}, and
the means of the Fourier transformed posterior samples, ¯̃zsamples := E[z̃samples], then normal-
ize this difference by the standard deviation of the Fourier transforms of the posterior samples,

σ̃samples :=
√
E[(z̃samples)2]− (E[z̃samples])

2, with zsamples ∼ p(z|x) as modeled in Eq. (3).
Mathematically, this can be expressed via the test statistic

∆(k) :=
z̃truth(k)− ¯̃zsamples(k)

σ̃samples(k)
. (8)

Since our likelihood precision matrix is highly rotationally symmetric (as expected from the isotropy
of the Universe), we focus on the radial dimension in this analysis and consider the consistency of
our posterior within different spherical shells in k-space.

In Fig. 3, we present histograms of these normalized differences ∆(k) across various k-ranges.
The fact that all histograms closely follow the univariate normal distribution with unit variance and
zero mean indicates that the posterior samples accurately capture the first two moments of the true
posterior distribution. Note that this is a more challenging test than the one shown in [41, Fig. 5],
where the coverage is assessed for all modes at once, since we demonstrate the statistical consistency
of our posterior samples within each individual k-bin.
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Figure 3: Coverage test. We plot the histograms of the quantity ∆(k) defined in (8) for four different
spherical shells in k-space. The red lines represent the univariate normal distribution N (0, 1). The
fact that all the histograms closely follow the N (0, 1) distribution validates our posterior coverage
test for different ranges of k.
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