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Abstract

Recent advances in deep learning have shown its effectiveness in modeling physical
phenomena, even when the governing equations are unknown. However, current
studies mainly focus on mechanical systems, often overlooking other physical
domains, such as electrical systems. Furthermore, existing methods tend to treat
systems with multiple elements as a single entity, making it difficult to capture
the complex interactions in coupled systems. To address these challenges, we
propose a neural network framework based on the port-Hamiltonian formulation,
which incorporates modularity and interactions between elements in the systems
being modeled and is applicable to electrical circuits. Our experimental results
demonstrate that our method is capable of handling various experimental scenarios
that existing methods cannot address, while also improving modeling and pre-
diction accuracy. Moreover, by analyzing the modeling results, we can identify
the interactions between elements, providing interpretable results that facilitate
understanding and further investigations.

1 Introduction

In recent years, deep learning has gained attention as an effective approach for modeling unknown
physical phenomena, particularly when the governing equations are not explicitly available [2].
Especially, methods like Hamiltonian neural networks (HNNs) incorporate physical laws such
as the conservation of energy as prior knowledge and have led to significant improvements in the
performance of data-driven modeling [11]. Numerous approaches that adhere to fundamental physical
principles have been proposed, including Lagrangian neural networks (LNNs) and Dissipative
SymODEN [4, 19]. However, current studies mainly focus on mechanical systems, often neglecting
other physical principles like Kirchhoff’s laws in electrical circuits. Furthermore, many models
treat systems with multiple elements as a single entity, making it challenging to capture complex
interactions in coupled systems like robot arms or electrical circuits composed of multiple circuit
elements [16, 18].

To address these challenges, this paper proposes port-Hamiltonian neural networks (port-HNNs),
a physics model based on the port-Hamiltonian framework [3, 14, 16]. This model unifies the
description of various physical phenomena across domains as well as identifying the coupling
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Table 1: Comparison between Related Methods.

Energy External Constraints Identifying
Dissipation Inputs Coupling Patterns

Neural ODE [2] (implicitly) (implicitly)
HNN [11]
Dissipative SymODEN [19] X X
Constrained HNN [10] (only holonomic)

port-HNN (proposed) X X X X

and constraints between elements in the systems being modeled. Port-HNNs improve predictive
performance, identify interactions between elements of the system being modeled, and provide more
interpretable models.

2 Port-Hamiltonian Neural Networks

Background and Related Work There is a growing need to model dynamical systems describable
by ordinary differential equations (ODEs) from data to aid in prediction and control. In this context,
neural ordinary differential equations (neural ODEs) have been proposed to approximate the right-
hand side f of an ODE u̇ = f(u) using neural networks, and to predict future states through
numerical integration. Note that u is the state of the dynamics and ˙denotes time derivative.

If it is known that the dynamical system being modeled adheres to physical laws, such as the
conservation of energy, leveraging this prior knowledge can lead to more accurate and effective
modeling. The Hamiltonian formulation typically describes an energy-conservative physical system
using the generalized coordinates q and the generalized momenta p as its state. This formulation
provides the equations of motion called Hamilton’s equation, written as

[
q̇
ṗ

]
=
[
O I
−I O

]
∇H(q,p),

where ∇ denotes the gradient operator, and H is a function that represents the system energy called
the Hamiltonian H . It is easily confirmed that this equation preserves the Hamiltonian H because
Ḣ = ∇H>

[
O I
−I O

]
∇H = 0. The original HNNs have leverage this form, where a neural network

is trained to approximate the Hamiltonian H . See also Table 1 for comparison.

The aforementioned formulation, however, does not handle systems with energy dissipation due
to friction or external inputs applied. To describe such systems, many studies have employed the
following form [5, 6, 15, 19]:

[
q̇
ṗ

]
=
[
O I
−I −D(q)

]
∇H(q,p)+

[
O

G(q)

]
F , where the submatrix D(q)

represents the dissipation, F denotes the external input, and G(q) denotes the gain of F . D(q) and
G(q) are approximated by neural networks similarly to H(q,p).

However, this formulation also presents several challenges. First, the coordinates qi and momenta
pi are paired, which means that it requires the absence of redundancy in measurements. When
multiple springs are attached to a single mass point, the states of all the springs are consolidated into
a single position, and the unique characteristics of the springs are abstracted into a single potential
energy function. This makes the learning process more difficult and complicates the interpretation
and application of the results. In some studies, the matrix that precedes ∇H(q,p) is expressed
in non-canonical form [1, 9], enabling the modeling of systems where qi and pi are not strictly
paired. Even so, these methods require the structure of interactions between system components to
be explicitly known, and this may limit their applicability. That being said, this formulation shares
the remaining challenges of the original formulation.

Similar to the first challenge, the submatrices D(q) and G(q), which represent energy dissipation
and input gain, respectively, are abstracted as functions, making it difficult to interpret how dampers
or external forces interact with other elements. Moreover, this formulation is unable to accommodate
externally imposed velocities, such as those in models of buildings subjected to ground motion, or
externally imposed currents, introduced by current sources in electrical circuits. These limitations
significantly restrict its application to systems such as electric circuits. While constrained HNNs can
handle the systems with constraints [10], they are limited to the constraints raised from conserved
quantities in the coordinates q.
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Table 2: Correspondence between Elements

Domain Mechanical Electrical

Elements Potential Kinetic Electric Magnetic

state (integral of flow) displacement q momentum p electric chargeQ magnetic flux φ
flow (input) velocity v force f current I voltage V
effort (output) force f velocity v voltage V current I

energy-conservative spring k massm capacitor C inductor L
energy-dissipative damper d – resistorR resistorG
external input external force e moving boundary b voltage sourceE current source J

Port-Hamiltonian Neural Networks To overcome these difficulties, inspired by the generalized
bond graph formulation [8, 16], we propose the port-Hamiltonian neural networks (port-HNNs) in
the following form:



q̇

ṗ

fR1

fR2

fI1
fI2


=



0 B 0 Rv 0 Ev
−B> 0 Rf 0 Ef 0

0 −R>f 0 0 0 Iv
−R>v 0 0 0 If 0

0 −E>f 0 −I>f 0 0

−E>v 0 −I>v 0 0 0





∇qH(q,p)

∇pH(q,p)

eR1

eR2

eI1
eI2


. (1)

H is the Hamiltonian, and (q,p) denote to local coordinates and momenta, respectively, as before.

The variables (q̇, ṗ,fR1,fR2,fI1,fI2) on the left-hand side are referred to as flows, whereas the
variables (∇qH(q,p),∇pH(q,p), eR1, eR2, eI1, eI2) on the right-hand side are referred to as
efforts. In this formulation, the coordinates q do not represent the positions of masses but rather the
displacements of the springs, and the number of springs (the size of q) may differ from the number of
masses (the size of p). Intuitively speaking, the flows are the inputs to elements in the target system,
and the efforts are the outputs from elements.

Consider, for example, a spring. The input to the spring is the rate of change of its displacement q,
represented by q̇. The output from the spring is the force generated by the spring as it changes, which
is expressed as∇qH(q,p). A spring is considered as an element that converts velocity to force. A
mass is, on the other hand, an element that converts force to velocity. The masses and springs are
connected and exchange velocity and force with each other, and this coupling pattern is represented by
the submatrix B; each non-zero element suggests the coupling between the corresponding elements.
In electrical circuits, each coordinate qi represents to the electric charge of each circuit element, with
capacitors analogous to springs and inductors to masses. The correspondences are summarized in
Table 2.

Elements denoted by the subscripts R1 and R2 are elements that dissipate energy, such as dampers
and resistors. Elements R1 convert velocity to force as eR1 = R1(fR1), whereas elements R2 convert
force to velocity eR2 = R2(fR2). If the element is a linear damper, the conversion is e = −df .
Hence, the outputs from elements R1 may be inputted to the masses, but not to the springs, which
is represented by the submatrix Rf . Also, the masses may define the velocities of elements R1,
which is represented by the submatrix −R>f . Elements denoted by the subscripts I1 and I2 represent
the external inputs, where elements I1 generate forces (that is, they are external forces or voltage
sources) and elements I2 give velocities (for example, they are moving boundaries or current sources).
Each submatrix represents the interactions between the corresponding elements. The elements of the
submatrices may take values 1, 0, or −1, similar to an adjacency matrix, but are not limited to these.
Forces may be distributed across multiple axes or even across multiple objects.

Therefore, by learning not only the Hamiltonian H but also the characteristics of each energy-
dissipating elements, R1 and R2, along with the submatrices from data, we can identify the interac-
tions underlying the target system as well as reproducing the system’s dynamics.
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Figure 1: Systems for Task 1 (left), Task 2 (middle), and Task 3 (right).

Table 3: Experimental Results
task 1 task 2 task 3

Model VPT MSE VPT MSE VPT MSE

Neural ODE 0.11 51.84 0.43 1040.22 0.38 4.05
Dissipative SymODEN 0.08 15.82 – –
Port-HNN 0.24 3.98 0.69 9.18 0.56 1.83

θ = 10−5 (×10−7) θ = 10 (×10−1) θ = 1.0 (×10−1)

3 Experiments and Results

Experimental Setting In this section, we evaluated the performance of our proposed port-HNN
through several benchmark tasks, summarized in Figure 1: namely, (task 1) a one-dimensional system
consisting of two consecutive mass-spring-damper systems with an applied external force, (task 2) a
two-dimensional system where three springs and two masses are coupled, and (task 3) an electrical
circuit consisting of three capacitors, two inductors, two resistors, and one alternating-current source.
The state is composed of the displacements of springs, the velocities of masses, the electric chargers
of capacitors, and the currents through the inductors. See Appendix A for details. We generated
the ground-truth data using the Dormand-Prince method with the time step size ∆t = 0.01 [7]. The
training dataset consisted of randomly initialized 1,000 trajectories, each spanning 500 steps, while
the evaluation dataset consisted of randomly initialized 10 trajectories, each spanning 10,000 steps.

We implemented the port-HNN, the neural ODE, and the dissipative SymODEN for comparison. We
trained these models by minimizing the L2 loss of the time derivatives (q̇, ṗ) of states (q,p). For
evaluating models, we integrated these models from the initial conditions using the Dormand-Prince
method, and calculated the mean squared errors (MSEs) between the ground truth trajectories and the
predicted states. In addition, we used the valid prediction time (VPT) [17], which is defined as the
ratio of the time until the MSE exceeds a certain threshold θ to the total length of the trajectory. A
smaller MSE and a larger VPT indicate better performance.

Results We summarized the results in Table 3. Our proposed port-HNN outperformed the com-
parison methods in all three tasks. Figure 2 depicts an example of the predicted states for task 3. It
demonstrates that the port-HNN predicted the future states of the target systems with smaller errors
for a long time. We visualized an example result of the submatrices learned in task 1:

B =
[

0.01785 0.00000
−0.01785 0.01786

]
, Rf =

[
0.27819 0.13647
0.00046 −0.13618

]
, Ef =

[
0.00025
0.99976

]
. (2)

The upper row of the submatrix B suggests that the spring k1 is coupled with the mass m1 but not
with m2. The bottom row suggests that the spring k2 is coupled with both the masses, m1 and m2, in
opposite directions. Also, the submatrix Rf suggests that the dumpers d1 and d2 are coupled with
the masses in the same patterns as the springs. Finally, the submatrix Ef suggests that the external
input is coupled only with the mass m2. Please note that the scale of the matrix elements cancel out
with the characteristics of the corresponding elements. We also visualized an example result of the
submatrix B learned in task 2:

B =


0.9999 0.0000 0.0000 0.0000
0.0000 0.9411 0.0000 0.0000
0.0000 0.0000 1.0588 0.0000
0.0000 0.0000 0.0000 1.0588
−0.9999 0.0000 0.9999 0.0000
0.0000 −0.9411 0.0000 1.0588

 =

[
(1, 1) (1, 2)
(2, 1) (2, 2)
(3, 1) (3, 2)

]
. (3)
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Figure 2: The ground truth and example predicted results of the states in task 3. (left) The capacitors
C1, C2, C3 from top to bottom. (right) The inductors L1, L2 from top to bottom.

Due to the 2-dimensional state space, the 2 × 2 submatrix (i, j) represents the coupling between
the i-th spring ki and j-th mass mj . We can see that the spring k1 is connected to the mass m1, the
spring k2 is connected to the mass m2, and the spring k3 is connected to both the masses, m1 and
m2. These results are consistent with the diagrams in Figure 1. This demonstrates that the port-HNN
is not only effective at modeling and predicting system dynamics, but also provides interpretable
insights into the internal structure of the dynamical systems.
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A Details of Experiments

In task 1, each spring was set to be nonlinear, generating the force −kq − bq3, where k, b are parameters.
Each damper was also nonlinear, generating a resistive force −dv1/3 for the damper velocity v. We set m1 =
5.0,m2 = 3.0 for masses, k1 = 0.5, k2 = 3.0, b1 = 9.0, b2 = −0.5 for springs, and d1 = 0.11, d2 = 0.08
for dampers. The initial displacements and velocities were sampled from uniform distributions U(−0.5, 0.5)
and (−0.1, 0.1), respectively. Additionally, an external force was applied to one of the masses. It was written
as a sine wave A sin(wt+ b), where the amplitude A, the angular velocity w, and the phase b were randomly
sampled from the uniform distributions U(0.05, 0.3), U(−10, 10), and U(−π, π), respectively.

In task 2, each spring was nonlinear in the same way as in task 2, but was allowed to move in the 2-dimensional
space. Three springs have a nominal state space of 3× 2 = 6 dimensions, but because they are connected to two
masses, the effective degrees of freedom were reduced to 2× 2 = 4 dimensions. This reduction was assumed to
be unknown. Overall, the system had a 10-dimensional state space, which includes the 2× 2 = 4-dimensional
velocity of the masses. We set m1 = 5.0,m2 = 3.0 for masses and k1 = 2.5, k2 = 3.0, k3 = 2.1, b1 =
7.4, b2 = −0.5, b3 = 5.1 for springs. The initial displacements and velocities were sampled from uniform
distributions U(−0.5, 0.5) and (−0.1, 0.1), respectively.

In task 3, each resistor was nonlinear, with the voltage increasing in proportion to the cube of the current with the
coefficient r. We used C1 = 3.0, C2 = 2.0, C3 = 0.5 for capacitors, L1 = 2.9, L2 = 4.5 for inductors, and
r1 = 1.3, r2 = 2.1 for resistors. The initial electric charges of capacitors and currents through inductors were
sampled from uniform distributions U(−0.5, 0.5) and (−0.1, 0.1), respectively. The current source was defined
as A sin(wt+ b), where the amplitude A, the angular velocity w, and the phase b were randomly sampled from
the uniform distributions U(0.05, 0.3), U(−5, 5), and U(−π, π), respectively.

We used a 3-layer fully-connected neural network with 200 hidden units and the hyperbolic tangent activation
function for modeling all functions, namely the right-hand side of the neural ODE, the Hamiltonian H , and
the characteristics of the energy-dissipative elements R1 and R2. In our formulation, we can consider each
energy-conservative element having its own HamiltonianH . We assume that the capacitors and inductors behave
linearly and that the kinetic energy of the masses is proportional to the square of their velocity. Therefore, the
Hamiltonians H corresponding to these elements do not need to be modeled using neural networks; instead, they
can be modeled as quadratic functions with learnable parameters, such as capacitances, inductances, and masses.
By utilizing these relationships, we can interconvert momentum and velocity of mass, voltage and electric charge
of capacitor, as well as current and magnetic flux of inductor.

Each model was trained using the Adam optimizer [12] for 40,000 iterations for tasks 1 and 2, and for 10,000
iterations for task 3. We used the parameters (β1, β2) = (0.9, 0.999) and a batch size of 200. The learning rate
was initialized to 10−3 and decayed to zero with cosine annealing [13].

The proposed port-HNN is defined with the displacements of the springs as the coordinates q, while the
dissipative SynODEN is with the absolute positions of the masses as the coordinates q. We used the absolute
positions of the masses for the dissipative SymODEN and neural ODE in task 1, while we used the displacements
of the springs for other combination of tasks and methods.
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