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Abstract

Recently, physics-informed neural networks (PINNs) have emerged as a flexible
and promising application of deep learning to partial differential equations in the
physical sciences. While offering strong performance and competitive inference
speeds on forward and inverse problems, their black-box nature limits interpretabil-
ity, particularly regarding alignment with expected physical behavior. In the present
work, we explore the application of influence functions (IFs) to validate and debug
PINNs post-hoc. Specifically, we apply variations of IF-based indicators to gauge
the influence of different types of collocation points on the prediction of PINNs
applied to a 2D Navier-Stokes fluid flow problem. Our results demonstrate how
IFs can be adapted to PINNs to reveal the potential for further studies. The code is
publicly available at https://github.com/aleks-krasowski/PINNfluence.

1 Introduction

Time and time again, deep learning approaches have proven themselves to be exceptionally capable
at solving problems that were considered complicated and time-consuming, yielding fast inference
times bundled with strong performance. Physics-informed neural networks (PINNs) [28] represent
another recent iteration of that trend applied to the realm of partial differential equations (PDEs).
By incorporating prior physical knowledge in the form of differential equations [7; 13; 14; 28],
they admit a wide range of possible applications such as fluid mechanics, electromagnetics, disease
modelling and optics, inter alia [2; 3; 5; 23]. Despite the power of PINNs, there remains the challenge
of understanding and improving model behavior when things go wrong [19; 31; 32]. PINNs minimize
complex composite losses, which complicates the tracing of poor performance to specific training
points or conditions; this is the main motivation for this work.

Influence functions [16] (IFs) systematically assess the contribution of individual training points to
a model’s behavior. Recent studies have shown that incorporating physical concepts like temporal
causality improves PINN performance [10; 34], highlighting the role of underlying physical principles.
By identifying key points, such as those near boundaries or critical regions, we can assess whether
the PINN’s learned parameters align with the physics of the problem. For many PDEs, practitioners
possess an intuitive understanding of the underlying physics. For example, in magnetostatics, the
magnetic field is fundamentally generated by source terms. A well-trained PINN could be expected to
reflect this relation. We aim to show how domain experts can use this approach to validate the model
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by identifying key training points, boundary conditions or physical principles that have the greatest
impact on the model’s behavior. This also allows them to estimate the effect of inductive biases
and observed data on the model’s predictions. Notably, PINNs also provide a powerful application
domain for IFs and other data attribution methods, as models and datasets are usually much smaller
than those used in computer vision or natural language processing. This makes the calculation of IFs
computationally feasible and the effect of individual data points on the fit of the model is expected to
be greater.

Our Contributions

• We adapt influence functions to PINNs as a tool for improving their interpretability.
• We derive heuristically motivated indicators based on influence functions to showcase how

they can be leveraged by domain-knowledgeable users to test and validate PINNs.
• We empirically demonstrate their usefulness in disambiguating between three different

versions of PINNs applied to a Navier-Stokes problem.

2 Theoretical Background

Physics-Informed Neural Networks [28] constitute a machine-learning-based approach to solving
PDEs, which are ubiquitous in physical sciences. Let Ω ⊆ Rn be an open domain and consider the
initial boundary value problem (IBVP)

N [u](x) = 0, x ∈ Ω (1)
B[u](x) = 0, x ∈ ∂Ω . (2)

Here, N and B are differential operators acting on the solution of the PDE u : Ω → Rd, where
x typically represents the spatial as well as possible temporal coordinates. Note that Eq. (2) is
formulated to capture i.a. Dirichlet as well as von-Neumann conditions.

The goal of PINNs is to approximate the solution of a given differential equation using a neural
network ϕ(x; θ), which depends on parameters θ ∈ Θ and an input x. These parameters are optimized
by training ϕ using a composite loss function, consisting of the PDE residual and boundary conditions
L = Lpde + Lbc, with Lpde =

1
Npde

∑Npde
i=1 |N [ϕ(xi; θ)]|2, Lbc =

1
Nbc

∑Nbc
i=1 |B[ϕ(xi; θ)]|2, and where

Npde as well as Nbc are the numbers of randomly sampled collocation from Ω and ∂Ω, respectively.
Note that one can also consider a data-driven regression loss, which we drop for the sake of simplicity.

Influence Functions The question being addressed by influence functions [6; 11; 16] is how would
the model’s behavior change if certain training points were not present in the training set? By
linearly approximating the effect of leave-one-out retraining, IFs provide a possibility of studying a
model through the lens of its training data. In order to adapt the influence functions to PINNs we will
slightly generalize the approach of [16; 17]. We provide a full derivation and proof, including details
on all necessary assumptions, in Appendix A.1.

Suppose we have trained a model by minimizing a loss 1
NΣiL(xi; θ) on a training data set X =

{x1, . . . ,xN} and derived an optimal parameter θ̂ ∈ Θ. Furthermore, consider a function f :
A × Θ → R, which depends on the parameter θ ∈ Θ and some other parameter z ∈ A (such as
in [16], the loss L for a single test point z). Before discussing the case of removing and adding
multiple training points, we begin with the case of adding a single training point to X . Thus, we
aim to approximate f(z; θ̂)− f(z; θ̂+) if θ̂+ were optimized over an amended training data set that
includes an additional training point x+. This can be approximated by

Inff(z;θ̂)(x
+) := ∇θf(z; θ̂)

⊤ · H−1

θ̂
· ∇θL(x

+; θ̂) , (3)

where Hθ̂
:= ∇2

θ
1
N

∑N
i=1 L(xi; θ̂) denotes the Hessian w.r.t. θ. This approach can be extended to

the addition and removal of multiple training data points: Let X+ = {x+
1 , . . . ,x

+
m+} be the set of

training points we want to add and X− = {x−
1 , . . . ,x

−
m−} ⊆ X the set we want to remove from

our training set. The effect of retraining the model with added and removed training points can then
be approximated by Inff(z;θ̂)(X

+,X−) :=
∑m+

i=1 Inff(z;θ̂)(x
+
i )−

∑m−

i=1 Inff(z;θ̂)(x
−
i ). Hence, we
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can study the influence of single sampling points as well as regions on loss functions, any type of
predictions or derived quantities. By studying the influence resulting therefrom, one can compare the
model’s behavior with physical intuition. Using this method, we can also estimate the effect of adding
and removing entire loss terms for composite losses, as well as several other types of manipulations
(see Eqs. (15), (18), (21) and (23) in the appendix).

3 Experiments

Navier-Stokes Problem The Navier-Stokes equations describe the motion of viscous Newtonian
fluids and represent the cornerstone of fluid dynamics. Consequently, they are widely used in various
applications. In the present work, we focus on a laminar, incompressible and time-independent fluid
flow around a cylinder in a rectangular cavity with open lateral boundaries in 2D [30], see Fig. 1. The
stationary equations of motions as well as the continuity equation are given as follows:

(u · ∇)u+
1

ρ
∇p− ν∇2u = 0 , divu = 0 , (4)

where u(x, y) ∈ R2 denotes the velocity field, p(x, y) ∈ R represents the pressure, ρ is the density,
and ν is the kinematic viscosity. The domain is given by Ω = (xmin, xmax) × (ymin, ymax) \ Cr,
where Cr denotes the cylinder with radius r. The boundary conditions at the bottom, top, and cylinder
are given by u = 0. The inflow condition on the left has a parabolic profile. For the rightward outflow
condition, we use a directional "do nothing" condition [24]: ν∇u1(xmax, y)− (pρ , 0)

⊤ = 0. The used
parameters of the geometry and PDE are given in A.2. The task of the PINN is then to predict u(x, y)
and p(x, y).

Figure 1: Trained model (ϕgood) with pre-
dictions: u1, u2, p (top to bottom).

Experimental Setup We train fully-connected PINNs
consisting of 4 layers with 64 nodes each with GELU
activation functions and 3 outputs. These correspond to
the solution of Eq. (4) that we want to predict: u1, u2

and p. For the training data set, we randomly draw Npde
points inside the domain Ω and Nbc from the boundary
using Hammersley sampling. In essence, these are pairs
of (x, y) coordinates as we consider a 2D PDE. We train
three models, (1) good model ϕgood with the correct PDE
and Npde = 7500 and Nbc = 2500 that solves the task
well compared to a reference solution [33]; (2) a broken
model ϕbroken with the same number of training points but
with the (u1 ·∇)u1 part of Eq. (4) missing, thus trained on
wrong physics; (3) and a bad model ϕbad with the correct PDE but with Npde = 1500 and Nbc = 500,
such that it consequently performs badly. Each model is trained in two phases. First, Adam [15] is
used as an optimizer for a total of 100k steps, followed by further refining the model parameter’s
using L-BFGS [21] for up to 25k steps. We slightly adapted the DeepXDE library [22] to allow for
more fine-grained gradient manipulation while using PyTorch [26] as our backend. For the test set,
we draw a total of 36934 points from Ω and 1288 points from ∂Ω [33]. The influences are calculated
using the NaiveInfluenceFunction from captum [18].

Figure 2: Influence heatmap on the prediction of u1

of a single training point (×) close to the cylinder
(bottom).

Empirical Indicators In this study, we aim to
answer the following question using influence
functions: Can we test whether the PINN has
learned certain aspects of the underlying phys-
ical principles of the Navier-Stokes problem?
Since predictions alone do not reveal the influ-
ence of training data or boundary conditions, we
devise a set of heuristic indicators.

We propose two IF-based indicators that are designed to capture aspects of the physical processes
inherent to the PDE (4) and to serve as exemplary metrics showcasing how expert users can design
tests to validate PINNs against their prior knowledge of the problem. As a first indication metric,
we concentrate on the flow direction of the Navier-Stokes problem: the inflow is given at the left

3



boundary of the domain and the outflow lies on the opposite side. Figure 2 shows the influence
pattern of a training point close to the cylinder.

We thus test a model on whether its influence patterns reflect this behavior. To define the directional
indicator (DI), which captures the relevance share associated with the collocation point xtest on the
test points that follow in the direction of the flow (i.e. having larger x-component), we write:

DI(xtest) :=

∑
xtrain:xtrain>xtest

∣∣∣Inff(xtest;θ̂)
(xtrain)

∣∣∣∑
xtrain

∣∣∣Inff(xtest;θ̂)
(xtrain)

∣∣∣ ∈ [0, 1] (5)

(a) ϕgood

(b) ϕbroken

(c) ϕbad

Figure 3: Average log values of
| Inf∑

i ||u(xi;θ)||(x)| over the domain Ω.
The area of C1.5r is outlined in black.

A larger value of DI implies that a given test point
mainly influences the prediction further down in the
direction of the flow rather than before and implies
that the model has learned this underlying physical
phenomenon of directed flows.

As a second indicator, we are interested in the fraction
of influence that is associated with a given object
in the input domain. In the present Navier-Stokes
problem, the cylinder plays a central role in the flow
field: it obstructs the flow. Thus, the overall velocity
and pressure fields should be heavily influenced by
its position. To this end, we devise a region identifier,
which is designed to capture the influence associated
with a given object or region in the domain (in our
case around the cylinder).

For the region indicator (RI), which sums up the
relevance of removing a region Ξ ⊆ Ω, we write:

RI(Ξ) :=

∑
xtrain∈Ξ

∣∣∣Inff(xtest;θ̂)
(xtrain)

∣∣∣∑
xtrain

∣∣∣Inff(xtest;θ̂)
(xtrain)

∣∣∣ ∈ [0, 1]

(6)

A higher value of RI means that the region in question, such as the cylinder in our case, has an
increased influence on the prediction for all other points. This is to be expected for a model that aims
to accurately reflect the physics. In this investigation, we choose Ξ = C1.5r, meaning that we remove
the area corresponding to a circle with 1.5 times the radius of the cylinder, see Fig. 3.

Table 1: Mean values for the Direction DI and Region RI
Indicators, aggregated over all xtest. A higher score indicates
a closer alignment with the indicator’s assumptions.

DI RI(C1.5r)

f(x; θ) ϕgood ϕbad ϕbroken ϕgood ϕbad ϕbroken

u1 0.8 0.8 0.71 0.23 0.18 0.13
u2 0.82 0.77 0.69 0.26 0.17 0.14
p 0.83 0.87 0.79 0.28 0.18 0.22
||u|| 0.8 0.79 0.71 0.23 0.18 0.13
Lpde 0.79 0.76 0.73 0.21 0.14 0.16
Lbc 0.75 0.71 0.65 0.25 0.16 0.15
L 0.79 0.76 0.73 0.21 0.14 0.16

Results We evaluate the three dif-
ferent iterations of PINNs on the
Navier-Stokes task. Figures 3a to
3c show the influence of individual
training points on the whole test set,
as heatmaps. For ϕgood, the most in-
fluential points are distributed close
to the inflow, on the outflow and es-
pecially around the cylinder. This is
expected, as these areas determine
the fluid flow. Furthermore, we ob-
serve that for ϕbad, the upper left
boundary is overly influential. In con-
trast, ϕbroken’s influences are again
distributed mostly around the cylin-
der. In Table 1, the aggregated mean values of the indicators are presented. Both ϕgood and ϕbad show
stronger DI performance. This suggests that both models have successfully learned to capture the
dependence of the fluid flow on preceding points. When it comes to the RI indicator, this trend is
even clearer. Here, the good model achieves superior performance, which suggests that the cylinder
here has the biggest absolute influence, reflecting its importance for the fluid flow. It is important to
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note that these indicators are tools for investigating model behavior. Performing well on an indicator
does not imply that the model is entirely correct, but rather that it does not fail in the specific aspect
the indicator evaluates. Expert knowledge is essential for designing meaningful indicators and further
investigation is needed to validate their robustness. Additionally, if the indicator’s assumptions are
flawed, the results may be misleading and fail to provide sensible insights.

4 Conclusion

We showcased how influence functions can help to evaluate PINNs. In particular, we formulated
heuristically motivated indicators designed to test certain physical concepts. By applying this method
to a Navier-Stokes problem, we observed that the best-performing model consistently aligned with
these indicators, confirming their utility in assessing model performance. Still, further exploration of
IF-based markers is indicated to rigorously validate the broad applicability of the presented approach.
Here, applying novel evaluation frameworks such as [1] could be helpful in future examinations.
Using influence functions to improve PINN training through methods like resampling training points
[20], enforcing temporal causality [34], or dynamically reweighing loss terms [4] – combined with IF-
based training time techniques like TracIN [27] – presents a promising direction for future research.
Additionally, further studies on the influence on parts of the loss as well as on different physical
quantities, e.g. the vorticity, as well as applying the framework to different PDEs such as the heat
equation, Maxwell equations and others appear to be logical next steps.
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A Appendix / Supplemental Material

A.1 Influence Functions

In this part, we aim to formulate the key steps for influence functions, initially introduced in 1974 [11]
to study robust estimators, and which were recently applied to neural networks [16; 17]. However,
as already observed in [29], the functions typically encountered in neural networks require a more
exhaustive analysis. Therefore, we will carefully redraw the results proposed in [16] and generalize
them slightly for the application to PINNs. In particular, we will formulate influence functions in
a manner that enables the study of the effect of various modifications of the problem (changes in
the training set, in the loss weighting or in the PDE) on the prediction and any derived quantity.
Furthermore, we will provide rigorous proofs for the statements made in Section 2.

We will start with a crucial lemma for influence functions, which was already noted in [6]. As
remarked in [29], influence functions are usually stated for strictly convex functions1 and relates to
global minima. However, in practice, we will typically only reach saddle points [8], which is the
reason why the following lemma is extended to stationary points.

1Note, that for the application of influence functions with global minima (e.g. [16]), strict convexity is a
necessary, but not a sufficient criterion.
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Lemma 1. For Θ ⊆ Rn and U ⊆ R open, let g : Θ× U → R be a twice continuously differentiable
function for which there exists an (θ0, ϵ0) ∈ Θ× U such that θ0 is a non-degenerate stationary point
of the function g(·, ϵ0), i.e. ∇θg(θ0, ϵ0) = 0 and the Hessian Hθ(θ0, ϵ0) := ∇2

θg(θ0, ϵ0) is invertible.
Then there exists a non-empty, open set U0 ⊆ U with ϵ0 ∈ U0 such that g(·, ϵ) has a unique stationary
point in the neighbourhood of θ0 for each ϵ ∈ U0 and we call the function describing those stationary
points by h : U0 → Θ. This function h is continuously differentiable with derivative

∂h(ϵ)

∂ϵ
= −Hθ(h(ϵ), ϵ)

−1 · ∇θ
∂

∂ϵ
g(θ, ϵ)

∣∣∣∣
θ=h(ϵ)

. (7)

If g is analytic in a neighbourhood of (θ0, ϵ0), then we can choose U0 such that h is analytic as well.
Furthermore, let B ⊆ U be an open, connected set with ϵ0 ∈ B, such that for every ϵ ∈ B there
exists a non-degenerated stationary point of g(·, ϵ). Then h is extendable to B and this function
h : B → Θ is continuous differentiable as well with Eq. (7).

Proof. By s : Θ × U → Rn we denote the gradient s(θ, ϵ) := ∇θg(θ, ϵ), which is continuously
differentiable by assumption. Since (θ0, ϵ0) is a stationary point, this will be a root point of s. By the
implicit function theorem (see e.g. [25, thm. 2]) we can conclude that there is an open set U0 ⊆ U
around ϵ0 such that there exists a unique function h : U0 → Θ with h(ϵ0) = θ0 and s(h(ϵ), ϵ) = 0 for
all ϵ ∈ U0. Therefore, for any ϵ ∈ U0, there is only one unique stationary point in the neighbourhood
of θ0. Furthermore, h is continuously differentiable, and its derivative is given by Eq. (7).

If g is analytic, then the same holds for its gradient s. By the holomorphic implicit function theorem
(see e.g. [9, sec. 7.6]) the function h is also analytic.

If the assumptions of the lemma are satisfied for any ϵ ∈ B, we can apply the lemma in all of these
points. The function h : B → Θ is continuous differentiable, since it is continuous differentiable in
every point and Eq. (7) extends to all points in B. Moreover, h(B) is connected, since h is continuous
and B is connected by assumption.

In a general sense, influence functions study the effect of a perturbation of a function, such as a
loss function, through a functional, such as the argmin operator. Therefore, we will consider a
functional F : C(Θ× U)× U → Θ and a continuous function g : Θ× U → Rm with Θ ⊆ Rn and
a neighbourhood U ⊆ R containing the origin. We assume that g0(θ) := g(θ, 0) describes the initial
problem, whereas g(θ, ϵ) for ϵ > 0 corresponds to a perturbed problem, e.g. changes in the training
set. The influence function can then be formally expressed as

Inf F [g(·, ·)] := lim
ϵ→0

F [g(·, 0)]− F [g(·, ϵ)]
ϵ

(8)

provided that this limit exists.

In the case of stationary points (in particular for global minima) we obtain a much more convenient
expression for the influence function by means of Lemma 1.
Theorem 1. Let F be the functional of stationary points2 (alternatively the argmin operator) and let
g0 : Θ → R and κ : Θ → R be twice continuously differentiable functions. Assume that g0 has a
non-degenerated, stationary point θ̂ = F [g0] (a global minimum, respectively). Then the influence
function is given by

Inf F [g0 + ϵκ] = H−1

θ̂
∇θκ(θ̂) , (9)

with the Hessian Hθ̂ = ∇2
θg0(θ̂).

Usually we are interested in the effect of a change in the training process on the evaluation of a
function f , such as the loss or the prediction. Therefore, before proving Theorem 1, we will add the
following direct consequence of the definition (8).
Corollary 1. Let f : Θ → Rd be a differentiable function. Then the influence function satisfies a
chain rule

Inf f(F [g(·, ·)]) = ∇θf(θ)
∣∣∣
θ=F [g(·,0)]

· Inf F [g(·, ·)] . (10)

2To be a functional, F have to map every function to one stationary point or one minimum, respectively.
Hence, we might have to adjust e.g. the domain of the input functions to get unique stationary points.
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Proof. If the limit in (8) exists, it is nothing else than the derivative. Thus, by applying Lemma 1, the
derivative exists and is given by

Inf F [g0 + ϵκ] = − dF (g0 + ϵκ)

dϵ

∣∣∣∣
ϵ=0

= H−1

θ̂
∇θκ(θ̂) . (11)

The corollary directly follows from the chain rule for differentiation.

Note that the left-hand side of Eq. (9) is the Gâteaux derivative of F at g0 in the direction of κ, which
provides a convenient mathematical setting to study influence functions for linear perturbations. We
refer to [12] for the study of those relations.

In practice, we often use infinitesimal changes expressed by Inf f(F [g(·, ϵ)]) to approximate some
finite change in f(F [g(·, ϵ)]) for an ϵ > 0. From this perspective, the influence function is the linear
approximation term of a Taylor series

f(F [g(·, ϵ)]) = f(F [g(·, 0)])− ϵ · Inf f(F [g(·, ·)]) + r(ϵ) , (12)

where the remainder term r(ϵ) vanishes with

lim
ϵ→0

r(ϵ)

ϵ2
= 0 (13)

If, moreover, the functions f and g are analytic, then by Lemma 1, also f(F [g(·, ϵ)]) is analytic and
the Taylor series converges uniformly for every compact subset of its convergence region, i.e. for any
compact subset of R we have a constant C > 0 such that the remainder is bounded there by

|r(ϵ)| ≤ Cϵ2 . (14)

In the remaining part of this section, we will study concrete settings for influence functions, which
appears in particular for PINNs, and give convenient reformulations of the statement of Theorem 1.

Adding & removing training points: Let X be a finite, non-empty set of training points and
consider a finite set of points X+, which we would like to add to the training set, as well as a set of
points X− ⊊ X , which we would like to remove from the training set. Moreover, let L(x, ·) : Θ → R
be a twice continuously differentiable loss function assigning a value to each (potential) training
point of X ∪ X+. The empirical risk for our original dataset is given by g0(θ) =

1
N

∑
x∈X L(x; θ)

and let κ(θ) =
∑

x∈X+ L(x; θ)−
∑

x∈X− L(x; θ) be the perturbation in risk corresponding to the
change in the training set. N denotes the size of training points in X . Assume that there exists a
stationary point3 (a global minimum, respectively) θ̂ = F [g0] inside Θ and let F be the functional
which maps to those stationary points. In addition, let f(z, ·) : Θ → Rm be an arbitrary continuously
differentiable function (e.g. the loss or the prediction), possibly with a further dependency expressed
by a variable z (e.g. a test point).

According to Theorem 1, we can then approximate counterfactual effect of training on a perturbed
training set X ′ = (X ∪ X+) \ X− by

f(z; θ̂)− f(z; θ̂′) =
1

N
Inff(z;θ̂)(X

+,X−) + r
(
N−2

)
, (15)

where we introduce the shorthand notation

Inff(z;θ̂)(X
+,X−) := Inf f(z;F [g0 + ϵκ])

= ∇θf(z; θ̂) · H−1

θ̂
· ∇θ

( ∑
x∈X+

L(x; θ̂)−
∑

x∈X−

L(x; θ̂)

)
, (16)

which is simply the signed sum of the influences of the individual training points due to the linearity
of Influence Functions.

3Thus, in practice, we assume that our training has progressed to the stage where it has reached a stationary
point in the loss landscape.
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Removing a complete loss term: Moreover, we can also remove a complete loss term and study
the influence of this operation to the training. For this, consider a total loss as a sum of k loss terms

g0(θ) = L(X ; θ) =

k∑
j=1

Lj(X ; θ) =
1

N

∑
x∈X

k∑
j=1

Lj(x; θ) (17)

and a perturbation direction κ(θ) = −
∑

x∈X Li(x; θ). Similar to the previous paragraph, we write
θ̂ = F [g0] for the optimal parameter without the perturbation and θ̂��Li

for the optimal parameter,
when the i-th loss is removed. We obtain

f(z; θ̂)− f(z; θ̂��Li
) =

1

N
Inf f(z;F [g0 +N−1κ]) + r

(
N−2

)
(18)

with

Inf f(z;F [g0 +N−1κ]) = −∇θf(z; θ̂) · H−1

θ̂
· ∇θ

∑
x∈X

Li(x; θ̂) . (19)

Influence of loss weights: In analogous fashion, we can easily extend this framework to study
the effect of upweighting or downweighting individual loss terms. This is in particular interesting
for PINNs because a wrong weighting of the loss terms is known to reduce the accuracy of PINNs
drastically [31].

Thus, assume that for some weights wj > 0 we consider a total loss in the form of

g0(θ) = L(X ; θ) =

k∑
j=1

wjLj(X ; θ) (20)

where we now perturb the weight wi with κ(θ) = wiLi(X ; θ). The influence of changing the weight
wi is then given by

Inf f(z;F [g0 + ϵκ]) = wi∇θf(z; θ̂) · H−1

θ̂
· ∇θLi(X , θ̂) . (21)

In comparison to the two previous discussed cases, we can also consider infinitesimal changes of the
weight so that we can omit a discussion of the error bounds.

Influence of parameters in the PDE: As a last option to use influence functions for PINNs, we
want to discuss the impact of parameters in the PDE. Therefore, we will consider a basic objective of
the form

g(θ, ρ) =
1

N

∑
x∈X

L(x; ρ; θ) (22)

with some additional parameter ρ ∈ R, and we will assume that L is also continuously differentiable
w.r.t. ρ. To apply Lemma 1, we will assume, that there is an optimal or stationary parameter
θ̂ = F [g(·, ρ0)] at a certain value of the parameter ρ0 we are interested in. Then, the influence of the
parameter ρ to the optimal parameters θ̂ at a certain point ρ0 is given by

Inf F [g] = lim
ϵ→0

F [g(θ, ρ0)]− F [g(θ, ρ0 + ϵ)]

ϵ
= − dF [g(θ, ρ)]

dρ

∣∣∣∣
ρ=ρ0

= H−1
θ (θ̂, ρ0) · ∇θ

∂

∂ρ
g(θ̂, ρ0) . (23)

A.2 Navier-Stokes Parametrization

The rectangular cavity characterizing the 2D Navier-Stokes problem formulation is given in Table 2.

The parabolic inflow is defined as

u(xmin, y) =

(
Umaxy

ymax−y
y2
max

0

)
, (24)

where Umax = 0.3m/sec. Furthermore, the fluid density ρ was set to 1 and the kinematic viscosity ν
to 0.001.
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Table 2: Geometric Parameters of the Cavity
Parameter Value [m]

xmin 0
xmax 2.2
ymin 0
ymax 0.41
Cylinder radius 0.05
Cylinder position (xc, yc) (0.2,0.2)

A.3 Supplemental Figures

Figure 4 is supplementary to Figure 1 and shows the model predictions additionally for ||u|| and for
ϕbroken, ϕbad as well as target values precomputed with the finite element method (FEM) program
FEniCS sourced from [33].

Figure 5 shows the absolute errors between model predictions and the target values depicted in Figure
4d. Note that ϕbroken is evaluated against correct target values.

Figure 6 shows the influence heatmap produced by ϕbroken and ϕbad for the same training point as
used in Figure 2.

(a) ϕgood (b) ϕbroken

(c) ϕbad (d) Target values computed with FEniCS.

Figure 4: Trained models and target values with respective predictions for u1, u2, p, ||u|| (top to
bottom).
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(a) ϕgood (b) ϕbroken

(c) ϕbad

Figure 5: Absolute errors between respective model predictions for each output dimension w.r.t.
precomputed target values.

(a) ϕbroken

(b) ϕbad

Figure 6: Influence heatmaps on the prediction of u1 of a single training point close to the cylinder
(bottom).
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