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Abstract

In the field of foundation models for materials science and chemistry, the quality
of molecular representations plays a critical role in the success of machine learning
models in downstream tasks. Transformer-based molecular representation models
have shown great potential in these areas by generating high-quality latent repre-
sentations of molecules. However these representations often fail to capture the
full complexity of molecular structures, leading to suboptimal performance in pre-
dictive tasks. In this work we propose a simple yet novel multi-view representation
method to improve the expressiveness of the molecular latent representations. We
provide preliminary analysis of the proposed method which shows promising im-
provements compared to the conventional method, suggesting that the multi-view
approach improves the quality of the latent representations.

1 Introduction

Large-scale molecular representation methods are shown to be useful in various material science
applications, such as virtual screening, drug discovery, chemical modeling, material design, and
molecular dynamics simulations. With the progress in deep learning, numerous models have been
developed to derive representations directly from molecular structures. Recently, transformer-based
molecular representations have gained prominence in material informatics, offering significant
potential for advancements in drug discovery, materials science, and related fields. Recent works (1}
253 145 15) have demonstrated the capability of transformer models in capturing complex relationships
and patterns within molecular data with the help of attention mechanisms. Most of these works
are based on SMILES (Simplified Molecular Input Line Entry System) (6). However, one of the
drawbacks of SMILES is that it does not guarantee syntactic and semantic validity of the molecule
(@), thus leading to a possibility of learning invalid representations. SELFIES (SELF-referencing
Embedded Strings) is another molecular string representation that was introduced by (7)) to overcome
the drawbacks of SMILES. Furthermore, in addition to achieving high accuracy predictions of
molecular properties, a key objective within computational material informatics is to devise novel and
functional molecules. But most existing transformer models for material informatics are encoder-only
models, which are not capable of generating new molecules.

In this paper, we introduce SELF-BART, a transformer-based model capable of capturing intricate
molecular relationships and interactions. Unlike most existing works that utilize encoder-only
models, we propose an encoder-decoder model based on BART (Bidirectional and Auto-Regressive
Transformers) (8). This model not only efficiently learns molecular representations but is also
capable of auto-regressively generating new molecules from these representations. This capability is

38th Conference on Neural Information Processing Systems (NeurIPS 2024).


indra.ipd@ibm.com
seijitkd@jp.ibm.com
lisa.hamada@ibm.com
hajime.shinohara1@ibm.com

Transformer or Autoencoder model

Encoder Latent Decoder
representation
Each molecule YR - RYAT Decoded
represented as p' - ’ > SMILES/;ELFIES
SMILES/SELFIES < ') string
string — -
Downstream
model
Predicted
Property

(Eg. Toxicity)

— Pretraining

—— Finetuning / Downstream

Figure 1: General architecture and flow of training

particularly impactful for novel molecule design and generation, facilitating efficient and effective
analysis and manipulation of molecular data.

2 Background and Motivation

While foundation models have shown great promise in materials science and chemistry, they face a
significant challenge: the limited availability of large, diverse datasets, especially in the downstream
tasks. In contrast to the vast text corpora used to train large language models (LLMs), datasets
in materials science and chemistry often contain only a few hundred samples. This data scarcity
hampers the ability to train models that generalize well to unseen molecular structures, especially for
tasks requiring high-quality latent representations.

One common approach to addressing this issue is SMILES enumeration (9), a data augmentation
technique that generates multiple valid SMILES representations for the same molecule. The same
enumeration can be extended to SELFIES strings too. Figure 2]illustrates an example of a molecule
represented by several different SMILES/SELFIES strings. While this method increases the dataset
sample size, it does not necessarily enhance the quality or expressiveness of the latent space learned
by the model. Simply adding more samples might improve training performance, but it does not
guarantee that the learned representations effectively captures the molecular properties.

SELFIES Example: Toluene molecule SMILES

[cllcl[=CIIC][=C][C][=C][Ring1][=Branch1]
[C][=C][C][=C][Branch1][Branch1][C][=C][Ring1][=Branch1][C]
[C][Branch1][Branch2][C][=C][C][=C][C][=Ring1][=Branch1][C]

[Cl=ClIC][=C][C][=C][Ring1][=Branch1][C] €1=CC=CC=C1C

[CllClICI[=ClIC]=C][C][=Ring1][=Branch1] / €C1C=CC=CC=1

[cl[c][=C][Branch1][C][C][C][=C][C][=Ring1][#Branchl] +—v = < €1c=C(C)c=Ccc=1
[C][=C][Branch1][#Branch1][C][=C][C][=C][Ring1][=Branch1][C] «———= €1=C(C=CC=C1)C
[CICI[=C](C][=Branch1][Branch1][=C][C][=Ring1][=Branch1](C] 7 § c1c=cel=ce=1)c

[C]i=C][C][=C][Branch1][C][C][C][=C][Ring1][#Branch1] €1=CC=C(C)c=C1

[Cl[=C][C][=Branch1][=Branch1][=C][C][=C][Ring1][=Branch1][C] €1=CC(=CC=C1)C

Celcececel
C1=Cc=C(C=C1)C
€1(c=cc=Cc=1)C

/4
N

Figure 2: Example of SMILES/SELFIES enumeration where a single molecule can be represented in
multiple forms

This study is driven by the need to understand how the latent representations of enumerated strings
relate, given that they represent the same underlying molecule. To explore this, we conducted a
preliminary analysis by selecting 10 random molecules from the MoleculeNet (10) BACE dataset
and generated 100 alternative SMILES strings for each. We then extracted the latent representations
using a transformer encoder-decoder model and visualized them using t-SNE visualization (I1). As
shown in Figure [3] clear clusters emerged, where each cluster corresponds to a molecule and its
alternative representations. The latent representations of the enumerated SMILES/SELFIES form a
cloud, indicating that these alternate forms cluster together and can be treated as different views of
the same molecule, each conveying a different aspect of the same underlying molecule.



Building on these observations, we propose a novel framework called Multi-View Representation
(MVR) to enhance the expressiveness of molecular representations. The proposed method is detailed
in the following section.
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Figure 3: T-SNE plot of the latent representation 10 different molecules and their enumerated forms

3 Proposed Method

In this paper, we introduce a Multi-View Representation (MVR) framework aimed at enhancing the
expressiveness of latent representations in molecular modeling. The core idea is to generate multiple
latent representations for the same molecule, each capturing distinct features or "views" of the
molecule. By systematically selecting and combining these features, we create a more comprehensive
and enriched latent vector representation. This approach is expected to improve the quality of the
latent space representation, consequently improving the performance in downstream tasks such as
molecular property prediction. The schematic of the proposed MVR framework is illustrated in
Figure[d] The proposed framework operates through three main steps:

¢ Generating multiple string representations: Obtain k different SMILES or SELFIES strings
for the same molecule, including canonical and non-canonical variants. These alternate
string representations provide different "views" of the molecule’s structure.

 Extracting Latent Representations: For each generated string, we use a pretrained model (Eg.
transformer-based encoder) to obtain its latent representation. Each latent representation
is hypothesized to capture different aspects or "views" of the molecule’s structure and
properties.

* Selecting and Combining Latent Representations: To create an enriched representation,
a greedy selection process is used to identify the most informative latent vectors. These
selected vectors are concatenated to form a unified, comprehensive latent representation that
leverages the diversity of the alternate views.

The final enriched feature vector is fed into a downstream model to make predictions. By leveraging
multiple views of the molecule, this approach is expected to enhance molecular modeling by cap-
turing a broader spectrum of molecular features from different latent views, ultimately improving
performance in various cheminformatics tasks.

4 Results and Discussions

To evaluate the effectiveness of the proposed multi-view representation (MVR), we conducted
experiments on four classification tasks from the MoleculeNet dataset. The proposed MVR method
can be applied to SMILES and SELFIES based string representations. Thus to demonstrate this, we
use Molformer (3)), a molecular representation model trained on SMILES and SEFIES-BART (12)), a
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Figure 4: Proposed Multi-View Representation Framework

molecular representation model trained on SELFIES, for extracting the latent representations. For
each molecule in the datasets used for evaluation, we generated 4 alternate SMILES/SELFIES string,
one of which is the canonical set. Thus £ = 5 including the original dataset. The latent representation
of the molecules for each set is extracted using the encoders of Molformer and SELFIES-BART,
respectively. These representations are used as input features in the downstream XGBoost model
(13). The metric used for the evaluation is ROC-AUC score. The extracted latent representations
are concatenated in combinations of k=2,3,4,5 and a greedy selection method is applied to select
the best combinations to form the new enriched latent representation as detailed in Section 3. The
corresponding results are reported in Table[T] The results of the original and alternate sets As seen
from the results, the proposed MVR method shows significant increase in ROC-AUC scores. While
further tuning of the downstream model could enhance performance, this was not pursued, as the
focus of this study was on demonstrating the gains from the proposed method. Also, the number
of alternate representations (k) is a hyperparameter, and future work may explore more efficient
methods for optimizing it.

MolFormer - SMILES BART - SELFIES
BACE BBBP ClinTox HIV | BACE BBBP ClinTox HIV
Original 82.78 93.95 97.57 72.88 | 83.84 92.17 89.70 73.43
Canonical 84.43 91.01 86.39 72.35 | 86.52 87.06 84.44 71.50

Non-canonical (set 1) | 78.87 89.81 75.62 72.69 | 70.78 83.38 76.80 71.09
Non-canonical (set 2) | 70.27 88.34 69.23 7221 | 77.48 84.57 81.12 69.72
Non-canonical (set 3) | 73.68 83.29 81.07 68.99 | 76.96 84.71 79.23 70.26

MVR (k=2) 84.12  95.09 97.87 7542 | 87.77  93.77 90.95 74.21
MVR (k=3) 84.74  95.19 98.28 76.62 | 8439  93.83 97.51 77.54
MVR (k=4) 84.17  95.25 98.52 74.28 | 87.81  94.22 85.27 74.03
MVR (k=5) 80.59  95.78 97.40 70.01 | 86.13  93.31 86.33 70.33

Table 1: Performance comparison of the proposed method on MoleculeNet tasks.

5 Conclusion

In this paper, we presented a novel multi-view representation approach designed to enhance the
expressiveness of molecular representations in transformer-based models. The core idea is to obtain
different latent representations for the same molecule and systematically select features to form a
more enriched latent vector. This can be regarded as capturing different view of the same molecule.
Through a series of experiments on benchmark datasets, we demonstrated that incorporating multi-
view representations can lead to better performance in various downstream property prediction tasks.
This work opens several avenues for further exploration and investigate the potential of multi-view
representations
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