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Abstract

Accurate modeling of atomistic interactions using machine learning potentials has
become an essential tool for molecular dynamics simulations. However, training
these models typically requires large amounts of expensive ab initio data, such as
those generated by density functional theory. Recently, foundation models trained
on large and diverse datasets have shown promise because of their good perfor-
mance, even on out-of-distribution systems. Despite this progress, they are still far
from optimal and often require further fine-tuning. Doing so, especially in a data-
efficient and computationally feasible way, remains a key challenge. In response,
we present franken, which combines a representation extracted from graph neural
networks with random features models. Through experiments on systems from the
TM23 transition metals dataset, we show that franken provides accurate and robust
molecular dynamics simulations with minimal sample complexity, providing an
efficient path to high-quality results.

1 Introduction

Machine-learning (ML) interatomic potentials[1] have become crucial tools for molecular
dynamics[2] (MD) simulations in a wide range of systems, managing to provide similar accuracy to
ab initio calculations at a tiny fraction of the cost. They work by fitting the potential energy surface
(PES) as a function of atomic coordinates to a set of reference quantum-mechanical calculations,
typically performed within the framework of density functional theory (DFT). Many ML architectures
have been designed around the properties of the PES, such as the invariance under roto-translation
and permutation of atoms of the same chemical species. To meet these requirements, one can either
use physically-motivated invariant descriptors together with feed-forward neural networks [3]/kernel
methods [4] or graph neural networks (GNNs) such as [5, 6]. The latter encodes symmetries directly
within the architecture [7], implicitly learning an effective representation of the system.

One limitation of ML potentials is that they are typically system-specific, requiring large, high-quality
datasets containing all relevant configurations, which can be prohibitively expensive to generate. The
recent emergence of atomistic foundation models [8, 9], trained on large and diverse datasets such
as OpenCatalyst [8] and MaterialsProject [10], introduced a paradigm shift. These models exhibit a
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remarkable degree of generalization, showing robustness even when applied to systems that differ
from their training data. Yet, despite their broad applicability, foundation models often fail to deliver
the accuracy required on specific systems. Hence, an additional round of fine-tuning [11] is made
necessary.

Building upon [12, 13], we propose franken, a fine-tuning method that addresses these challenges
by combining the generalization power of foundation models with the computational and data
efficiency of random features (RF) models. Leveraging the well-understood theoretical properties
of RF models [14, 15], the global optimum solution for franken can be computed in closed form,
resulting in an extremely fast optimization. Our method provides a lightweight and theoretically
grounded solution for enhancing foundation models, with promising outcomes in challenging MD
scenarios.

2 The Proposed Method: Franken

Our method aims to obtain a model for the potential energy of atomistic systems by fine-tuning a
foundation model. Its mechanism can be decomposed into three steps:

R
(1) GNN7−−−−−→ h(R)

(2) RF7−−−−→ ϕ(h(R))
(3) energy7−−−−−→

readout
⟨w, ϕ(h(R))⟩ .

(1) Extracting feature maps from GNN. The first step of franken’s pipeline is representing the
chemical environment of each atom in a configuration R ∈ R3N with a vector h(R) ∈ Rd of SO(3)-
invariant features extracted from the inner layers of a pre-trained atomistic foundation model [9, 16].
Although we focus on invariant descriptors, in cases where the GNN backbone employs equivariant
message-passing schemes, the invariant features of the inner layers are determined by the underlying
equivariant information from previous ones. This enables franken to leverage equivariant properties
indirectly while maintaining the computational simplicity of invariant features.

In the experiments reported below, we employed the MACE-MP0 foundation model, based on the
MACE architecture [9] and optimized on the Materials Project [10] database. Inspired by the readout
function of the MACE architecture, the descriptors h are obtained by concatenating the invariant node
features v(l) at different interaction steps l up to L into a single vector: h(R) = (v(0),v(1), ...,v(L)).

(2) Random features models. The GNN descriptors h(R) ∈ Rd are then transformed with an
additional non-linearity via Random Features (RF) maps [17, 18, 19]. These are non-linear functions
ϕ : Rd → RD that, as the output dimension D grows, asymptotically approximate a given kernel
function [20]. Therefore, RFs can be seen as large-scale alternatives to exact kernel methods attaining
similar learning guarantees [14, 15]. In particular, we can use RFs to approximate the popular
Gaussian kernel using the following map [17, 19]

ϕ(h(R)) := sin (W · h(R) + b) ,

where W ∈ RD×d has rows sampled independently from a standard multivariate normal, and b ∈ RD

with entries sampled i.i.d. uniformly in the range [0, 2π). Notice how the parameters W and b need
not be learned, just sampled once. Similar strategies can also be adapted for polynomial kernels [18]
or softmax kernels [21].

(3) Readout: energy and forces predictions. In the last step, we model the atomic energy for the
n-th atom as the scalar product between the fixed GNN+RF descriptors ϕn(R) := ϕ(hn(R)) and a
learnable vector of coefficients w ∈ RD

ϵn(R;w) :=
1

N
⟨ϕn(R),w⟩ .

The total energy is then obtained via a pooling operation E(R;w) = N
∑N

n=1 ϵn(R;w), while the
forces are calculated as the gradient of the total energy

F (R;w) = −∇RE(R;w) = −w⊤
N∑

n=1

∇Rϕn(R),

where ∇Rϕn(R) ∈ RD×3N is the Jacobian of ϕ with respect to R which can be efficiently computed
using automatic differentiation.
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Franken optimization. To train franken over a dataset D := (Rt;Et,Ft)
T
t=1, we only need to

optimize the vector of coefficients w. In practice, we minimize a convex combination of least squares
loss functions for energy and forces

ℓα(w) := (1− α)ℓE(w) + α ℓF(w), (1)

ℓE(w) :=

T∑
t=1

(E(Rt;w)− Et)
2

ℓF(w) :=

T∑
t=1

∥F (Rt;w)− Ft∥2 .

Working out the gradient of the loss functions, as shown in Appendix A, allows us to compute
the global minimum of Eq. (1) analytically. This is possible due to the convexity properties of RF
models. By solving the closed-form expression for the optimal parameters, franken achieves efficient
fine-tuning without the need for iterative gradient descent, further reducing computational costs.

3 Experiments

Since our main focus is performing MD simulations, we need ML potentials that, in addition to
accurately predicting energy and forces, generate reliable trajectories that adhere to the underlying
physics over time [22]. To this aim, we fine-tuned the MACE-MP0 foundation model [9] on copper
(Cu) data from the TM23 dataset [23]. This dataset contains configurations extracted from DFT-
based MD simulations at three different temperatures: Cold = 0.25 Tm, Warm = 0.75 Tm, and Melt
= 1.25 Tm, where Tm = 1358 K is the melting point. To assess the data-efficiency, we trained
franken models on 5 random subsamples of the training dataset (2700 configurations), with sizes
ranging from 8 up to 2048 samples. For each model, the accuracy of force predictions is evaluated on
the validation dataset (300 configurations). Furthermore, to assess the quality of the MD generated by
franken, we performed a 50 ps-long simulation for each of the three temperatures considered above.
Specifically, we compared the resulting radial distribution function [2] (RDF) with the reference ones
provided in [23].
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8 5.8± 0.4
32 8.4± 0.5

128 16.6± 0.9
512 46.4± 0.9

2048 163.8± 0.6

Figure 1: Sample complexity, forces prediction. Training (dashed lines) and validation (solid lines)
mean absolute errors corresponding to different numbers of RFs as a function of the training samples.

Table 1: Forces accuracy

Model Forces MAE

MACE-MP0 [9]
93.15 meV/Å(zero-shot)

FLARE [24]
8.82 meV/Å [23](from scratch)

franken 7.61 meV/Å(fine-tuning)

Accuracy: The forces’ mean absolute error (MAE) reaches
values ≤ 10 meV/Å already with few tens of training
points, see Fig. 1. As the model complexity (that is, the
number D of RFs) increases, the model performance im-
proves accordingly. To put these results in perspective, in
Table 1, we compare franken against MACE-MP0 zero-
shot, as well as the kernel-based FLARE method [24] re-
ported in [23].

Data efficiency: In Fig. 1, we plot training and validation
errors as a function of the number of training configurations.
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The difference between training and validation errors is a
proxy of the generalization capability of the model, with
large values typically associated to overfitting. For franken the gap between train and validation
errors is rapidly depleted as the number of training samples is increased. For example, with 1024
random features, just 128 samples suffice to have a validation error of 9 meV/Å, only 0.64 meV/Å
away from the training error.

Even more strikingly, in Fig. 2 we show the Radial Distribution Function (RDF) resulting from MD
simulations with franken potentials. Already at 32 training samples, franken potentials can generate
dynamics whose resulting RDF is virtually identical to the DFT reference (dotted gray) for every
temperature considered. This number can be further lowered to 8 samples for the cold and warm
regimes, which are closer to the pre-training distribution of the backbone foundation model [9].

Speed: The embarrassingly parallel training algorithm of franken allowed us to fine-tune the founda-
tion model [9] in mere seconds, with a training time growing linearly with the number of samples
(see the Table in Fig. 1). The inference performance, measured in terms of frames per second (FPS)
on a single A100 GPU, is 62 FPS, which is about 15% faster than the original foundation model (54
FPS). This is explained by the fact that franken stops the forward pass through the GNN as soon as it
collects the needed descriptors, ignoring, e.g., readout layers. Both training and inference times have
a negligible dependence on the number of random features throughout the range 128-4096 that we
have tested. This makes the case for franken being a powerful yet lightweight fine-tuning scheme.
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Figure 2: Sample complexity, MD simulations. Radial distribution functions generated from MD
simulations with franken potentials at different temperatures (rows) and with 4096 RFs. Different
columns correspond to different numbers of training samples. Each panel shows the mean (solid line)
and standard deviation (shaded area) over 5 models trained on independent sub-splits, together with
the reference calculated from the TM23 dataset (dotted line).

4 Conclusion

We presented a preview of franken, a method that combines the robustness of atomistic foundation
models with the efficiency of RF models to train accurate ML potentials in a matter of seconds on a
single GPU. Preliminary experiments on copper systems show franken’s accuracy, data efficiency,
and speed. Crucially, RF models can be easily implemented in deep learning libraries as neural
network modules, enabling seamless integration with existing foundation models. Further ongoing
studies are comparing the performance of franken with other baselines, as well as the behavior when
changing the GNN backbone and/or RF model, evaluated on a range of different metrics, from mean
absolute errors to dynamic stability [22].
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Supplementary Material

A Training algorithm

Training franken requires to minimize the loss function Eq. (1). The convexity properties of RF
models ensure that there exists a vector of coefficients w∗ which globally minimizes Eq. (1). Without
loss of generality, we now show how the global minimizer can be computed in the case α = 0, that is

ℓ0(w) = ℓE(w) =

T∑
t=1

(E(Rt;w)− Et)
2
+ λE∥w∥2, (2)

where we added a standard L2 regularization term λE∥w∥2. When α ̸= 0, the derivation is exactly
the same. To minimize Eq. (2) over a training dataset D := (Rt;Et,Ft)

T
t=1 let’s first recall that

E(Rt;w) = Nt

N∑
n=1

ϵn(R;w) =

N∑
n=1

⟨ϕn(Rt),w⟩ =

〈
N∑

n=1

ϕn(Rt),w

〉
=:
〈
ϕ̄(Rt),w

〉
where Nt is the number of atoms in the t-th configuration and we have defined ϕ̄(Rt) :=∑N

n=1 ϕn(Rt). Plugging the definition of the energy back into the loss function and taking the
gradient of ℓE(w) one gets:

∇wℓE(w) = 2

(
λ1D +

T∑
t=1

Ntϕ̄(Rt)⊗ ϕ̄(Rt)

)
w − 2

T∑
t=1

Etϕ̄(Rt). (3)

Let us now define the covariance matrix C and coefficient vector b as

C :=

T∑
t=1

Ntϕ̄(Rt)⊗ ϕ̄(Rt) ∈ RD×D b :=

T∑
t=1

Etϕ̄(Rt) ∈ RD. (4)

Since the problem Eq. (2) is strongly convex, it has a unique global minimizer corresponding to the
solution of ∇wℓE(w) = 0. Using the definitions in (4) one has:

w∗ = (λ1D + C)−1b. (5)

Computational cost & parallelization

The bulk of the computation in franken’s algorithm is concentrated in computing Eqs. (5) and (4).
Given that the number of random features is usually on the order of a few thousand, the solution of the
linear system in Eq. (5) is extremely fast. On the other hand, computing the covariance in (4) requires
a full pass over the backbone GNN (and in the case of forces, it also requires a backward pass). This
has been consistently the most time consuming step in our experiments. Yet, since the covariance is
just a sum of independent terms, its computation can be easily parallelized across different GPUs,
reducing the training time by a factor of the number of GPUs.
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