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Abstract

Fractional Brownian motion (fBm) features both randomness and strong scale-
free correlations, challenging generative models to reproduce the intrinsic mem-
ory characterizing the underlying stochastic process. Here we examine a zoo
of diffusion-based inpainting methods on a specific dataset of corrupted images,
which represent incomplete Euclidean distance matrices (EDMs) of fBm at various
memory exponents H . Our dataset implies uniqueness of the data imputation
in the regime of low missing ratio providing the unique ground truth for the in-
painting. We find that the conditional diffusion generation readily reproduces
the built-in correlations of fBm paths in different memory regimes (i.e., for sub-,
Brownian and super-diffusion trajectories), providing a robust tool for the statis-
tical imputation at high missing ratio. As a biological application, we apply our
fBm-trained diffusion model for the imputation of microscopy-derived distance
matrices of chromosomal segments (Fluorescence In Situ Hybridization data) –
incomplete due to experimental imperfections – and demonstrate its superiority
over the standard approaches used in bioinformatics. Our source code is available at
https://github.com/alobashev/fbm-inpainting-benchmark.

1 Introduction

Diffusion probabilistic models are gaining popularity in the field of generative machine learning
due to their ability to synthesize diverse and high-quality images from the training distribution. The
iterative denoising approach taken by diffusion (1; 2; 3) outperforms in quality of generated samples
the previously used schemes (4), such as VAEs (5; 6) and GANs (7; 8; 9), and has demonstrated
a distinctive potential in scalability (10). Recently, several conditional diffusion-based generation
methods have been developed (11; 12; 13), allowing for effective inpainting of masked images using
the pre-trained unconditional diffusion model. Still, whether the diffusion-based inpainting can
learn and reproduce the intrinsic non-local dependencies in the pixels of the image drawn from a
particular statistical ensemble has remained unaddressed. Furtheremore, recent studies by (14; 15)
suggest that modern text-to-image generative diffusion models, such as Dalle-2 (10), Imagen (16), or
StableDiffusion (17), tend to recall samples from their training databases, raising questions about
their generalization capabilities and bringing up the copyright infringement concerns during the
diffusion training process.

In this paper we consider a dataset of incomplete Euclidean distance matrices (EDMs) and propose
to approach the EDM completion problem as the image inpainting via conditioning of the diffusion
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generative models. Importantly, the possibility of existence of the ground truth of the inpainting
in the EDM dataset allows one to evaluate the quality of the conditional generation at the instance
level. At high missing ratio, however, the solution of EDM completion does not exist and one has to
rely on the ensemble-level metrics such as Fréchet Inception Distance (FID). Here we ask: can the
diffusion model learn the intrinsic correlations between the entries of the matrix when an ensemble
of such matrices is given and statistically reproduce them upon the inpainting? In order to explore the
modern generative models at this novel angle we consider the pairwise distances between the points
of a discrete fractional Brownian process (fBm), the simplest Gaussian generalization of a Brownian
motion with strong scale-free correlations. The built-in memory in the fBm process can induce a
non-Brownian exponent of the second moment (also known as the mean-squared displacement of a
particle undergoing the anomalous diffusion, (18)), which is translated into strong couplings between
the pixels in the distance matrix.

Imputation of missing data has recently got a second wind with the development of high-throughput
experimental techniques in chromosome biology. Diffusion models have been recently applied to
generate and enhance protein and DNA datasets (19; 20; 21). Hi-C and FISH (Fluorescence In
Situ Hybridization, (22)) experiments have provided significant new insights into the fractal (non-
Brownian) folding of chromosomes (23; 22), despite the data being noisy and incomplete (24; 25).
In particular, it was recently shown that the spatial organization of human chromosomes without
loop-extruding complexes (cohesin motors) statistically resembles the ensemble of fractal trajectories
with the fractal dimension df = 3 (26; 27; 28; 29; 30; 23). Such an ensemble – leaving aside the
biophysical principles of such organization – can be modelled as trajectories of a subdiffusive fBm
particle with H = 1/3 (27). This suggests an important statistical insight for the downstream data
analysis (31; 32).

FISH imaging experiments produce datasets that represent matrices of pairwise distances between
chromosomal loci on single cells, which are obtained in multiplex microscopy. Thus each matrix
corresponds to internal distances within a given chromosomal segment in a given cell. Occasionally,
some data in the matrices is masked due to experimental imperfections (biochemistry of the protocol)
posing a real challenge for the methods of the downstream analysis. In particular, inference of
features of the 3D organization at the single cell level is notoriously obscured by the sparsity of the
dataset at hand (25). Here we for the first time propose to use the diffusion models for the inpainting
of missing values and completion of experimentally-derived FISH matrices. For this aim we deploy
the pre-trained fBm diffusion benchmark at H = 1/3, thus virtually taking into account the intrinsic
correlations present in the fractal chromosome trajectories (27; 26).

2 Background

2.1 Euclidean distance matrices

In this paper we deal with n × n matrices A of squares of pairwise distances between n points
x1, x2, ..., xn in the D-dimensional Euclidean space. For the purposes of this paper, we considered
the case of D = 3. Such matrices A = {aij} satisfying

aij = ||xi − xj ||2, xi ∈ RD (1)

are called Euclidean distance matrices (EDM). Any uncorrupted (complete, noise-less and labelled
(33)) EDM A allows for the unique reconstruction of the original coordinates {xi} up to rigid
transformations (translations, rotations and reflections). From Eq. 1 it could be derived that the rank
of EDM cannot be larger than D + 2. A case of incomplete distance matrix, where a particular set of
pairwise distances in Eq. 1 is unknown, is a prominent setting of EDM corruption that we study in
this paper.

Here we use the following greedy algorithm that checks for the uniqueness of the EDM completion of
a given binary mask with known values B which we interpret as an adjacency matrix of some graph.
We describe it for D = 3, however, it can be simply generalized for an arbitrary D. The algorithm
sequentially chooses and adds vertices one by one to a subgraph, ensuring the growing subgraph
at each step remains rigid. The key idea is that the coordinates of a new vertex in D dimensions
can be uniquely determined, if it is connected to at least D + 1 = 4 vertices of the rigid subgraph.
Following this idea, on the initial step (i) the algorithm identifies the maximal clique with not less
than 4 vertices. As the clique has a complete EDM, there is the corresponding unique realization
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in the metric space (all cliques are rigid). Then, (ii) the algorithm seeks and adds a new external
vertex, maximally connected with the rigid subgraph, but having not less than 4 edges. This process
continues (iii-iv...) until all vertices are included to the subgraph, or none can be further added. If all
the vertices are eventually included, the algorithm confirms that the given graph B is rigid and the
EDM completion of Ã is unique.

Fractional Brownian motion

Fractional Brownian motion is one the simplest generalizations of Brownian motion that preserves
Gaussianity of the process, but introduces strong memory effects (34). By definition, fBm is a
Gaussian process BH(t) on the interval [0, T ] that starts at the origin, B(0) = 0, and has the
following first two moments:

⟨BH(t)⟩ = 0; ⟨BH(t)BH(t′)⟩ = 1

2

(
t2H + t′2H − |t− t′|2H

)
(2)

and 0 < H < 1 is the Hurst parameter (the memory exponent).

3 Experiments and Results

In this work, we test diffusion-based inpainting methods such as DDPM (35), DDNM (12), DDRM
(13), and RePaint (11). These methods only need a pre-trained diffusion model as the generative prior,
but we stress that DDNM, DDRM, and RePaint additionally require knowing the corruption operators
at the generation. In our case, the corruption operator is a known corruption mask, which helps
diffusion to inpaint. Methods DDNM and RePaint use a time-travel trick (also known as resampling in
(11)) for better restoration quality, aimed at intense inpainting with a huge mask, but at small missing
ratio µ when almost all pixels are known this trick may worsen the quality. By DDPM inpainting,
we refer to the method introduced by (35), which is equivalent to the RePaint approach (11) without
applying resampling steps. It was shown in (12) that DDNM generalizes DDRM and RePaint, but in
our paper, we follow the convention that DDNM is a model with parameters, where the travel length
and the repeat times are both set to 3, and for RePaint, we use a number of resamplings steps set to
10. The results of the inpainting are presented in the Table 1.

Table 1: Comparison of different inpainting methods in EDM completion. The FID is calculated between an
ensemble of distance matrices, which are generated by the Davies-Harte algorithm (36), and reconstructed
samples corresponding to three different sparsity values µ. The dimension of the InceptionV3 (37) embedding
used for FID is 64. The rank measures the contribution of the first r = 5 singular values of the reconstructed
matrix in the nuclear norm. Database search refers to the most similar element from the training database
computed over known values.

Sparsity Metrics RePaint DDRM DDNM DDPM Database search

µ =
0.25

RMSE ↓ 0.49 ± 0.02 0.170 ± 0.017 0.211 ± 0.018 0.313 ± 0.023 1.12 ± 0.12

FID ↓ 0.0446±0.0026 0.013 ± 0.0017 0.027 ± 0.0015 0.0235±0.0019 1.225 ± 0.009

Rank ↑ 0.858 ± 0.025 0.853 ± 0.023 0.854 ± 0.022 0.849 ± 0.025 0.65 ± 0.05

µ =
0.5

RMSE ↓ 0.54 ± 0.04 0.241 ± 0.027 0.325 ± 0.027 0.55 ± 0.05 1.61 ± 0.18

FID ↓ 0.053 ± 0.003 0.018 ± 0.002 0.053 ± 0.002 0.0246±0.0007 1.79 ± 0.01

Rank ↑ 0.86 ± 0.025 0.854 ± 0.025 0.853 ± 0.025 0.843 ± 0.030 0.63 ± 0.05

µ =
0.75

RMSE ↓ 0.68 ± 0.06 0.42 ± 0.04 0.56 ± 0.04 1.23 ± 0.18 1.97 ± 0.22

FID ↓ 0.075 ± 0.003 0.034 ± 0.003 0.116 ± 0.002 0.096 ± 0.003 1.25 ± 0.011

Rank ↑ 0.863 ± 0.025 0.854 ± 0.027 0.854 ± 0.027 0.82 ± 0.04 0.65 ± 0.05

As an application of the pre-trained fBm diffusion model, we discuss the results of imputation of
missing data in single cell matrices of pairwise distances between chromosomal segments (see Figure
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2) obtained from microscopy experiments, namely Fluorescence In Situ Hybridization, FISH (22).
The dataset 1 represents the 3D coordinates of 30kb segments on a human chromosome 21 (the
human colon cancer cell line, HCT116) measured using the multiplex microscopy. Noticeably,
some of the coordinates are missed (nan values in the data). For our purposes of the restoration of
missed coordinates we used the data with auxin that supposedly corresponds to the condition with no
cohesin-mediated loops. We take the 2Mb-long segment from 28Mb to 30Mb for the analysis, the
corresponding file name is "HCT116_chr21-28-30Mb_6h auxin.txt".

(a) (b)

Figure 1: (a) FID and (b) RMSE for three diffusion-based inpainting methods: DDPM (35), DDRM (13) and
DDNM (12). The metrics are computed as functions of sparsity µ of originally incomplete EDMs of fBm
trajectories. The Hurst parameter of the corresponding fBm trajectories is H = 1/2. The errors of RMSE are
computed using a sample of 2000 inpainted distance matrices. The errors of FID for each µ are computed by
randomly drawing (100 times) sub-samples with 90% of matrices and computing the values of FID for each
sub-sample; then the mean and the standard deviation of these values is taken. At µ ≈ 0.65 the uniqueness of
EDM completion is lost (vertical red line).

First, using the raw data we reproduce the fractal scaling of chromosomal folding (23; 26; 27), i.e.
⟨x2(s)⟩1/2 ∼ s1/3 (see more details in the supplementary material.) Thus, to inpaint the missing
data we decided to use the diffusion model trained on the fBm ensemble with H = 1/3 (the fractal
dimension is the inverse of the Hurst parameter). Figure 2 shows the resulting matrices obtained using
various inpainting methods run on a particular FISH dataset (cell 343). To measure the performance

Table 2: Reconstruction of chromatin (FISH) distance matrices. Average metrics over 670 single cells are shown
Methods Ens. mean NN DDPM RePaint DDNM DDRM

RMSE, nm 147.4± 5.2 111.4± 3.2 97.2± 2.5 98.3± 2.7 85.1± 2.8 84.2 ± 2.8

Rank 0.752±0.025 0.79± 0.03 0.79± 0.04 0.82± 0.04 0.82± 0.03 0.82± 0.03

of the DDPM inpainting in comparison to other methods we chose 670 cells (out of 7380 cells) in the
dataset that have exactly 15 missing rows and columns. This corresponds to sparsity µ′ = 0.29. In
order to compute RMSE (Table 2) we additionally dropped 10 rows and columns from the matrices
resulting in µ = 0.63. We then imputed the missing distances using the standard bioinformatics
approaches (nearest neighbor, ensemble mean) and various diffusion-based inpainting methods
(DDRM, DDNM, DDPM, RePaint). The nearest neighbor approach relies on filling the unknown
distances with the nearest neighbour in the same matrix (cell). The ensemble mean approach fills
the missing entry with the corresponding average over the cells where this element is known. The
average RMSE was computed for each imputed cell over the known values in the dropped 10 columns
and rows. Note that since the entire rows and columns are missing in FISH distance matrices, precise
EDM completion algorithms such as FISTA (38) or trajectory optimization (OPT) are not applicable
here. Figure 1 illustrates the performance of various inpainting methods as a function of the missing
ratio µ. Around µ ≈ 0.65, the EDM loses the uniqueness of its completion, leading to higher FID

1Data is publicly available at https://github.com/BogdanBintu/ChromatinImaging
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Figure 2: Inpainting of chromosome distance matrices from a FISH experiment. (a) Original experimental matrix
with 15 missing rows and columns. (b) Corrupted experimental matrix with 10 rows and columns additionally
masked. The masking is needed in order to evaluate RMSE of various inpainting methods at the known (masked)
values. The resulting sparsity is µ = 0.63. (c)-(h) Inpainting methods, as indicated. For the ensemble mean
(d) the average value is taken over 670 single cell distance matrices, where the corresponding matrix element
is known. Diffusion-based methods (e)-(h) exploit the pre-trained diffusion model with the Hurst parameter
H = 1/3. The colorbars show the range of pairwise distances between chromosomal loci in nm. The data is
shown for cell 343.

values as the methods sample different plausible solutions. At µ = 1, where no information is
provided for inpainting the methods exhibit contrasting behaviors. DDPM becomes unconditional
sampling of EDM matrices. DDNM method, which has repaint steps, performs best in short region
but then diverges in terms of FID. The DDRM, which depends on additional a pseudoinverse operator
during the sampling, also monotonically diverge in FID. Among all method only DDPM is sensitive
to the loss of uniqueness at µ ≈ 0.65.

Consistently with numerical experiments, the Table 2 demonstrates that the DDRM inpainting trained
on the fBm benchmark is superior over other diffusion-based and bioinformatics approaches. It
should be noted that it has a comparable RMSE and rank with DDNM inpainting, while RePaint and
DDPM behave slightly worse (the resulting RMSE is more than 10% larger). This is to be compared
with other approaches, such as filling the missing distances using the nearest neighbor pixel from
the same matrix (NN) or using the average over the cells where this matrix element is known (Ens.
mean). These clearly naive approaches behave significantly worse both in the rank and RMSE. This
observation highlights that our diffusion-based inpainting shows evidently better performance on a
biological dataset than canonical bioinformatics approaches.

4 Conclusion

We apply the unconditional DDPM model on the dataset of euclidean distance matrices of the
fractional Brownian motion with memory exponent H = 1/3 for the problem of EDM completion,
exploring diffusion inpainting methods at various sparsity parameters. We show that the diffusion-
based inpainting not only learns the latent representation of the distance matrices, but also manages
to properly reproduce the statistical features of the fBm ensemble (the memory exponent).

We observe that DDRM inpainting performs better in terms of FID and RMSE metrics, whereas the
FID metric of DDPM indicates a loss of uniqueness in the ground truth for inpainting.

Application of the diffusion pretrained on fBm ensemble for the microscopy-derived dataset of pair-
wise spatial distances between chromosomal segments demonstrates its superiority in reconstructing
the missing distances over the standard approaches widely used in bioinformatics. We thus expect
that other chromosomal datasets obtained in high-throughput experiments (such as Hi-C) that can be
represented as matrices would benefit from the proposed approach.
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