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Abstract

We present a novel framework for solving inverse problems in function spaces
using diffusion-based generative models. Unlike traditional methods, which often
discretize the domain and operate on fixed grids, our approach is discretization-
agnostic, allowing for flexibility during sampling and generalization across different
resolutions. Built upon function space diffusion models with neural operator
architectures, we adapt the denoising process of pre-trained diffusion models to
efficiently sample from posterior distributions in function spaces. This framework
can be applied to a variety of problems, such as recovery of initial conditions and
coefficient functions in noisy or partially observed PDE-based inverse problems
like Darcy flows and Navier–Stokes equations. To the best of our knowledge, this is
the first diffusion-based plug-and-play solver for inverse problems that operates in
a discretization-agnostic manner, providing a new perspective on inverse problems
with functional data, as typically arising in the context of PDEs.

1 Introduction

Solving inverse problems is an essential task in applied mathematics and the computational sciences,
dealing with the recovery of unknown signals from corrupted or incomplete measurements. The
fundamental goal is to reconstruct an unknown signal a from an observed measurement u = A(a)+ϵ,
where A is the so-called forward operator A and ϵ represents noise. Assuming a prior distribution
p(a) on the signal and a suitable distribution for the noise, we can take a Bayesian perspective on the
inverse problem, where we seek to sample from the posterior distribution p(a|u) [1].

In recent years, diffusion models have emerged as a promising approach for learning the prior
distribution p(a), offering new possibilities for the solution of inverse problems [2, 3, 4, 5]. Var-
ious approaches have been proposed to leverage diffusion priors, ranging from guidance terms or
resampling strategies within the generative process [4, 5, 6, 7] to integrations within variational
frameworks [8, 9]. The former plug-and-play methods rely on adaptations of the generative process of
diffusion models to push samples from the prior p(a) to the posterior distribution p(a|u), for instance,
by guiding the process towards the measurement subspace defined by {a : A(a) = u} [5, 6, 7].

Plug-and-play conditional generation and the solution of inverse problems with diffusion models
have been extensively studied in finite-dimensional spaces, such as fixed-resolution images. However,
applying these techniques to inverse problems in the context of partial differential equations (PDEs)
formulated in function spaces remains largely unexplored. A recent advancement in this direction is
the DiffPDE method [10], which proposes learning the joint distribution between initial conditions or
coefficient functions and the solutions of PDEs. While it demonstrated promising results in solving
forward and inverse problems using sparse observations, DiffPDE is limited by its reliance on fixed
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2D discretizations. In particular, it employs image-domain diffusion models to solve inpainting
problems on discretized spaces, although the underlying data is naturally given by functions [11].

In contrast, our approach operates directly on function spaces without relying on fixed resolutions.
Discretization is employed solely for computational purposes, allowing for natural generalization
across different resolutions. This is achieved by adapting existing diffusion models in function
spaces [12, 13, 14] for plug-and-play conditional sampling. Diffusion models in function spaces differ
in two crucial aspects from their finite-dimensional counterparts. First, these approaches replace the
neural network used as a denoiser with a discretization-agnostic neural operator [15, 16, 17]. Second,
the multivariate Gaussian noise used for training and generation is replaced by an appropriate concept
of noise in function spaces, i.e., Gaussian random fields. We base our implementation on EDM-FS1,
which adapts successful techniques for diffusion models on finite-dimensional domains [18] to
function spaces.

Motivated by these advancements in operator learning, we propose a new framework for posterior
sampling with function space diffusion models. Our contributions can be summarized as follows:

• We develop a plug-and-play framework for solving inverse problems naturally formulated in
function spaces. Our approach requires no additional training and only relies on a pre-trained
diffusion model specifying the prior distribution.

• We validate the efficacy of our approach through various experiments on inverse problems
in the context of Darcy flows and Navier–Stokes equations.

• We empirically demonstrate that our approach is discretization-agnostic, allowing for gener-
alizations to resolutions different from the training resolution. In particular, we show that
the diffusion model can be efficiently trained by predominately using low-resolution data.

2 Diffusion Based Inverse Solver on Function Spaces

We focus on general inverse problems in function spaces, with the goal of retrieving an unknown
function a ∈ A from a measurement function u ∈ U given by

u = A(a) + ϵ with A : A → U . (1)

In the above, A = A(D;Rda) and U = U(D;Rdu) are separable Banach spaces of Rda-valued
and Rdu-valued functions on a bounded open set D ⊂ Rd and ϵ is an U-valued random variable
representing the measurement noise. In particular, we consider the Bayesian viewpoint, where our
goal is to sample from the posterior distribution p(a|u).
To this end, we assume that we have access to a pre-trained (function space) diffusion model that can
sample from the prior p(a). Diffusion (probabilistic) models have demonstrated high quality and
stability in generation tasks [2, 19, 20, 18]. They are based on defining a sequence of distributions
pt(at) by gradually adding noise to the data a until approximately reaching a tractable and easy-to-
sample distribution Γ. For suitable noise distributions, one can reverse this noising process and sample
from the distribution p(a) when having access to the conditional expectations E[a|at] [21, 14]. Since
these conditional expectations are typically intractable, one approximates them using a denoiser
Dθ(at, t) trained using a denoising score matching objective [2, 18]. For data a from infinite-
dimensional function spaces, we parametrize Dθ as a neural operator [12, 22, 23] and choose the
noise as Gaussian random fields (as compared to neural networks and multivariate Gaussian random
variables for the finite-dimensional setting).

Gradient guidance. Our focus is to adapt the generative process of a pre-trained diffusion model via
an extension of gradient guidances in order to sample from the posterior distribution p(a|u) instead
of the prior p(a). Leveraging the Bayesian perspective, we decompose the posterior distribution of
the noisy data into a prior and likelihood term during the denoising steps, i.e.,

pt(at|u) ∝ pt(at)pt(u|at). (2)

Using the pre-trained diffusion model, one can approximately reverse the noising process pt(at) of
the prior. Motivated by the gradient-based inverse solver DPS [5], we can consider a generalization
of Tweedie’s formula [24] to account for the effect of the likelihood term pt(u|at). In particular, we

1https://github.com/neuraloperator/cond-diffusion-operators-edm
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Algorithm 1 Diffusion-Based Inverse Solver on Function Spaces

Require: u,A,Dθ, {ti}Ni=0, {λi}N−1
i=0

1: a0 ∼ Γ ▷ Initialize
2: a←Dθ(a0, t0)
3: for i = 0 to N − 1 do ▷ Generative process
4: di ← (ai − a)/ti
5: ai+1 ← ai + (ti+1 − ti)di ▷ Take Euler step from ti to ti+1

6: if ti+1 ̸= tN then ▷ Apply 2nd-order correction
7: a′ ←Dθ(ai+1, ti+1)
8: d′

i ← (ai+1 − a′)/ti+1

9: ai+1 = ai + (ti+1 − ti)(
1
2di +

1
2d

′
i)

10: end if
11: ai+1 ← ai+1 − λi∂a′∥u−A(a′)∥2U ▷ Invoke the gradient guidance
12: a← a′ ▷ Cache denoised sample
13: end for
14: return aN

iteratively update the samples at using the consistency between the given measurement u and the
one obtained from the denoiser, i.e., A(Dθ(at, t)), leading to the update rule

at ← at − λ∂at
∥u−A(Dθ(at, t))∥2U , (3)

where λ is a predefined guidance strength and ∂at corresponds to the Gateaux derivative. The value
of λ is typically tuned depending on the given task and decreased towards the end of generation.
Algorithm 1 summarizes the generative process, leveraging deterministic sampling using Heun’s
2nd-order method for the diffusion model [18].

A key aspect of our approach is that it is discretization-agnostic, naturally generalizing across different
resolutions of at. Using the guidance in (3) in combination with a function space diffusion model
enables us to seamlessly handle inverse problems on function spaces without being constrained
to a fixed grid or mesh. We note that one could even gradually increase the resolution during the
generative process to trade off fidelity with computational costs.

Inverse problems on function spaces. We tackle three types of tasks in the context of inverse
problems on function spaces. For the first type, we recover functions from corrupted or noised
versions using forward operators similar to classical inverse problems in finite dimensions, except
that we replace the Gaussian noise with a Gaussian random field. For the second type, we tackle PDE-
based inverse problems, where our goal is to recover coefficient functions a from (partially observed
or noisy) PDE solutions u. For this task, we use a PDE solver based on a (differentiable) finite
difference method (FDM) as forward operator A in (1). The third task is inspired by DiffPDE [10].
Specifically, we learn the joint distribution of initial and terminal states of time-dependent PDEs
using a function space diffusion model. Using our proposed method, we leverage this diffusion prior
to solve combinations of forward and inverse PDE problems from sparse observations of the initial
and terminal states. In this case, the forward operator is described by the given observations and
the consistency with the PDE, where the latter is formulated as a loss in physics-informed neural
operators [25]. In particular, this allows us to remove the dependency on the costly PDE solver in the
forward operator.

Multi-resolution pre-training. Inspired by other works on operator learning [26, 27], we introduce
a new training technique to learn the prior distribution with reduced computational costs. We first
train the diffusion model on low-resolution data for a majority of the epochs and only train on higher
resolutions for the final epochs. This curriculum learning approach guides the model to efficiently
learn coarser information at the earlier stages of training and finer details in the later stages. Due to
the discretization invariance of neural operators, the resulting model exhibits similar performance as
training only on high resolutions, almost at the cost of low-resolution training.
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Figure 1: Qualitative results for various inverse problems on different resolutions of Darcy flow
coefficient functions. While the model is solely trained on the lowest resolution, it can successfully
reconstruct on higher resolutions even in challenging cases.

3 Results and Discussion

In this section, we describe our considered PDEs, the training of our diffusion priors, and the results
of our experiments.

Darcy flow. To showcase the applicability of our approach, we perform several experiments on a 2D
Darcy Flow, which is given by the PDE

−∇ · (a(x)∇u(x)) = f(x), x ∈ (0, 1)2, (4)

with constant forcing f(x) = 1 and zero boundary conditions. We follow the strategies in [17] for
the generation of coefficient functions a ∼ h#N (0, (−∆+ 9I)−2), where h : R→ R is defined to
be 12 on positive numbers and 3 otherwise. Such PDEs are crucial for many physical applications,
such as permeability in subsurface flows.

Navier-Stokes equations. We further evaluate the performance of our approach on Navier-Stokes
equations by generating initial and terminal states of PDE as in [17]. In particular, we consider the
evolution of a vorticity field u(x, t) over time given by the PDE

∂tu(x, t) +w(x, t) · ∇u(x, t) = ν∆u(x, t) + f(x), x ∈ (0, 1)2, t ∈ (0, T ], (5)

∇ ·w(x, t) = 0, x ∈ (0, 1)2, t ∈ [0, T ], (6)

u(x, 0) = a(x), x ∈ (0, 1)2, (7)

where w(x, t) denotes the velocity field, ν is the viscosity, and f(x) represents a fixed forcing term.
The initial condition a(x) is sampled from N (0, 73/2(−∆ + 49I)−2.5) under periodic boundary
conditions. The forcing term is chosen as f(x) = 0.1 (sin(2π(x1 + x2)) + cos(2π(x1 + x2))). We
simulate the PDE for T = 1 second with 10 timesteps using a pseudo-spectral method.

Diffusion model. For the function space diffusion model, we use a U-shaped neural operator
architecture [22] as denoiser and modify the noising process according to the discussion above. We
train the denoiser using 50, 000 training samples at a 64 × 64 discretization (for multi-resolution
training, we train the last 20% of the epochs on resolution 128× 128). We then use the pre-trained
denoiser within a deterministic sampler with N = 50 steps for the Darcy flow tasks and N = 1000
steps for the Navier-Stokes equations (as shown in Algorithm 1).

Recovering corrupted functions. We demonstrate the efficacy of our approach in solving inverse
problems on function spaces by performing denoising, inpainting, and super-resolution tasks to
retrieve coefficient functions a of the Darcy flow problem from corrupted measurements. For the
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Table 1: Recovery of corrupted coefficient functions, where the
model is trained on the lowest resolution.

Resolutions Denoising Inpainting (30%) Inpainting (60%) SR×4
64× 64 (trained) 2.67% 0.31% 1.84% 1.68%
128× 128 1.72% 0.46% 1.33% 1.53%
192× 192 1.94% 0.33% 1.58% 1.81%

Table 2: Darcy flow in-
verse problem.

Pure Noisy Masked

4.28% 4.67% 4.47%

Figure 2: Reconstruction of coefficient
functions from partially observed solutions
of Darcy flow problems.

Figure 3: Results of combined forward and inverse
problems on the Navier-Stokes equation. We also
report relative L2-errors averaged over the test set.

denoising task, we add noise from a Gaussian random field to the functions. In the inpainting task,
we randomly mask 30% and 60% of the coordinates. For super-resolution, we attempt to reconstruct
the function at 4-times higher resolution than the measurements. Figure 1 presents qualitative results
at the training and higher resolutions. Given the binary nature of the data, we evaluate the error rate
between true and reconstructed functions for each discretization. Table 1 provides quantitative results
based on this metric, consistently demonstrating low error rates across different resolutions.

PDE-based inverse problems. We further consider common inverse problems in the context of the
Darcy flow problem, seeking to determine the corresponding coefficient function a from the (sparsely
observed) solution function u. In this context, we define the forward operator A as an FDM-based
numerical solver. To highlight practical applicability and generalizability, we recover coefficients
from noisy or masked solutions. We present qualitative examples in Figure 2 and show in Table 2
that our method can achieve small relative L2-errors even in the more challenging cases.

Combined forward and inverse problems. We also test our method on the Navier-Stokes equations
by learning the joint distribution of initial and terminal states using our multi-resolution training. We
verify our approach on a challenging case, where 94% of the coordinates are occluded in both the
initial and terminal states. As shown in Figure 3, our approach can effectively retrieve both functions
with relatively small errors on different discretizations.

4 Conclusion

In conclusion, we have introduced a novel discretization-agnostic generative framework for solving
inverse problems in function spaces. Our framework can sample from posterior distributions without
retraining across different resolutions or forward operators by leveraging pre-trained function space
diffusion priors with neural operator architectures. We verified our approach in various settings,
including PDE-based inverse problems on Darcy Flows and the Navier–Stokes equations.
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