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Abstract

Recent advances in frontal ring-opening metathesis polymerization (FROMP) offer
a sustainable energy-efficient alternative for the rapid curing of thermoset polymers.
Predicting the dynamics and spontaneous patterning of FROMP require numeri-
cally solving reaction-diffusion PDEs but it is computationally expensive. Neural
operators serve as surrogate PDE solvers but face challenges in long temporal
rollouts. Herein, we augment Fourier neural operators with large kernel attention
to better learn local instabilities in FROMP. Inspired by conditional functional flow
matching, we proposed a correction scheme to refine neural PDE predictions to
extend rollout accuracies. Our work paves a step forward in predicting long-term
dynamics of FROMP and other complex time-dependent problems.

1 Introduction

1.1 Frontal polymerization

Thermoset polymers are widely used in many industries, such as aerospace, transport, and energy
sectors, due to their strong specific mechanical properties and thermo-chemical stability. Existing
manufacturing of thermosets, via bulk curing, is energy-inefficient and unsustainable as it requires
long curing duration at high temperatures in large autoclaves. Recent advancements in frontal ring-
opening metathesis polymerization (FROMP) have enabled the rapid and stable curing of thermosets
[18, 20]. In FROMP, the heat of polymerization released by the ring-opening metathesis reactions
can propagate further FROMP. Since only an initial thermal trigger is required, FROMP can be an
energy-efficient and sustainable alternative for thermoset manufacturing.

At the continuum, FROMP can be modeled as coupled thermo-chemical PDEs (see Eq. (1)) where
T and α are the temperatures (in K) and degrees of cure (dimensionless) respectively. The reaction
term provides the heat source in the exothermic reaction and the heat diffusion term describes the
heat transport ahead of the advancing polymerization front. Unstable frontal polymerization (FP)
occurs commonly for cyclooctadiene (COD), particularly when the initial conditions meet certain
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thermal criteria, for example when the T0 is low such that the reaction is too slow to initiate. Thermal
instabilities in unstable FP lead to spontaneous patterning, and can result in materials with clearly
defined regions of varying stiffness (by >2 orders of magnitude) [14, 19]. To predict these patterns,
the FP PDE needs to be solved over longer timescales to extract the spatial variations in temperatures,
particularly the Tmax. However, numerical simulations are computationally expensive, especially for
2D and 3D problems. For instance, solving a single FP PDE on a 2D domain can take 6 hours with 8
CPUs. A sufficiently small dt is needed for convergence, particularly for our problem where stiff
reaction kinetics is present.

1.2 Neural operators and the rollout problem for time-dependent PDEs

Neural PDE models aim to learn a data-driven surrogate PDE solver to replace numerical solvers.
Notably, neural operators learn the mapping between function spaces [8]. Some examples include
the Fourier [9], Laplace [2], convolutional [17], and spectral neural operators [13, 3], and the use
of transformers [10] and diffusion models [7]. For time-dependent problems, neural PDEs learn
to predict solutions for each time step autoregressively [1] but they face the problem of error-
accumulation over long temporal rollouts. In an autoregressive setting, predicted next-step solution
is fed back into the neural operator to predict subsequent steps successively. Without convergence
guarantees as in numerical solvers, the errors accumulate over multiple time steps. Some efforts
have been made to improve long term rollout stabilities, such as rolling out longer time steps during
training [1] and iteratively denoising the prediction over some refinement steps (PDE-refiner) [12].

Our reaction-diffusion problem necessitates an accurate neural PDE solver over long rollouts par-
ticularly because thermal instabilities are very sensitive to slight spatiotemporal changes in local
temperatures and degrees of cure, especially at the propagation front. Herein, we adopt the Fourier
neural operator (FNO) and augment it with large kernel attention layers and a flow matching-inspired
correction step to extend the neural operator’s temporal rollout for FROMP (Fig. 1).

2 Methods

Figure 1: Model architecture and the ODE-flow correction scheme during inference

2.1 FNO with large kernel attention

Large kernel attention (LKA) was first proposed in visual attention networks [4] for image seg-
mentation tasks and it was also used in a neural PDE setting for multiscale problems [22]. While
FNO can capture long range dynamics, they fall short in predicting local instabilities over longer
rollouts since higher frequency modes are truncated away in the Fourier layers. Thus, we appended
an LKA layer after each Fourier block. LKA includes depth-wise convolution, depth-wise dilation
convolution and a 1× 1 kernel for channel convolution. An element-wise product is applied between
the attention value map and the output from the Fourier block (Fig. 1). To stack alternate FNO and
LKA blocks, layer normalization is included after every LKA block. In an FNOLKA model, low
frequency features are generally learnt by the Fourier layers and high frequency and local features are
captured by the LKA layers. More implementation details are in Appendix A.2.
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2.2 Correcting predictions with ODE-flows

Flow matching [11, 21] is a useful generative modeling framework and it has been applied to materials
design [15], protein generation [5], and accelerating molecular dynamics simulations [16]. In flow
matching, samples from a prior distribution r0 ∼ p0(r) are transported to another distribution
r1 ∼ p1(r) where the underlying model parameterizes the vector field. We propose a flow matching
correction scheme to extend the long term rollout accuracies of spatiotemporal predictions. Herein, a
corrector model is trained to refine predictions from a base neural PDE model. In our setting, the
marginal vector field model vτ (r; θ) aims to learn the vector field from r0 (random noise) to r1 (true
PDE residual) conditioned on the approximate prediction Upred fully rolled out from a base model
(i.e. another neural operator). Thus, the learned vector fields are different for different Upred. By
conditioning on a given Upred, the transport converges to a single point of the true residual, rather
than a distribution of residuals.

We adapted the functional flow matching (FFM) scheme [6] and use a neural operator as the underlying
model. As an example, we use the FNOLKA architecture and adapted it to take in additional
input channels: initial prediction Upred, the current residual rτ , the current flow time τ (temporal
embedding), and spatial embedding x. Our FFM model is trained to directly predict the PDE residual
given the Upred from a neural operator. To construct a dataset, we rollout a trained FNOLKA→20

model to obtain Upred over 300 temporal steps for the 1D problem. The marginal vector field is
defined as vτ (r; θ) =

r̂1(r,τ ;θ)−r
1−τ . During training, τ ∼ U(0, 1) and the FFM model aims to predict

the r1 residual directly, and the loss function is the mean squared error between the true and predicted
residuals. During inference (1), random noise is first sampled r0 ∼ N (0, σ2) and the trained
FFM corrector model (Corrector(Upred, rτ , x, τ)) predicts the residual r̂1(x, t) for the entire rollout
trajectory given the Upred(x, t). The predicted residual is updated iteratively over Nflow = 10 steps by
interpolating with vτ (r; θ). The final corrected prediction is simply given by Ucorrected = Upred+ r1.

Algorithm 1 Correction algorithm during inference
input Initial prediction Upred(x, t) from a neural operator
output Corrected prediction Ucorrected(x, t)

1: r0 ∼ N (0, σ2)
2: for i← 0 to Nflow − 1 do
3: τ ← i/Nflow
4: r̃1 ← Corrector(Upred, rτ , x, τ)
5: rτ ′ ← rτ + (r̃1 − rτ )/(1− τ)Nflow
6: end for
7: Ucorrected ← Upred + r1

3 Results

3.1 Evaluating models and the correction scheme over long rollouts for the 1D problem

We trained both the FNO and FNOLKA models with 10-step or 20-step unrolling to predict the
evolution of T (x, t) to model heat transport in frontal polymerization. Given the previous 10 steps of
PDE solution, the model predicts the next-step Tpred before it is fed back with the previous 9 steps
to predict subsequent steps autoregressively. We find that training with a relative Sobolev H1 norm
improves performance, particularly for our problem where both T and α have sharp gradients at the
propagation fronts. The loss is accumulated for the next 10 or 20 unrolled steps during training. To
compare long term rollout accuracies, we rollout the prediction trajectory up to 300 steps forward
using only the first 10 steps of Ttrue as the initial input. For the corrector model, trained to refine
FNOLKA→20, we take the full prediction rollout Tpred as input for the corrector to refine over
10 Nflow steps. To avoid distribution shifts, instead of predicting a correction at every time step
and feeding it back to a trained neural operator successively, the corrector herein directly refines
Tpred(x, t) up to 300 time steps at once. Fig. 2 shows an example of prediction rollouts from an FNO,
FNOLKA, and an FNOLKA with a corrector model (more examples are in Appendix A.3).

To compare the long-term rollout accuracies of the models, we rollout the FNO and FNOLKA (with
and without correction) models over 300 steps ahead and evaluate the relative L2 losses at every step.
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Figure 2: Prediction rollout over 200 steps on a test set sample by FNO, FNOLKA, and FNOLKA
with flow matching correction.

Figure 3: Prediction errors over 200 steps for the same test set sample by FNO, FNOLKA, and
FNOLKA with flow matching correction.

The mean performances and their max-min ranges for all 308 test samples are plotted for each model
and scheme (Fig. 4). We find that while adding LKA layers help reduce the mean rollout errors, the
rate of error accumulation is faster for the FNOLKA→10 model trained to predict the next 10 steps as
it fails to generalize to the longer-term dynamics. Forcing the model to predict more steps, i.e. next
20 steps, during training helps to stabilize the rollout errors for both FNO→20 and FNOLKA→20.
The combination of both LKA layers and longer unrolled training works best in achieving long rollout
stabilities for the 1D problem.

Figure 4: Mean and ranges of relative L2 errors in predictions over long rollouts for different models

For the flow matching-based corrector model, the predictions from FNOLKA→20 are effectively re-
fined, extending long-term rollout accuracies. Errors, particularly due to instabilities in the prediction
rollout, are corrected by the FFM model at each time step. We find that correction of Nflow = 2 steps
is sufficient for refinement, thus our approach is efficient during inference. While the difference in
mean relative L2 is small between the FNOLKA→20 models without and with correction for the first
20 rollout steps, the difference is apparent over longer temporal rollout. Specifically at the 300th step,
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there is an improvement in mean L2 by 62.6%. Therefore, including a FFM correction step is effective
in refining long-term rollout trajectories, specifically to predict spatiotemporal dynamics of frontal
polymerization in our current setting. More work is ongoing to evaluate our flow matching correction
scheme on other problems over long temporal rollouts, including other complex time-dependent
PDEs and climate forecasting.

3.2 Extracting morphogenic patterns from unrolled trajectories

Extracted Tmax(x, y) values can predict morphogenic patterns of spatially varying mechanical
properties in pCOD thermosets. To predict Tmax of the entire domain, we need to rollout predictions
from the neural operator over many time steps. For this task, similarly, we trained an FNOLKA
model on 2D numerical solutions that were generated by varying initial and boundary conditions
(Appendix A.1).

Figure 5: Predicted Tmax extracted from 2D FNOLKA rollouts on test set examples

Generally, the predicted Tmax(x, y) match the true values well and the trained FNOLKA→20 can
predict the spatiotemporal dynamics of FROMP for both stable and unstable cases. Nevertheless,
instabilities that result in local complex patterns are still challenging for the model to learn. For future
work, we will similarly train a FFM corrector model to refine these predictions.

4 Conclusion

By refining spatiotemporal predictions with a flow matching-based corrector model, augmenting
FNO with large kernel attention layers and adopting longer temporal rollout during training, we
demonstrated that longer rollout accuracies can be achieved. In this work, we proposed a correction
scheme, inspired by conditional functional flow matching, to refine predictions from a neural operator.
Our corrector model shows promise in refining spatiotemporal predictions and have reduced errors by
62.6% (at the 300th step). Our work presents a step forward in predicting spatiotemporal dynamics
and spontaneous patterning in frontal polymerization, and it can be extended to other complex,
time-dependent problems, such as climate forecasting, where the underlying dynamics and complete
governing PDEs remain unknown.
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[17] Raonić, B., Molinaro, R., De Ryck, T., Rohner, T., Bartolucci, F., Alaifari, R., Mishra, S., and de Bézenac,
E. Convolutional Neural Operators for robust and accurate learning of PDEs, May 2023. URL http:
//arxiv.org/abs/2302.01178. arXiv:2302.01178 [cs].

[18] Robertson, I. D., Yourdkhani, M., Centellas, P. J., Aw, J. E., Ivanoff, D. G., Goli, E., Lloyd, E. M., Dean,
L. M., Sottos, N. R., Geubelle, P. H., Moore, J. S., and White, S. R. Rapid energy-efficient manufacturing
of polymers and composites via frontal polymerization. Nature, 557(7704):223–227, May 2018. doi:
10.1038/s41586-018-0054-x.

[19] Sottos, N., Paul, J., Gao, Y., Go, Y. K., Koett, L. R., Sharma, A., Chen, M., Lessard, J., Topkaya, T., Leal, C.,
Moore, J., and Geubelle, P. Molecularly Architected Polymers Enabled by Frontal Polymerization, January
2024. URL https://www.researchsquare.com/article/rs-3777388/v1. ISSN: 2693-5015.

6

http://arxiv.org/abs/2202.03376
http://arxiv.org/abs/2303.10528
https://arxiv.org/abs/2312.05225
https://arxiv.org/abs/2202.09741
http://arxiv.org/abs/2305.17209
http://arxiv.org/abs/2305.17209
http://arxiv.org/abs/2108.08481
http://arxiv.org/abs/2108.08481
http://arxiv.org/abs/2205.13671
https://arxiv.org/abs/2210.02747
http://arxiv.org/abs/2308.05732
http://arxiv.org/abs/2312.06980
http://arxiv.org/abs/2312.06980
https://doi.org/10.1021/acscentsci.1c00110
http://arxiv.org/abs/2406.04713
http://arxiv.org/abs/2302.01178
http://arxiv.org/abs/2302.01178
https://www.researchsquare.com/article/rs-3777388/v1


[20] Suslick, B. A., Hemmer, J., Groce, B. R., Stawiasz, K. J., Geubelle, P. H., Malucelli, G., Mariani, A.,
Moore, J. S., Pojman, J. A., and Sottos, N. R. Frontal polymerizations: From chemical perspectives to
macroscopic properties and applications. Chemical Reviews, 123(6):3237–3298, 2023. doi: 10.1021/acs.
chemrev.2c00686. PMID: 36827528.

[21] Tong, A., Fatras, K., Malkin, N., Huguet, G., Zhang, Y., Rector-Brooks, J., Wolf, G., and Bengio, Y.
Improving and generalizing flow-based generative models with minibatch optimal transport, 2024. URL
https://arxiv.org/abs/2302.00482.

[22] Zhao, X., Sun, Y., Zhang, T., and Xu, B. Local Convolution Enhanced Global Fourier Neural Operator For
Multiscale Dynamic Spaces Prediction, November 2023. URL http://arxiv.org/abs/2311.12902.
arXiv:2311.12902 [cs, math].

7

https://arxiv.org/abs/2302.00482
http://arxiv.org/abs/2311.12902


A Appendix

A.1 Data generation

The frontal polymerization in cyclooctadiene (COD) can be described by the following coupled
thermo-chemical reaction-diffusion equations in terms of temperature T and degree of cure α:

ρCp
∂T

∂t
= κ∇2T + ρHr

∂α

∂t
(1a)

∂α

∂t
= A exp

(
− E

RT

)
αm(1− α)n (1b)

The cure kinetics parameters, A,E,m and m in Eq. (1b) were extracted from non-linear fitting of
differential scanning calorimetry (DSC) scans. The material properties and cure kinetics parameters
for COD are listed in Table 1.

Table 1: Cure kinetics and material properties of COD.

κ
(

W
mK

)
ρ
(

kg
m3

)
Cp

(
J

kgK

)
A
(
1
s

)
0.133 882 1838.5 2.13× 1019

E
(

kJ
mol

)
n m Hr

(
J
g

)
132 2.514 0.817 220.0

We utilized the finite element method and the open-source package, FEniCS, to solve Eq. (1) to
generate numerical solutions for model training. For 1D problems, a 1D domain with length of 10
mm was simulated, where the mesh element size and time step are ∆x = 10 µm and ∆t = 1 ms
respectively. For boundary conditions, a thermal trigger Ttrig is applied on the left end of the resin
(over x = 0) to start the reaction and the other end is adiabatic. Various initial temperature and
degrees of cure in a Sobol sequence with scrambling in space of T0 ∈ [10, 40] oC, α0 ∈ [0.01, 0.3]
are used to generate a diverse dataset.

For the 2D problem, a rectangular domain with size of 20 × 5 mm2 was simulated, and the dis-
cretizations were set as ∆x = 10 µm, ∆y = 20 µm, and ∆t = 1 ms. On a fraction of the left-end
(x = 0 and 0 ≤ y ≤ d), a thermal trigger Ttrig is applied to start the reaction. A heat convection
boundary condition (with heat transfer coefficient hL) is imposed on the top and bottom of the
domain. The other boundaries are adiabatic. To generate a diverse dataset, process conditions of
initial temperatures, initial degrees of cure, heat loss coefficient, and the trigger width are generated
in Sobol sequence with scramble in space of T0 ∈ [10, 40] oC, α0 ∈ [0.01, 0.3], hL ∈ [0, 120] W

K·m2

and d ∈ [1.5, 5] mm respectively.

A.2 Model training

For all models for the 1D problems, we employ FNOs with 16 Fourier modes and a channel width
of 64, and incorporating spatial embedding as an additional input. GeLU activation functions were
used and instance normalizations are included between spectral convolution layers. For LKA-based
models, the LKA channel width is 64. For all models, a total of 4 Fourier or Fourier-LKA blocks
are used. The dataset is divided into an 80-20 train-test split, with each input-output pair comprising
10 previous steps and 20 subsequent steps, with each step’s solution having a spatial dimension of
200. In total, our dataset consists of 29,481 training samples and 7,383 test samples, and we utilize
a batch size of 64. We train all models using an AdamW optimizer with a learning rate of 6e−5,
weight decay of 1e−4, and a cosine annealing learning rate scheduler over 500 epochs. During each
batch, the model performs either a 10-step or 20-step forward pass, and the relative H1 loss over the
subsequent 10 or 20 steps is accumulated before backpropagation.

For the 2D problem, we only trained an FNOLKA model but with similar hyperparameters. A batch
size of 16 was used and we have a 85-15 train-test split (1178 and 208 solutions for train and test
respectively). The model takes in 10 previous steps and the spatial (x, y) embeddings to predict the
next step’s solution. In each step, the prediction is appended to the previous 9 steps for the model to
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predict the subsequent step. During training, the model predicts the next 20 steps and a relative H1

loss was also used.

For the corrector model, we train either an FNO or FNOLKA model to predict the residual r1 given
the flow time τ ∼ U(0, 1), the current interpolated rτ , spatial embedding x and conditioned on the
Tpred in each batch. For both architectures, we use a channel width of 64 and 16 Fourier modes.
We use an AdamW optimizer, a cosine annealing learning rate scheduler, a batch size of 128 and a
learning rate of 1e−3 to train the models over 1000 epochs. To generate training data, we used the
trained FNOLKA→20 model to predict the full temporal rollout up to 500 steps.

A.3 Supplementary figures

Here, we show more unrolled predictions by different models and schemes for the 1D time-dependent
problem.

Figure 6: Prediction rollouts over 200 steps for test-set example 2 by different models

Figure 7: Prediction errors over 200 steps for test-set example 2 by different models

Figure 8: Prediction rollouts over 200 steps for test-set example 3 by different models
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Figure 9: Prediction errors over 200 steps for test-set example 3 by different models

Figure 10: Prediction rollouts over 200 steps for test-set example 4 by different models

Figure 11: Prediction errors over 200 steps for test-set example 4 by different models

Figure 12: Prediction rollouts over 200 steps for test-set example 5 by different models

Figure 13: Prediction errors over 200 steps for test-set example 5 by different models
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