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Abstract

Scientific problem-solving involves synthesizing information while applying ex-
pert knowledge. We introduce CURIE, a scientific long-Context Understanding,
Reasoning, and Information Extraction benchmark to measure the potential of
Large Language Models (LLMs) in assisting scientists in realistic experimental and
theoretical workflows. This benchmark introduces ten challenging tasks curated by
experts in six disciplines: materials science, condensed matter physics, quantum
computing, geospatial analysis, biodiversity, and proteins. We evaluate a range
of closed and open LLMs on tasks in CURIE which requires domain expertise,
comprehension of long in-context information, and multi-step reasoning. While
Claude-3 shows consistent high comprehension across domains, the popular GPT-
4o and command-R+ fail dramatically on protein sequencing tasks. Overall there
is much room for improvement for all models. We hope this work can guide the
future development of LLMs in sciences.

1 Introduction

The advancement of science relies on the ability to build upon the collective knowledge accumulated
in scientific literature, requiring not only deep domain expertise and reasoning skills, but also the
capacity to apply that knowledge within the context of a given problem. Recent benchmarks (e.g.,
MMLU [1]) have demonstrated proficiency in varied subjects. However, as LLMs transition from
merely surfacing knowledge to actively solving problems, the capacity to understand and reason
about long-form, context-rich information is paramount. Recent advances in model architecture have
seen dramatic increases in context windows from 8k to 32k, 128k, and 1M+ tokens, reflecting a
growing recognition of this need.

This has led to development of benchmarks testing capabilities of LLMs on long document un-
derstanding e.g. ZeroScrolls [2], Bamboo [3] on a variety of tasks including summarization [4],
retrieval [5], multi-hop QA [6, 7], sorting sequences [8] and others [9]. However, current LLM
benchmarks on science e.g., PubmedQA [10] or GPQA [11], focus primarily on short sequence
questions, with answers often in multiple-choice form. To address this gap, we introduce the scientific
long-Context Understanding, Reasoning, and Information Extraction benchmark (CURIE).

The CURIE benchmark encompasses 434 examples with human annotated ground truth across 10
tasks curated from 273 research papers in six diverse scientific disciplines (Fig. 1): materials science,
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Benchmark Source Diverse Long
Domain Tasks Context

ZeroSCROLLS various 3 3
Bamboo various 3 3
Ada-Leval lit., code QA,sort 3
Ruler synthetic 3 3
BLURB biomed 3 7
QASA ML lit. QA 3
Qasper NLP lit. QA 3
GPQA science MCQ 7

Curie sci. lit. 3 3

(a) Comparison with existing
datasets. (b) Distribution of tasks.

Avg. word 
count

(c) Input word lengths per domain.

Figure 1: CURIE dataset. (a) CURIE introduces diverse long context tasks on scientific literature
(lit.). (b) Distribution of research documents in each discipline: 434 examples were curated from 273
research papers. (c) Length of input context in each domain (log scale).

theoretical condensed matter physics, quantum computing, geospatial analysis, biodiversity, and
proteins – covering experimental and theoretical aspects of scientific research. These tasks not
only require deep domain understanding but also challenge models on their capacity to comprehend
full-length scientific papers for information extraction, concept tracking, aggregation, multimodal
understanding, and cross-domain expertise (e.g., generating code for theoretical calculations).

We use the CURIE testbed to perform extensive evaluation and analysis of 8 state-of-the-art open
and closed weight models (see Fig. 3) supporting context windows of 32k tokens or more. Among
closed models, Claude-3 Opus performs consistently well across all disciplines, while Command-
R+ does better amongst the open models. Surprisingly, while GPT-4o does well on most tasks, it
fares dramatically poorly on the protein sequencing task, failing to stop generation and repeating
subsequences to yield a very low score. This repetition in subsequence is not unique to GPT-4o,
indicating that such tasks and data are not well represented in standard language datasets. Our
materials tasks, which require models to exhaustively retrieve and aggregate information spread
through the document, also prove to be exceptionally challenging for all models.

While the CURIE benchmark is aimed at facilitating evaluation of scientific reasoning over long
contexts, we hope the rich human annotations can serve the community in advancing planning,
instruction following, and evaluation of generated texts of mixed and heterogeneous formats including
dates, locations, numerical values, units, descriptors, domain specific terms, equations and code.

2 CURIE dataset and tasks

The CURIE benchmark consists of a series of tasks that measure how well LLMs can assist in
diverse scientific workflows, from synthesis of information towards final execution anchored on
single scientific research documents. All tasks are (1) realistic and require scientific expertise, (2)
require comprehension of substantial context, e.g., a research paper, and (3) can be evaluated by
experts to highlight potential/limitations of models. We provide a brief motivation for each domain
and the description of the tasks below with some examples in Fig. 2. Details of curation guidelines
are in Appendix C.

Density Functional Theory Task (DFT). Density Functional Theory (DFT) is a robust framework
for quantum mechanical modeling of materials, enabling first-principles predictions and validation
of experimental findings. We define 3 tasks that measure the ability of LLMs to carry out DFT
calculations: (1) extracting input material structures (DFT-S); (2) identifying DFT parameters
associated with computation steps (DFT-P); and (3) translating computational steps essential for
reproducing key results from the paper into functional code (DFT-C). Executing all these tasks
successfully requires the LLM to comprehend domain-specific concepts, extract information dispersed
across different sections of the publication, and generate scientific code. Our benchmark contains 75
papers with expert annotations.

Material Property Value Extraction (MPV). The published literature is an untapped resource with
experimentally reported materials, properties, processing conditions and structure. Human curation is
time intensive and expensive, and rule-based automation is limited in scope [12]. However, prompt-
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Density Functional Theory 
(DFT)

Hartree-Fock Derivation
(HFD)

For the outlined steps, fill in 
placeholders and derive a HF 
Hamiltonian at each step  

DFT-S: Identify input structures.

DFT-P: Identify DFT calculations 
and params. 

DFT-C: Write python code for DFT 
calculations.

Quantum Error Correction 
Codes (QECC)

Fill in a YAML file with the error 
correction code’s properties.

Geospatial analysis
(GEO)

Extract information for all 
datasets used in the paper 
(source, variables, time/spatial 
ranges)

Figure 2: Examples of tasks in the CURIE benchmark. The DFT, HFD, QECC, and GEO tasks
require the LLM to perform tasks on scientific papers (top blocks), as described in the prompt snippets
(in orange), to extract, calculate, or aggregate information. Expected output (ground truth) snippets
are shown in the blue blocks. (Only snippets of prompts /outputs are shown for illustrative purposes.)

based LLM extraction has shown promising early results [13]. Our benchmark contains 17 scientific
papers for exhaustively extracting material properties. The main task is to identify all instances of
material properties mentioned in the text, including material name, descriptor and particular property,
along with the passage or table where the property is described.

Hartree-Fock Tasks (HFD, HFE). Hartree-Fock mean-field theory is a framework for simplifying
mathematical descriptions of interacting quantum systems. We construct two tasks: derivation (HFD)
and extraction (HFE). HFD measures the ability of LLM to derive the Hartree-Fock mean-field
Hamiltonian for a quantum many-body system, motivated by prior work [14]. Deriving the correct
answer requires 13-19 reasoning steps, making it extremely challenging without expert oversight.
The second simpler task, HFE, evaluates an LLM’s ability to identify and aggregate key equations
from a research paper to extract the most general mean-field Hamiltonian. We have 53 papers (38
HFE, 15 HFD) with expert annotations including prompts for detailed reasoning.

Error Correction Zoo Task (QECC). The Error Correction Zoo [15] (EC Zoo) is an open source
effort to build a Wikipedia-like repository collecting and categorizing error correcting codes from the
literature. Creating an entry in the EC Zoo is a knowledge intensive process and requires listing the
properties of a given EC code, which often include bespoke technical details, along with any relations
to other codes in literature. We construct a benchmark of 65 papers that tests the ability of LLMs to
curate the EC Zoo entries by taking a given paper and asking it to produce YAML file summaries.

Geospatial Dataset Extraction (GEO). Geospatial analysts integrate various datasets to answer
complex questions. For example, a study of time-series snowmelt detection over Antarctica may
combine satellite imagery, radar, weather station temperature data, topography information, etc. [16].
In this task, given a research paper, the LLM is required to identify all utilized datasets, including
source websites, variable names, descriptions, time ranges and spatial ranges that may be scattered
across the paper. Our benchmark includes 19 papers ranging across earth observation, economics,
epidemiology and public health, along with detailed ground truth annotations necessary to reproduce
each study.

Biodiversity Georeferencing Task (BIOGR). Critical geospatial information is often conveyed
exclusively through maps. In this task, we investigate the core capability of georeferencing, where,
given an image of a map and its associated caption, the task is to determine the latitude/longitude
bounding box encompassing the region displayed. A domain expert would often use a multi-step
process and specialized mapping tools (e.g., QGIS, ArcGIS), zooming in and switching between
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Figure 3: (a) Avg. performance of long-context LLMs across 10 tasks from six scientific domains in
CURIE. (b) Per task normalized scores of various LLMs on CURIE (The 3 DFT tasks are averaged).

different imagery layers, etc. For this multimodal task, we assembled a dataset of 24 map images and
captions from papers in ecology, of varying difficulty with ground truth labels for bounding boxes.

Protein Sequence Reconstruction (PDB). This final task tests the ability of an LLM to infer
functions based on the structure of the protein. Specifically, given the 3D structural coordinates
capturing the precise arrangement of atoms, we ask the LLM to reconstruct the protein’s amino acid
sequence. The data, 21 structures, curated from the Protein Data Bank (PDB) is stripped of any
explicit functional annotation forces the LLM to rely on its understanding of structural patterns to
deduce the underlying amino acid sequence.

3 Evaluation Setup and Results
Experimental Setup. We evaluate the CURIE benchmark tasks on several state-of-the-art LLMs
supporting long-context windows, including five closed weight LLMs such as GPT-4o [17], Claude-3
Opus [18], Gemini 1.5 Pro [19], and three open-weight LLMs, Mixtral [20], Command-R-+ [21], and
LongLLaMa-3B [22]. We follow a standard zeroshot prompt template across tasks, which describes
the task, output format, and the full text of the paper. In the case of DFT, MPV, and GEO tasks, we
provide the output format with a hand-crafted excerpt to clarify expectation of formats for each field.
The BIOGR task is multimodal, and for this we provide just the image and caption as input, rather
than the full paper. Performance is reported for each model on each task using a single run, except
for BIOGR which is averaged over three runs due to observed variability.

Evaluation metrics. For the tasks requiring long text generation (8 of 10 tasks), we use ROUGE-
L [23] and BERTScore F1 [24] metrics. BIOGR uses Intersection-over-Union (IoU), which when
computed using latitude and longitude accounts for location and size while being scale-invariant. For
the PDB task, we compare reconstructed sequences to ground truth [25], using pairwise sequence
alignment scored using the number of identities. The raw scores are normalized by the alignment
length to account for potential length discrepancies, yielding the identity ratio (IDr) metric. Further,
we compute average across all 10 tasks by normalizing ROUGE, IoU and IDr to be in [0, 1] range.
We also introduce two model based evaluations discussed in the supplement.

Main Results. Fig. 3(a) shows the performance of all models averaged across all tasks in the CURIE
benchmark. Claude-3 Opus is the best performing with consistent high performance across all tasks.
Fig. 3(b) shows task level performance of all models. The popular GPT-4o outperforms the others on
GEO and BIOGR, but it’s performance on PDB and HFD is surprisingly low. On closer inspection, we
found that the GPT-4o model exhibited repetition in the outputs (in the PDB task), clipped responses
(in the MPV task), and failed to follow formatting instructions on the HFD task, leading to lower
performance. Overall though, most of the closed models had very close performance, and given the
variability (e.g., 25%-75% error bars around the mean in Fig. 3), the difference between them is
not significant. On several tasks there is considerable room for improvement, making CURIE an
interesting benchmark for furthering model development. Appendix A includes more detailed results.

Appendix B includes model based evaluations, and Appendix A.2 has performance sliced based on
difficulty of each example on each task, where difficulty is judged by the domain expert.

4 Discussion
Model responses lack robustness in instruction following. A common observation across tasks
was that, there is variability across model runs, even though average performance remained fairly
constant. The variability is usually higher on harder tasks. Instruction following remains a challenge:
Models often had pieces of the right answer, but were unable to consistently format it despite examples
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in the prompt. In rare cases, even though we explicitly asked models to provide answers when they
weren’t sure, they often refused to venture an educated guess. The model-based evaluation metrics
were quite helpful in mitigating issues arising from lack of adherence to instructions.
Performance on retrieval. Fig. 3(b) and Table 1 report performance of the models on each task
in each of the domains. Noticeably all models show high ROUGE-L scores on HFE which is a
variation of the needle-in-a-haystack problem where the model needs to extract related equations that
might be spread throughout the paper. On tasks requiring exhaustive retrieval of multiple values and
aggregation, e.g., DFT, MPV, and GEO, the models have considerably lower performance than just
single value retrieval tasks (e.g., HFE).

Figure 4: Example of model outputs for the DFT-P parameter identification task. Claude-3 Opus
appears to understand the purpose of the calculations better than the other models and avoids
unnecessary repetition. Claude-3 correctly (green) identifies that there is one set of DFT parameters
used in the actual study as well as two more set of parameters which are used for convergence testing.

Concept tracking, aggregation, summarization. On tasks requiring concept aggregation and
tracking, e.g. DFT-P, GEO and QECC, experts found responses from some models quite promising.
With DFT-P, Claude-3 appeared to understand the purpose of DFT calculations better and grouped
relevant parameters to appropriate functions. On QECC, the experts noted that the summaries
generated by the LLM tended to be succinct while also including multitude of key informational
“nuggets” and quantitative measurements. While not all of these were correct or important, experts
noted that it would be easier to exclude the wrong bits (after examination) but harder to extract and
comb out such details from the paper. On the GEO task, the closed models did well to extract some
of the important datasets with the correct spatial and temporal ranges but performance degrades when
multiple datasets are used to cover a larger spatial extent. Overall, carefully engineered prompts and
agentic workflows could be effective on such tasks.

Closed vs Open models. One thing of note is that on QECC, DFT, and MPV extraction and
aggregation tasks, the Command-R+ open weights model which uses retrieval-augmented approaches
shows performance similar to the closed weight models. On PDB, Mixtral performed higher than
GPT-4o which is quite surprising. Both LongLLaMA and Command-R+, failed to produce any sort
of FASTA format on the PDB task. They either failed to fully understand the task, or missed one of
the steps in aggregating the amino acid sequences. Also, the evals on BIOGR highlight that open
models are yet to support both multimodal and long-context capabilities which can enable more
scientific applications. Overall, across tasks, model performance has room for improvement.

5 Conclusion
In this work, we introduce the CURIE benchmark — a series of tasks designed to measure the ability
of LLMs on understanding long-context scientific reasoning. Our main contributions are (i) A new
benchmark of 434 examples from 273 research papers that can assess LLMs on comprehension
of long-context information from across six scientific disciplines requiring deep expertise. (ii)
10 realistic tasks combining concept retrieval and extraction, and more to measure capability of
models on different aspects of scientific workflows. (iii) We propose model-based evaluation metrics
for mixed-format heterogeneous outputs and share guidelines for curation and annotation in the
supplement. We hope the diverse tasks and rich annotations in the CURIE benchmark can serve the
community in not only evaluating LLMs on their scientific problem-solving abilities but also advance
research on scientific planning, instruction following, and evaluation of generated texts containing
information of diverse types and formats.
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Impact Statement and Limitations

Curation of expert annotated datasets on tasks from scientific domains is time intensive and expensive.
While the CURIE benchmark is aimed at facilitating evaluation of scientific reasoning over long
contexts, we hope the rich human annotations can serve the community in advancing planning,
instruction following, and evaluation of generated texts of mixed and heterogeneous formats including
dates, locations, numerical values, units, descriptors, domain specific terms, equations and code.

This work focused on a select set of domains and a narrow set of tasks with high quality annotations,
thus limiting the scale. Increasing the scale of examples across tasks would provide a more robust
evaluation benchmark. With the fast pace of language model advancements, evaluating the generated
text responses on such complex tasks is challenging even with high quality human annotations. In
particular, just based on instructions and output format provided in the prompt, existing automated
evaluation metrics Rouge-L and BERTScore can be unforgiving resulting in low scores for responses
that look different but might still be reasonable. While we propose model based evaluation metrics,
these are still far from perfect and provides room for more creative strategies. Further, we primarily
evaluate models in the zero-shot and two-shot settings, and we invite researchers to explore retrieval
augmented generation and chained prompting strategies that evaluate the models on planning and
task decomposition.

Disclaimer

V.V.A. participated only as a subject-matter expert for the QECC task. Certain equipment, instruments,
software, or materials are identified in this paper in order to specify the experimental procedure
adequately. Such identification is not intended to imply recommendation or endorsement of any
product or service by NIST, nor is it intended to imply that the materials or equipment identified are
necessarily the best available for the purpose.
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A Detailed results

A.1 Quantitative comparisons.

Comparison with existing benchmarks and room for improvement. Fig. 5 (b) compares perfor-
mance of models from two different generations, Gemini 1.0 pro (32k) and Gemini 1.5 pro (1M+
context window) on popular benchmarks evaluating linguistic capability (DROP) [26], breadth of
knowledge [1], and expertise in science [11], alongside the performance on our benchmark evalu-
ating expertise with long-context comprehension. We observe that there is considerable room for
improvement on the types of realistic complex scientific tasks the CURIE benchmark provides.

Figure 5: Comparing performance of different generation models supporting long-context windows
on previous benchmarks testing Knowledge, Linguistic, and Science expertise, alongside our new
scientific long-context understanding CURIE benchmark, highlighting current difficulty of the tasks
and the role benchmarks play in advancing LLM capabilities.

Main Results Table. Table 1 show task level performance of all models on the ROUGE-L and
BERTScore-F1 metrics. On scientific long-context tasks, Claude-3 Opus performas well across all
tasks showing strong multitask multi-domain capabilities followed by Gemini 1.5 pro. The popular
GPT-4o dramatically underperforms on the PDB task.

Method DFT MPV HFD HFE QECC GEO BIOGR PDB
R-L B-F1 R-L B-F1 R-L B-F1 R-L B-F1 R-L B-F1 R-L B-F1 IoU IDr

Zero-shot Open Weight LLMs

Mixtral 12.2 0.67 12.48 0.7 3.78 0.75 9.15 0.63 5.11 0.69 20.23 0.77 - 0.27
Command-R+ 13.79 0.64 15.67 0.75 5.93 0.75 41.23 0.83 19.12 0.67 21.36 0.78 - 0.08
LongLLaMa 8.17 0.6 9.28 0.66 4.36 0.63 10.33 0.63 9.53 0.6 9.53 0.68 - -

Zero-shot Closed Weight LLMs

Gemini 1.0 Pro 11.22 0.63 17.37 0.75 8.72 0.66 14.91 0.69 15.08 0.63 22.56 0.77 0.41 -
GPT-4o 13.3 0.64 12.74 0.73 9.81 0.74 48.93 0.85 23.23 0.66 27.3 0.8 0.53 0.08
Gemini 1.5 Pro 13.66 0.65 31.54 0.79 18.86 0.79 39.56 0.84 21.04 0.63 27.24 0.78 0.42 0.31
Gemini 1.5 Flash 11.31 0.64 12.11 0.77 22.86 0.79 41.92 0.86 23.5 0.70 27.76 0.8 0.4 0.1
Claude 3 (Opus) 13.78 0.63 15.86 0.75 16.82 0.76 49.1 0.86 24.44 0.68 28.66 0.79 0.48 0.37

Table 1: Results comparing performance of all models on all tasks based on automated metrics
R-L: Rouge-L, and B-F1:BertScore-F1. The avg. performance of all 3 DFT tasks are reported under
DFT. All models support a context length of 32k or more. BIOGR has multimodal inputs which is
unsupported by the chosen open models. Blue highlights the highest values across closed models.

A.2 Performance vs. Difficulty

For each of the tasks, for each input example, we requested experts to rate the difficulty of answering
the example query as easy, medium or hard. Experts in all domains independently determined the
rating scale. Surprisingly, they all chose a similar scale for determining difficulty of the example.
For all tasks difficulty was measured based on how wide spread the requested information was
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within the paper. If most of the requested information was available within a few paragraphs or a
page, the example was rated as easy, if the information was spread over multiple parts of the paper
the example was rated as medium difficulty, and if the information required knowledge of specific
literature outside of the given context (e.g. based on referenced papers), the example was rated hard.
Additionally for the DFT-C code generation task, the ratio of the number of implementable functions
to the total number of functions mentioned in the paper was used to determine difficulty. For HFD,
the number of reasoning steps was used in determining difficulty. Fig. 6 reports performance of each
model sliced by difficulty. Overall, models perform substantially better on easy examples compared
to the medium and hard examples. Models appear to perform about the same on examples marked
medium or hard. Though, one thing of note is that there are usually many more medium examples
than hard examples across all tasks. We will include the distribution and the ratings for each of the
examples in the supplement.

Figure 6: Avg. performance of models sliced by difficulty of examples. Consistent with expec-
tations, all models perform substantially better on easy examples except in the case of Mixtral.
Experts in each domain independently converged on measuring difficulty based on how spread-out
the requested information was within the context of the full paper.

B Model-Based Evaluation of Mixed Long Form Responses

Tasks in CURIE are varied and have ground truth annotations in mixed and heterogenous outputs.
Evaluating free-form generation is challenging because answers are often descriptive, and even when
a format is specified as in most of our cases the response to each field can have differing forms
e.g. in case of materials grid points may sometimes be specified as [p,q,r] and at other times as
p×q×r. Hence most existing knowledge related benchmarks [1, 11] lean towards multiple choice
format for answers. While these allow for clean evaluation, this doesn’t allow us to evaluate the full
expressiveness of the model. Inspired by the ability of LLMs to evaluate natural language [27, 28, 29],
three recent approaches, LAVE [30], LIMA [31] and Prometheus-Vision [32], utilize the in-context
capability of instruction-tuned LLMs to rate the candidate answers in 3-point, 6-point and 5-point
Likert scales, respectively. While evaluation on Likert scales is suited for generated text, many of the
outputs on our task have structured information that could benefit from more fine grained evaluation.
So we propose two model-based evaluations (i) LMScore an overall weighted score on a 3-point
scale obtained by asking the LLM if the predictions match ground truth, and (ii) LLMSim a more
nuanced score for measuring similarity of elements in lists of dictionaries, which can then be used to
compute precison and recall of elements.

(i) LMScore Given the ground truth and predicted responses, we ask the model to check if the
predicted responses match the ground truth, and ask the model to output “good” (if the prediction
has few minor errors), “okay” (if there are many minor errors), and “bad” if there are major errors.
Instead of using the model generated response directly, we compute a score based on the model
log-likelihood values. If xt represents the tokens for the 3 categories we are interested in, xt ∈ {bad,
ok, good}, and wt are the corresponding weights we want to assign to each category, wt ∈ {0, 0.5,
1}, then

LMScore =

2∑
t=0

p(xt)× wt (1)
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p(xt) is computed by renormalize the probabilities of the tokens by considering a softmax()
operation on the log-probabilities of the tokens: ([lbad, lok, lgood]).

(ii) LLMSim is used to compare similarity of dictionary elements to assist in comparison of sets
of dictionaries. Our goal is to identify the number of ground truth dictionary items that have been
retrieved correctly. So, we ask the LLM to examine all of the predicted dictionaries and match and
identify the predicted dictionary most similar to the each of the ground truth dictionaries. We use a
chain-of-thought (CoT) prompt that asks the LLM to identify the predicted dictionary indices that
correctly match each field (key) of the ground truth, and then state the which predicted dictionary is
most similar to the ground truth or output None. We will make the prompt and code available.

Concretely, suppose DP is the set of predicted dictionaries, DG the set of ground truth dictionaries,
LLMSim helps find the optimal matching M between the predicted dictionaries and each ground
truth Dg ∈ DG:

LLMSim = M(DP , Dg)

=

{
None, if no match in values
Dp ∈ DP : argmax s(fi, Dp, Dg)

where fi represents the ith field (key) in the dictionary and s(fi, Dp, Dg) is the similarity of the value
of each field of Dp with Dg . Given the matching, we can then compute precision, recall and F1

Pr =
|(Dp, Dg) ∈M |

|DP |
, Re =

|(Dp, Dg) ∈M |
|DG|

B.1 Comparing human and model based evals.

Human vs Model-based eval on retrieval. On the information retrieval tasks: DFT-S and DFT-P
tasks which requires LLMs to retrieve material structures and DFT parameters from a given paper; as
well as the MPV tasks requiring models to retrieve material property and values, we use LLMSim to
compare the dictionaries of extracted material properties. Table 2 reports precision, recall and F1
scores computed after on matching elements using LLMSim . We found the precision and recall to
closely match those measured by human experts (on the Gemini 1.5 pro and GPT-4o models).

Model DFT-S DFT-P MPV MPV-non-trivial MPV-specific
Pr. Rec. F1 Pr. Rec. F1 Pr. Rec. F1 Pr. Rec. F1 Pr. Rec. F1

Zero-shot Open Weight LLMs

Mixtral 26.52 24.76 25.61 9.79 6.57 7.87 31.86 23.29 26.91 33.66 23.96 27.99 22.20 35.05 27.18
Command-R+ 42.93 28.80 34.47 8.69 5.82 6.97 34.99 42.11 38.23 13.17 21.44 16.32 28.10 27.58 27.84
LongLLaMa 1.82 2.13 1.96 4.40 5.83 5.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Zero-shot Closed Weight LLMs

Gemini 1.0 Pro 46.31 40.04 42.95 12.86 7.74 9.66 29.00 43.88 34.92 26.83 41.49 32.59 26.41 41.18 32.18
GPT-4o 37.51 29.94 33.30 29.96 21.09 24.76 39.22 24.14 29.88 48.04 24.94 32.83 34.38 23.13 27.65
Gemini 1.5 Pro 38.29 35.77 36.99 25.39 17.74 20.89 25.62 41.26 31.61 30.68 40.85 35.04 25.00 31.34 27.82
Gemini 1.5 Flash 39.95 38.75 39.34 27.45 17.49 21.36 18.22 45.33 25.99 22.70 40.07 28.98 14.77 32.90 20.39
Claude 3 (Opus) 40.45 32.89 36.28 28.22 17.78 21.81 46.71 38.22 42.04 52.83 49.83 51.29 32.18 47.06 38.23

Table 2: Comparing performance using LLMSim. On sub-tasks requiring exhaustive retrieval of
information we use LLMSim based similarity to compute F1 scores for finer grained assessment on
materials science. We also include 2 ablations for the MPV task where we ask the LLM to retrieve
non-trivial or specific property values (refractive index and optical bandgap) for materials.

Human vs. Model-based 3-point evaluations We worked with experts in each domain to evaluate
predictions generated by the models against ground truth responses on a 3-point scale identical to
the proposed LMScore. For each example, the expert was asked to rate a response as “good” if it
had few or no errors compared to the ground truth, “okay” if it had many minor errors, and “bad” if
there were major errors. We use these human responses to compare and correlate the newly proposed
LMScore which is reported in Fig. 7. While LMScore appears to be promising, it requires further
analysis prior to wider usage.

C Data Collection and Examples

The CURIE benchmark consists of a series of tasks that measure how well LLMs can assist in
diverse scientific workflows, from synthesis of information towards final execution anchored on
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Figure 7: Correlation of GPT-4o based LMScore metric with human evaluations, Across tasks
in domains where Rouge-L is the primary evaluation metric, LMScore appears to be a promising
alternative to Rouge.

single scientific research documents. Each task in the benchmark: (1) is a realistic task performed by
scientific experts on domains requiring years of study, (2) has information relevant to solve the given
problem within the context provided (e.g. a full-length scientific paper, image/caption pair), and (3)
ensures expert humans can evaluate task performance, providing metrics that highlight the potential
limitations of current models.

Collection guidelines. We selected six domains requiring deep scientific expertise: materials science,
theoretical condensed matter physics, quantum computing, geospatial analysis, biodiversity, and
proteins. Within these, we worked with experts to define tasks representative of realistic scientific
workflows, covering the following seven assessment categories: concept extraction, concept tracking
(co-reference resolution), aggregation, algebraic manipulation, summarization, visual comprehension,
and integrating expertise across domains. We focused on tasks that, if successful, could enable
automation [33] of a time intensive critical component of a workflow e.g. extraction of experimentally
reported values towards curating a database [34], or generate code or calculations to fully reproduce
computational or theoretical analyses. We worked with domain experts on 3 critical aspects of the
task preparation: (1) sourcing papers representative of the task and domain; (2) creating ground truth
labels that were accurate, nuanced and comprehensive; and (3) creating metrics to evaluate model
responses against ground truth answers that properly captured salient features of the task. Figure 1(b)
shows the distribution and details of tasks in the CURIE benchmark.

Figure 8: A sample of map images from the Biodiversity Georeferencing (BIOGR) Task.

D Related Work

Science NLP tasks. There have been numerous datasets created to perform core NLP tasks on
scientific texts. This includes (i) named entity recognition to annotate entities such as disease
names [35] or material properties [36], and relations such as disease-chemical interaction [37]; (ii)
dependency parsing [38], (iii) participant-intervention-outcome (PICO) annotation [39], (iv) text
classification such as citation intent classification [40, 41], paper domain classification [42] from
titles; (v) relation extraction for chemical-protein-disease annotation [43] or material structure and

13



properties [44], (vi) information extraction e.g. material property values [45, 46], and (vii) question
answering [10, 47]. However all of these focus on inputs of short length such as paper abstracts,
sentences or text spans. They were curated for language models operating on short contexts, though
the task in the actual scientific workflow requires application on full documents. Of the recent LLM
benchmarks, GPQA [11] focuses on evaluating scientific domain expertise in biology, physics, and
chemistry, while MMLU [1] covers a range of high school science. These too are limited to short
questions and multiple choice answers.

Long context benchmarks. With the increase in context windows supported by the LLMs, there
have been new benchmarks focusing on evaluating long context capabilties. ZeroScrolls [2] covers
summarization, question answering, aggregation which are now present in many newer benchmarks:
NIAH [5] includes retrieval, LongBench [9] includes bilingual tasks, Bamboo [3] has textual entail-
ment tasks amongst others and M4LE [48] has tasks testing translation and classification, L-eval [49]
includes a task on multi-document dialog, and Loogle [50] includes a computation task. However,
while all of these benchmarks combine many existing datasets to cover a range of tasks none of
them operate on data from the scientific domain. Further, for very long (100k+) contexts synthet-
ically crafted data used, e.g. Ruler [51] proposes synthetically created length adaptable tasks and
Ada-Leval [8] includes length adaptable sorting and QA tasks, where they add distractor texts to
increase the context. These ignore, data from scientific literature that’s naturally complex and requires
processing long context.

Scientific literature. Of the tasks most relevant to scientific expertise, QASA [52] and QASPER [53]
operate on a full scientific paper, Machine Learning (ML) and Natural Language Processing (NLP)
papers respectively, however these focus solely on question answering, since it is expensive and labor-
intensive to collect tasks requiring expert knowledge. In our work we introduce ten new tasks curated
from six disciplines, all annotated by experts(with Ph.D. degrees) and requiring reasoning over long
context information on average about 11k+ words (≈15k tokens). See Fig. 1(a) for comparison.
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