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Abstract

Space debris presents a critical challenge for the sustainability of future space
missions, emphasizing the need for robust and standardized identification methods.
However, a comprehensive benchmark for rocket body classification remains absent.
This paper addresses this gap by introducing the RoBo6 dataset for rocket body
classification based on light curves. The dataset, derived from the Mini Mega
Tortora database, includes light curves for six rocket body classes: CZ-3B, Atlas 5
Centaur, Falcon 9, H-2A, Ariane 5, and Delta 4. With 5,676 training and 1,404 test
samples, it addresses data inconsistencies using resampling, normalization, and
filtering techniques. Several machine learning models were evaluated, including
CNN and transformer-based approaches, with Astroconformer reporting the best
performance. The dataset establishes a common benchmark for future comparisons
and advancements in rocket body classification tasks.

1 Introduction

Humans have been utilizing the space for over 60 years for various purposes, launching more than
6000 missions [1]. The consequence of this is the increasing amount of space debris, which became a
serious threat to future missions [2].

Each object reflects light, creating a measurable signal called a light curve, which serves as its unique
footprint. The light curve is shaped by the object’s shape, reflectivity, geometry, surface, and rotation
thus encoding the objects appearence. Although traditional methods extract limited details from light
curves, some potentially crucial parameters are often overlooked.

Machine learning can help scientists identify hazardous and unknown objects more efficiently than
traditional methods, enhancing space safety [3]. Studies like [4] and [5] demonstrate its ability to
distinguish between rocket bodies. However, existing solutions are not directly comparable. Models
are often evaluated solely on proprietary datasets, and even when publicly accessible datasets are
used, variations in sample filtration, preprocessing, normalization, and evaluation methods can lead
to substantial inconsistencies in performance assessments. For instance, strict filtering might limit
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evaluation to ideal scenarios, ignoring real-world complexities. Similarly, flawed evaluation strategies
might falsely favor models that excel in dominant classes, masking their overall shortcomings.

A standardized benchmark dataset is hence essential to ensure fair comparison, identify the most
effective approach and establish a foundation for consistent advancements in the field.

2 MMT Database

The primary source of the publicly available light curves dataset is the Russian Mini Mega Tortora
(MMT) database [6, 7] a wide-field monitoring system operated by the Special Astrophysical Ob-
servatory of the Russian Academy of Sciences. In August 2024, the database contained 14, 888
objects and 502, 815 tracks (or light curves), with new records being added daily. The light curves
of objects, identified by their NORAD ID, are stored in a sequence of measurements containing the
time, standard magnitude, and phase angle. Figure 1 presents a sample light curve of the Falcon 9
rocket body. The database is widely used for the training and validation for object characterization
and attitude determination, described in Section 3.

Figure 1: Example of Falcon 9 light curve from MMT database [7].

The data, however, exhibits several significant flaws: large gaps between observations, a limited
number of observations per rotational period, and a low signal-to-noise ratio. These imperfections
arise from physical processes, varying observation conditions, the high variability of the signal, and
the inherent characteristics of the sensors. It is hence imperative for the raw data to be pre-processed
before it can be used to train Machine learning models, as discussed in Section 4.

3 Machine learning research using MMT data

In recent years, there has been a trend to extract information about space objects from their light
curves. A common kind of information to extract is the shape of an object. In this work, we focus on
the shape classification problem with MMT be the main data source.

One of the first utilization of the database for machine learning was by the authors in [8]. They have
set up a classification task using a custom 1-D convolutional network with 3 different target classes,
namely: rocket bodies, debris, and satellites. It uses a sequence of 500 measurements from the light
curve as input, with the reported test accuracy of around 75%.

A similar approach was used in [9] with the same input sequence strategy and 1-D CNN achieved
a comparable accuracy of 75% with a different target class. To preserve more information in the
input, in [4] the authors used phase angle data alongside magnitude measurements, resulting in
two channel sequences of 1200 points in length, covering around 20 minutes of observation time.
To achieve uniform size between light curves, truncation and zero padding was used. This helped
the 1-D CNN network to distinguish between 8 classes (7 rocket body classes + bow-wing class)
with a 90% accuracy. To enhance the performance, the model was pre-trained using simulated data.
To ensure uniform temporal sampling, in the work [10] the inputs were resampled to a consistent
frequency and a 1-D CNN and LSTM-based models were trained to classify object shapes specifically
within the GEO orbit. As in the previous work, the data were padded and truncated to a uniform size.
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Normalization was done by rescaling the sample between 0 and 1 by its maximum and minimum
values.

In [5], a different approach was adopted to standardize input size while minimizing information loss.
Light curves were folded by their rotational period, producing a new sample with 200 measurements
each. This re-processing technique, combined with data augmentation approaches such as phase
translation and noise addition, enabled a 1-D CNN to achieve 85% accuracy in a classification
scenario involving 5 target classes of rocket bodies. Building on prior work, the authors in [11]
implemented a method which involved segmenting light curves into individual rotational periods,
and rescaling them into uniform size, resulting in a significantly expanded training dataset. Using
this approach, a 1-D version of ResNet20 [12] network was employed to classify three rocket body
classes, achieving 84% accuracy.

A contemporary approach to handling large sequences is using the Transformer[13] module. Astro-
conformer, a Transformer-based model introduced [14], was originally designed for surface gravity
estimation from stellar light curves processing ,yet it can be easily adapted for a classification tasks.

While this section highlights only a subset of works in the subfield, it is evident that substantial
differences exist in the preprocessing, evaluation, and normalization strategies employed across
studies. These inconsistencies make direct comparison between methods highly challenging, if not
impossible, emphasizing the need for a standardized approach to enable meaningful evaluation.

4 RoBo6 dataset

Prior work has predominantly focused on classifying objects such as rocket bodies, debris, or satellites
based on their light curves. However, a more practically relevant challenge lies in distinguishing
between objects with a similar shape, such as different types of rocket bodies. To the best of our
knowledge, no standard benchmark currently exists for addressing this specific classification problem.

To address this gap, we curated a standardized dataset comprising six common rocket body popula-
tions : CZ-3B, Atlas 5 Centaur, Falcon 9, H-2A, Ariane 5 and Delta 4. The dataset is divided into a
train set of 5,676 samples and a test set of 1,404 samples, with further details provided in Table 1.

Table 1: Number of samples per split and class.

Ariane 5 Delta 4 CZ-3B Atlas 5 Centaur H-2A Falcon 9
Train 660 233 2266 1029 623 865
Test 173 70 548 247 150 216

Each sample is characterized by the following fields: label, ID, part number, period (in nanoseconds),
mag, phase and time. The last three fields refer to file paths that contain additional metadata, such as
standard magnitude, phase angle, and time measurements. During preprocessing, samples can be
divided into subsamples, with their sequence order recorded in the part field.

Since many machine learning models, such as CNNs, require grid structured data, each sample needs
to be resampled onto a uniformly spaced grid with a manageable length. In order to convert the data
into this format and to retrain as much information as possible, a series of filtering, splitting and
resampling operations was performed over each sample. Standard normalization using mean and
standard deviation was also applied.

The dataset is publicly available on the Hugging Face platform (https://huggingface.co/
datasets/kyselica/RoBo6) and was created from data downloaded in August 2024 from the
official MMT website [7] using a custom Python script.

4.1 Gap-Based Splitting and Frequency Rescaling

The original dataset contains light curves that often span extended periods. However, in many cases,
the gap between two consecutive measurements is larger than the rotational period of the object,
presenting an opportunity to split such samples at these gaps. This process results in shorter light
curves, as the intermediate gaps do not contain meaningful information.
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Following this gap-based splitting, 95% of the samples were found to be shorter than 1,000 seconds.
For the remaining longer samples, additional splits were made at this 1,000-second threshold. A
sampling frequency of 10 Hz was chosen based on an analysis of time intervals between consecutive
measurements. To standardize the dataset, all samples were rescaled and zero-padded to a fixed
length of 10,000 points, representing 1,000 seconds of data.

4.2 Filtering of Low-Quality Samples

Low-quality samples are filtered based on two criteria emprically determined citeria consistent with
values commonly used in prior studies, such as [8].

The first criterion sets the minimum number of measurements in one sample to 100. The second
criterion evaluates the coverage of the apparent rotational period using a folded light curve, which is
created by folding the data based on the object’s apparent rotational period [15] and reshaped to 100
points. To ensure sufficient data quality, the folded light curve must have at least 75% coverage by
measurements.

4.3 Evaluation Strategy and Metric Selection

Selecting an effective evaluation method is essential for the precise assessment of model performance.
A viable strategy involves partitioning data by objects into train and test sets to gauge the model’s
competence in classifying new objects. Nevertheless, this method is challenging with multiple classes
due to the limited object count and a significantly imbalanced light curve distribution, potentially
resulting in an inadequately representative test set and insufficient samples for reliable evaluation. As
shown in Table 2, the disparity in data distribution is particularly evident in the case of the CZ-3B
rocket, where just 14 objects account for more than 60% of all light curve tracks.

Table 2: Number of tracks per CZ-3B rocket.

#Track Range N.o. objects N.o. tacks Dataset Coverage
326 - 391 1 391 7.87 %
261 - 326 2 546 10.99 %
196 - 261 6 1303 26.22 %
131 - 196 5 782 15.74 %
66 - 131 10 907 18.25 %

1 - 66 63 1040 20.93 %

In real-world scenarios, the same object can be observed multiple times and must be consistently
identified. To simulate this, the dataset can be split by track ID, ensuring all samples derived from the
same light curve during preprocessing are assigned to the same set. Stratified splitting is employed to
maintain consistent class distributions across the training and testing sets.

Given the imbalanced nature of the dataset, accuracy alone can be a misleading metric, since strong
performance on classes with many samples may overshadow poor performance on underrepresented
classes. To address this issue, the F1 macro score was chosen as the primary evaluation metric, as
it takes into account the cardinality of all classes and thus provides a more balanced assessment of
model performance across the dataset.

4.4 Model Training and Performance Evaluation

To demonstrate the utility of the dataset, five selected models [4], [12], [8], [5] and [16] were trained
on it. Each model was trained for 50 epochs using the Adam optimizer with a learning rate of
0.001. Training parameters specified in the respective publications were followed; in cases where
parameters were not provided, default settings were used. The complete list of parameters and further
preprocessing details can be found in Table 4. The results, summarized in Table 3, align closely with
those reported in the respective publications. Astroconformer, despite being developed for stellar
light curves, proved to be the best-performing model in this benchmark comparison.
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Table 3: Models performance.

Model Accuracy F1 Precision Recall
ALLWORTH [4] 0.559 ± 0.044 0.478 ± 0.038 0.491 ± 0.033 0.531 ± 0.024

RESNET [12] 0.694 ± 0.023 0.600 ± 0.034 0.738 ± 0.026 0.584 ± 0.033
FURFARO [8] 0.628 ± 0.009 0.552 ± 0.013 0.570 ± 0.017 0.552 ± 0.013

YAO [5] 0.672 ± 0.017 0.604 ± 0.023 0.622 ± 0.029 0.601 ± 0.020
ASTROCONFORMER [16] 0.725 ± 0.011 0.684 ± 0.015 0.702 ± 0.010 0.677 ± 0.019

The hyperparameters used for the training the respective models are detailed in Table 4. In an
attempt to reproduce the published models as closely to their published state as possible, a specific
preprocessing step was incorporated specifically for these models:

• ALLWORTH [4] Observations from the initial 20 minutes were rescaled to a uniform grid
consisting of 1,200 points.

• FURFARO [8] - The first 500 points were utilized as input.
• YAO [5] - The light curve was folded with the apparent rotation period to 200 point grid.

Table 4: Parameters used in the training process for each model.

Input size Channels Batch size Scheduler
Default 10 000 Mag 32 x

ALLWORTH[4] 1 200 Mag + Phase 256 x
RESNET[12] 10 000 Mag 32 x

FURFARO[8] 500 Mag 32 x
YAO[5] 200 Mag 32 x

ASTROCONFORMER[16] 10 000 Mag 32 ✓

Only one paper offers a basis for comparison. We trained the Allworth method [4] on our dataset
and compared the results with those reported in the origianl publication. However, the comparison
is not entirely fair, as the training scenarios differ. Specifically, the authors in [4] used a balanced
dataset with only 500 samples per class. Table 5 shows the result for the overlapping classes
between the two datasets. The source code for the experiments is publickly available at https:
//github.com/kyselica12/RoBo6_Model_Comparison.

Table 5: Comparison of the Allworth method[4] on our dataset and the original paper.

Rocket Bodies F1 score Precision Recall
Our Original Our Original Our Original

Atlas 5 Centaur 0.39 0.74 0.53 0.71 0.33 0.78
CZ-3B 0.65 0.63 0.77 0.61 0.57 0.65
Delta 4 0.11 0.81 0.19 0.78 0.09 0.85

Falcon 9 0.49 0.80 0.48 0.81 0.49 0.79
H-2A 0.56 0.79 0.46 0.82 0.72 0.77

5 Conclusion

We introduce the RoBo6 dataset, a new benchmark for rocket body classification based on light curves.
Derived from the MMT database, it includes six classes of rocket bodies and addresses inconsistencies
in prior datasets through preprocessing and standardization. By enabling easy comparison across
models and providing robust training and testing splits, RoBo6 facilitates consistent evaluations
and accelerates advancements in this research area. Models trained on the dataset demonstrated its
suitability for both traditional and transformer-based architectures, with Astroconformer achieving
the highest performance. We hope this dataset fosters advancements in space object classification and
promotes sustainable practices in space exploration.

5

https://github.com/kyselica12/RoBo6_Model_Comparison
https://github.com/kyselica12/RoBo6_Model_Comparison


References
[1] Space debris by the numbers. https://www.esa.int/Space_Safety/Space_Debris/

Space_debris_by_the_numbers. Accessed: 2024-09-09.

[2] About space debris. https://www.esa.int/Space_Safety/Space_Debris/About_
space_debris. Accessed: 2024-09-09.

[3] Yaobing Xiang, Jiangbo Xi, Ming Cong, Yun Yang, Chaofeng Ren, and Ling Han. Space debris
detection with fast grid-based learning. In 2020 IEEE 3rd International Conference of Safe
Production and Informatization (IICSPI), pages 205–209, 2020.

[4] James Allworth, Lloyd Windrim, James Bennett, and Mitch Bryson. A transfer learning
approach to space debris classification using observational light curve data. Acta Astronautica,
181:301–315, 2021.

[5] LU Yao and ZHAO Chang-yin. The basic shape classification of space debris with light curves.
Chinese Astronomy and Astrophysics, 45(2):190–208, 2021.

[6] S Karpov, E Katkova, G Beskin, A Biryukov, S Bondar, E Davydov, E Ivanov, A Perkov, and
V Sasyuk. Massive photometry of low-altitude artificial satellites on mini-mega-tortora. Revista
Mexicana de Astronomia y Astrofisica, 48:112–113, 2016.

[7] Mmt website. http://mmt9.ru/satellites. Accessed: 2024-07-29.

[8] Roberto Furfaro, Richard Linares, and Vishnu Reddy. Space objects classification via light-
curve measurements: deep convolutional neural networks and model-based transfer learning. In
AMOS Technologies Conference, Maui Economic Development Board, pages 1–17, 2018.

[9] Richard Linares, Roberto Furfaro, and Vishnu Reddy. Space objects classification via light-
curve measurements using deep convolutional neural networks. The Journal of the Astronautical
Sciences, 67(3):1063–1091, 2020.

[10] Emma Kerr, Gabriele Falco, Nina Maric, David Petit, Patrick Talon, E Geistere Petersen, Chris
Dorn, Stuart Eves, Noelia Sánchez-Ortiz, R Dominguez Gonzalez, et al. Light curves for geo
object characterisation. In 8th European Conference on Space Debris, pages 9–20, 2021.

[11] Daniel Kyselica, Linda Jurkasová, Roman Ďurikovič, and Jiří Šilha. Astronomical objects
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