
3D Cloud reconstruction through geospatially-aware
Masked Autoencoders

Stella Girtsou
National Observatory of Athens

National Technical University of Athens
girtsou.s@gmail.com

Emiliano Diaz Salas-Porras
Universitat de València
emdiazsal@gmail.com

Lilli Freischem
University of Oxford

lilli.freischem@physics.ox.ac.uk

Joppe Massant
Royal Belgian Institute of Natural Sciences

joppe.massant@gmail.com

Kyriaki-Margarita Bintsi
Imperial College London

m.bintsi19@imperial.ac.uk

Guiseppe Castiglione
University of Sussex

g.m.a.castiglione@gmail.com

William Jones
University of Oxford

william.jones@physics.ox.ac.uk

Michael Eisinger
European Space Agency

Michael.Eisinger@esa.int

Emmanuel Johnson
CSIC-UCM-IGEO

jemanjohnson34@gmail.com

Anna Jungbluth
European Space Agency

anna.jungbluth@esa.int

Abstract

Clouds play a key role in Earth’s radiation balance with complex effects that intro-
duce large uncertainties into climate models. Real-time 3D cloud data is essential
for improving climate predictions. This study leverages geostationary imagery
from MSG/SEVIRI and radar reflectivity measurements of cloud profiles from
CloudSat/CPR to reconstruct 3D cloud structures. We first apply self-supervised
learning (SSL) methods—Masked Autoencoders (MAE) and geospatially-aware
SatMAE-on unlabelled MSG images, and then fine-tune our models on matched
image-profile pairs. Our approach outperforms state-of-the-art methods like U-Nets,
and our geospatial encoding further improves prediction results, demonstrating the
potential of SSL for cloud reconstruction.

1 Introduction

Clouds play a crucial role in Earth’s radiation balance by reflecting sunlight (cooling) and absorbing
heat (warming) [1]. As climate change progresses their complex interactions increase uncertainties
in climate models. Enhanced global, real-time 3D cloud data can help reduce these uncertainties,
improving climate predictions and decision-making. Satellite remote sensing has transformed climate
research by providing global data. The European Space Agency’s recently launched EarthCARE
mission aims to improve our understanding of cloud dynamics through imaging, radar, and lidar
instruments [2]. Over the last decades NASA’s CloudSat mission has provided valuable measurements
of cloud vertical profiles using radar, but is limited by infrequent revisits (every 16 days) and a narrow
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swath (1.4 km). Additionally, with its sun-synchronous orbit, CloudSat passes over the equator
at the same local time, limiting observations to "snapshots" of the atmosphere at specific times
of day. In contrast, imaging instruments take measurements across wider fields-of-view and with
higher temporal resolution, but they only offer a ’top-down’ perspective and do not directly measure
atmospheric profiles. However, combining images in different spectral channels with overlapping
measurements of atmospheric profiles allows extrapolation of vertical profiles beyond the radar track.
Barker et al. [3, 4] developed an algorithm to extend EarthCARE profiles to 3D through intensity
pixel-matching. Recent work [5, 6, 7] has used ML-based methods (e.g. U-Nets, CGANs, Linear
Regression, Random Forests, XGBoost) to estimate vertical cloud information from ’top-down’
measurements. Notably Brüning et al. [5] trained a Res-UNet to fuse satellite images from the
Meteosat Second Generation (MSG) Spinning Enhanced Visible and InfraRed Imager (SEVIRI) with
CloudSat cloud profiling radar (CPR) reflectivity profiles, reconstructing 3D cloud structures. For
all approaches, model training required precise spatial and temporal alignment between the data
sources. Due to the limited overpasses of the radar satellites (Figure 1b), profile measurements are
much sparser than available imagery (for comparison, MSG/SEVIRI generates 40 TB of image data
per year, while CPR produces 150 GB annually). Recent advances in self-supervised learning (SSL)
have shown promise in pre-training models on large, unlabeled datasets, yet their application to
cloud studies remains under-explored. In this work, we apply SSL methods—Masked Autoencoders
(MAE, [8]) and geospatially-aware Masked Autoencoders (based on SatMAE, [9])—to multispectral
MSG/SEVIRI data from 2010. We then fine-tune the pre-trained models for the task of 3D cloud
reconstruction using matched image-profile pairs. Our results show that pre-training consistently
improves performance for this task, especially in complex regions like the tropical convection
belt. Pre-trained models with geospatial awareness (i.e., time and coordinate encoding) especially
outperform randomly initialized networks and simpler U-Net architectures, leading to improved
reconstruction results. The code will be made available upon acceptance.

2 Data & Method

Input Imagery. We use radiance data from MSG/SEVIRI in 11 spectral channels as model input.
MSG takes measurements from a geostationary orbit, centered at 0° longitude and latitude, and covers
a ±80° field-of-view, which we limit to ±45° to avoid data quality issues. New images are captured
every 15 mins, offering continuous monitoring at a spatial resolution of 3 km at the sub-satellite
point. From the 40 TB of annually available data, our pre-training dataset comprises hourly cadence
data split monthly into days 1-10 (training), days 21-22 (validation), and days 25-27 (testing). We
split each full-disk image into non-overlapping patches of 256 x 256 pixels, resulting in 1.2 million
(8.6 TB) patches. To increase training speed and reduce computational load, we randomly sample a
different 10% of our patches each epoch during pre-training. With this sub-sampling, convergence
during pre-training remains smooth and stable.

Target Profiles. We use radar reflectivity profiles measured via the CPR onboard the CloudSat
satellite as our target. We spatially and temporally align CloudSat/CPR radar reflectivity from 2010
with MSG/SEVIRI images, and restrict our dataset to Cloudsat tracks with at least 20 % cloud cover.
This results in approximately 47 thousand image-profile pairs consisting of a 11 x 256 x 256 pixels
image and a geo-referenced CloudSat profile with 125 vertical bins, spanning roughly 30 km into the
atmosphere. We crop 25 (10) height levels at the bottom (top) of each profile to remove measurement
artifacts and reduce clear sky data [7, 5]. The length of each profile varies due to the intersection
between CloudSat’s trajectory and the SEVIRI image. Similar to pre-training, we use days 1-19,
23-24, and 28-31 for training, days 20-22 for validation, and days 25-27 for testing. Since clouds
evolve over minutes to hours, a temporal split based on multi-day groupings ensures minimal data
leakage. We randomly sample 50% of all image-profile pairs per epoch.

Models & Training. For pre-training, we use MAEs with Vision Transformer (ViT) backbones
to tokenize MSG/SEVIRI images and learn local features and their spatial relationships through
positional encodings. We chose MAEs for their potential to handle missing data, and ViTs for their
self-attention mechanisms and ability to relate local and global image features - all important for
Earth Observation satellite data. We tested two ViT variants: a base ViT-B (90M parameters) and a
small ViT-S (26M), encoding 11× 256× 256 images with 768 and 384 hidden channels, respectively.
Image tokenization was performed at 8x8 and 16x16 pixel resolutions, with 75% of tokens masked
for reconstruction using multi-layer decoders [8]. Given our geospatial data, we also adapted the

2



MSG/SEVIRI
11 Spectral Channels

Self-Supervised Pre-training

Image 
Encoder

3D 
Decoder

Image 
Encoder

Image 
Decoder

3D Cloud Prediction

CloudSat/CPR
Radar Reflectivity

a) b)

Figure 1: (a) Proposed pipeline: We use MAE to pre-train encoders on unlabelled MSG/SEVIRI
images by reconstructing missing information, then fine-tune these encoders with a smaller dataset of
image-profile pairs to derive 3D cloud structures. (b) The ground track of 1 day of CloudSat orbits.
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Figure 2: (a) Validation Loss for the different size MAEs. (b) Visualization of the masked, recon-
structed and original images for MAEs based on 8- or 16-pixel tokenization.

SatMAE framework [9], adding temporal encodings (date and time) and spatial coordinates (latitude,
longitude) to enhance geospatial awareness. Although we tested single-timestamp inputs, our model
can also handle time series of images. After self-supervised pre-training, we replaced the decoder
with a regression head using transposed convolutional layers, and fine-tuned the models for our 3D
cloud reconstruction task. Importantly, the final output of the decoder reconstructs 90 x 256 x 256 (H
x W x L) volumes. Although the model generates full 3D cloud maps from MSG/SEVIRI images, the
loss is only computed on the one vertical profile slice of the target CloudSat overpass, following the
approaches in [6, 5]. Since this is a poorly constrained problem, we ensure that (1) the model does
not have access to the overpass mask, i.e. it does not know where it will be tested, and (2) the target
CloudSat overpass can be of variable length and through any part of the input image. This forces
the model to reasonably reconstruct 3D volumes anywhere in the output cube. An overview of our
pipeline is shown in Figure 1. We compare our SSL approach to the U-Net presented by Brüning et
al. [5], which also reconstructs a 3D volume.

3 Results

Pre-training. We experimented with different sizes of ViT backbones, ViT-base (90M) and ViT-small
(26M), and tokenization schemes. As shown in Figure 2, smaller ViT tokens yield lower losses
and finer-grained detail in the image reconstruction. Since the small and base MAE models exhibit
comparable performance, we chose the smaller ViT for its reduced computational demands.

Fine-tuning. To evaluate the benefit of self-supervised pre-training, we compare models that were
trained from scratch, or fine-tuned with frozen or unfrozen backbones. As shown in Figure 5 in the
Appendix, pre-training brings substantial benefit, especially when the backbone is unfrozen. The
unfrozen MAE outperformed all models in validation loss, achieved better PSNR and demonstrated
faster, smoother convergence than the U-Net.
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Table 1: Comparison of metrics. The values show the mean and standard deviation across the test set.

U-Net MAE ViT-small 8 SatMAE ViT-small 8

reflectivity

RMSE (dBZ) ↓ 3.73 ± 1.97 3.22 ± 1.68 3.18 ± 1.67
% Error ↓ 1.28 ± 2.51 0.72 ± 1.00 0.72 ± 1.01
Peak signal-noise ratio (PSNR) ↑ 24.39 ± 4.15 25.78 ± 4.47 25.92 ± 4.48
Structural similarity index measure (SSIM) ↑ 0.82 ± 0.09 0.84 ± 0.09 0.84 ± 0.09

segmentation

f1-score ↑ 0.845 ± 0.083 0.874 ± 0.092 0.880 ± 0.087
f1-score weighted ↑ 0.290 ± 0.098 0.382 ± 0.135 0.381 ± 0.142

U-Net U-Net U-Net

MAE ViT-small 8 MAE ViT-small 8MAE ViT-small 8

SatMAE ViT-small 8 (time + coords) SatMAE ViT-small 8 (time + coords)SatMAE ViT-small 8 (time + coords)

Ground Truth Ground TruthGround Truth
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Figure 3: Comparison of example MSG/SEVIRI input channels (7.35 µm) with CloudSat overpasses
(red lines), and corresponding (normalized) radar reflectivity profiles. All models were trained for 50
epochs, which resulted in the highest perceptual quality.

Geospatial Awareness. Having demonstrated the benefit of self-supervised pre-training with ViT
backbones that encode small-scale cloud features, we now compare the standard MAE to our space-
and time-aware SatMAE model. Looking at the perceptual quality of the predicted cloud profiles
(Figure 3), the MAE and SatMAE models lead to visually sharper reconstructions than the U-Net.
For information, an example rendering of a predicted 3D cloud volume is shown in Figure 7 in
the Appendix, which shows good qualitative agreement with where clouds appear to be in the
input MSG/SEVIRI image. Table 1 shows that SatMAE achieves lower root-mean-square errors
(RMSE) across the test set compared to both the U-Net and the MAE. SSIM and PSNR are similar
across models, with a small improvement for SatMAE. The values presented in Table 1 show the
mean and standard deviation of the metrics across the test set, and do not represent actual model
uncertainties. To gain more in-depth understanding on the performance of the models, we separated
the contributions to the RMSE by cloud type (Table 4 and Figure 8 in the Appendix). The largest
errors are observed for Nimbostratus clouds and deep convection, i.e. rain and storm clouds with
high radar reflectivities. For all cloud types except Nimbostratus, SatMAE achieves lower errors
compared to both the baseline and the standard MAE. Figure 4 clearly demonstrates that the time
and coordinate encodings positively impact performance, especially in the tropical convection belt,
where cloud formations are larger and denser. Furthermore, Figure 6 in the Appendix shows that
the coordinate encoding provides the most significant contribution to the model performance. The
improvement of the MAE model over the U-net, and that of the SatMAE over the MAE model are
both calculated to have p-value of <0.001 showing the statistical significance of the improvement,
when we take region into account, is very strong (see appendix A for details on hypothesis test).
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Figure 4: Monthly and yearly root-mean-square errors (RMSE) across MSG’s field-of-view (one
value per image-profile pair), comparing our U-Net, MAE, and SatMAE models. SatMAE with
time and coords consistently improves overall prediction performance, especially in the tropical
convection belt. Note that we show the prediction errors across our entire dataset (i.e. including
training, validation, and test examples).

While U-Nets are effective in capturing local spatial relationships through their convolutional structure,
they struggle with capturing global context. This limitation becomes apparent in the case of large-
scale cloud formations, where long-range dependencies play a critical role. Transformers address this
challenge by leveraging self-attention mechanisms, which enable them to model relationships across
the entire input space. Moreover the use of custom encoding from coordinates and datetime, enables
the model to distinguish between different geographic regions and temporal patterns, providing richer
contextual information. The combination of this custom encoding with the smaller token sizes (8x8)
allows SatMAE to achieve a more comprehensive understanding of global cloud structures and also
to capture finer-grained details and local variations.

4 Conclusions

In this work, we used SSL via MAEs to pre-train models using unlabelled MSG/SEVIRI images,
and then fine-tuned the models for 3D cloud reconstruction, using aligned pairs of MSG/SEVIRI
and CloudSat/CPR radar reflectivity profiles. In addition to the standard MAE implementation,
we adapted a SatMAE model to encode the date, time, and location of the input data. Compared
to the U-Net, the current state-of-the-art on the task, our models showed improved performance
across RMSE, PSNR, and perceptual quality. While the improvements are moderate on average,
visualization of prediction highlights that the SatMAE model achieves the lowest errors in the tropical
convection belt, demonstrating its superior generalization. This suggests that this learning set up
has potential for larger gains for harder learning tasks such as 3D-cloud-type segmentation, helping
further our goal of characterizing 3D cloud properties and contributing to the narrowing of climate
model uncertainties. While our current work only explores reconstruction of CloudSat tracks for one
year, future work will apply this method to longer time periods and ESA’s EarthCARE data once
available. This could enable the creation of long-term 3D cloud products, crucial for advancing our
understanding of complex climate feedback mechanisms.
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A Appendix

Further Training Details. We conducted our experiments on 1-2 NVIDIA V100 GPUs (16GB)
via Google Cloud, with batch size 8 during pre-training and batch size 4 during fine-tuning. We
used the Adam optimizer [10] with an initial learning rate of 0.00015, using backpropagation [11].
Training was optimized via the Mean Squared Error (MSE) loss, while additional metrics like the
Peak Signal-to-Noise Ratio (PSNR) and the Structural Similarity Index Measure (SSIM) [12] were
monitored. Checkpointing was used to save models with the lowest validation loss. Both pre-training
and fine-tuning ran for up to 50 epochs. Regarding training times, the pretraining duration ranged
from 2 to 6 days and was largely dependent on the patch size and the scale of the ViT backbone
(ViT-small and ViT-base, see Table 2). Smaller patch sizes led to longer training times due to the
increased number of tokens, while larger ViT architectures extended the duration due to the higher
number of trainable parameters. For fine-tuning, training times ranged from 8 to 24 hours for the
U-Net and MAE/SatMAE models with patch sizes of 16 and 8. With even smaller ViT patch size of
4, the training duration increased significantly, reaching up to 5 days.

Table 2: Training details for pre-training of our Masked Autoencoder (MAE) and SatMAE models.

Model Time
encoding

Spatial
encoding

Token
Size

ViT
size # Tokens # Params Training

time

MAE False False 8 small 1024 26.6 M 22h 36 mins
MAE False False 8 big 1024 91.6 M 1d 8h 38 mins
MAE False False 16 small 256 27.8 M 17h 57 mins
MAE False False 16 big 256 93.3 M 9h 22mins
SatMAE False False 8 small 1024 27.4 M 22h 55 mins
SatMAE False True 8 small 1024 27.1 M 22h 38 mins
SatMAE True False 8 small 1024 27.1 M 22h 30 mins
SatMAE True True 8 small 1024 26.9 M 23h 52 mins
SatMAE False False 16 small 256 28.2 M 16h 57 mins
SatMAE False True 16 small 256 28.1 M 17h 47 mins
SatMAE True False 16 small 256 28.1 M 16h 38 mins
SatMAE True True 16 small 256 28.1 M 15h 25 mins
SatMAE True True 16 big 256 93.8 M 11h 30 mins
SatMAE True False 16 big 256 93.6 M 11h 40 mins
SatMAE False True 16 big 256 93.6 M 11h 19 mins
SatMAE False False 16 big 256 93.7 M 11h 2 mins

Table 3: Training details for fine-tuning of our U-Net, MAE and SatMAE models.

Model Time
encoding

Spatial
encoding

Token
Size

ViT
size # Tokens Trainable

params Backbone Training
time

U-Net False False N/A N/A N/A 1.9 M N/A 8h 50mins
MAE False False 8 small 1024 22.7M from scratch 22h 44mins
MAE False False 8 small 1024 345k frozen 16h 54mins
MAE False False 8 small 1024 22.7M fine-tuned 19h 45mins
SATMAE False False 8 small 1024 22.3M fine-tuned 19h 43mins
SATMAE True False 8 small 1024 22.3M fine-tuned 19h 29mins
SATMAE False True 8 small 1024 22.3M fine-tuned 19h 8mins
SATMAE True True 8 small 1024 22.3M fine-tuned 19h 35mins
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Hypothesis test. To show that the MAE-ViT-small 8 has superior performance to the U-net and the
SatMAE-ViT- small 8 has superior performance to the MAE-ViT-small 8, for a random location we
performed hypotheses tests with p-values which we report in section 3. The null hypothesis for this
test is that while a given model may have a higher probability to obtain a higher RMSE for a given
location, over the entire region under study, the expected probability for any given location is 0.5,
meaning on average, the models have equal performance. Under this null hypothesis the number
of times model 1 is superior out of the 5,112 trials (the number observations in our test set) would
be distributed as binomial random variable with parameters n = 46, 752 and p = 0.5 assuming the
outcome for each location was random, in which case we could construct a simple hypothesis test
with a theoretical p-value. However, it is reasonable to assume that Xi ∈ {1, 2}, that describes which
model is superior at location i is correlated with Xj ∈ {1, 2} that describes which model is superior
at location j especially if i and j are close together. In order to avoid making specific assumption
about the form of the spatial correlation we construct an empirical null distribution by taking the
following steps:

1. construct Yi ∈ {0, 1}, i = 1, ..., 5, 112 that determines which model is superior at location i
in the following way Yi = 1{Wi<m} where:

• 1x is the indicator function
• Wi = Z1

i − Z2
i

• Zk
i is the test rmse observed at location i for model k and,

• m is the test observed sample median of W accross locations.
This ensures that the null distribution respects the null hypothesis assumption that for a
random location the probability that any model is superior is 0.5, while also preserving the
spatial correlation structure.

2. We ideally would like to have many independent samples of Yi and then calculate, Pi,
the proportion of times each model is superior at a location i. Since we only have one
observation of each Yi we obtain a boostrap sample by using Yi and Yj for j ∈ NN1000(i)
where NN1000(i) is the set of 1000 nearest neighbor locations to location i. Higher spatial
correlation makes it more likely that, even though the probability that any given model is
superior is 0.5, in an observed sample we observe a proportion far from the expected 0.5
(it increases the variance). The assumption is that the magnitude of the correlation at the
smaller scales (1000 locations) is larger than the at larger scales (the scale of figure 4). If
this holds our null distribution will be conservative meaning it has more variance than the
actual null distribution, yielding valid p-values.

We then calculate the probability of obtaining the observed values for the proportion of times
the MAE-ViT-small 8 has superior performance to the U-net (0.85) or a greater one, under the
null distribution. Similarly, we calculate the probability of obtaining the observed values for the
proportion of times the SatMAE-ViT- small 8 has superior performance to the MAE-ViT-small 8
(0.73) or greater, under the null. The probability of such extreme proportions of cases under the null
distribution is less than 0.001 meaning both hypothesis tests are assigned a p-value of <0.001, and
the null hypothesis can be rejected in both cases.
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Figure 5: Mean squared error (MSE) loss, peak signal-to-noise ratio (PSNR), and structural similarity
index measure (SSIM) as a function of training steps for our U-Net baseline and MAE models. The
MAE was either trained from scratch, or fine-tuned using the pre-trained encoder. For the latter, we
either froze or further fine-tuned the encoder weights.

Figure 6: Root-mean-square errors (RMSE) across MSG’s field-of-view (one value per image-profile
pair), comparing different implementations of our SatMAE model. Adding coordinate encoding
provides a strong improvement in prediction performance. SatMAE with time and coords achieves
the best performance overall, particularly in challenging areas such as the tropical convection belt.
Note that we show the prediction errors across our entire dataset (i.e. including training, validation,
and test examples).

Figure 7: Example 3D cloud reconstPetersonruction. The left figure shows an MSG/SEVIRI input
image with the aligned CloudSat/CPR track, while the three right figures show the predicted 3D
volume rendered from different perspectives.
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Table 4: Root-mean-square error (RMSE; in dBZ) as a function of cloud type for the different models.
The values show the mean and standard deviation of all metrics across the test set.

U-Net MAE ViT-small 8 SatMAE ViT-small 8 (time + coords)

No Cloud 2.59 ± 1.45 2.15 ± 1.43 2.13 ± 1.38
Cirrus 5.22 ± 2.64 4.92 ± 2.44 4.77 ± 2.36
Altostratus 10.69 ± 3.15 9.90 ± 2.73 9.77 ± 2.82
Altocumulus 8.83 ± 4.63 8.44 ± 4.32 8.40 ± 4.28
Stratus 5.32 ± 3.95 4.93 ± 3.77 4.83 ± 3.26
Stratocumulus 8.76 ± 5.01 7.85 ± 4.49 7.52 ± 4.23
Cumulus 7.35 ± 6.04 7.05 ± 5.88 6.99 ± 5.73
Nimbostratus 14.19 ± 5.80 12.31 ± 4.86 12.53 ± 5.17
Deep Convection 11.23 ± 4.50 10.65 ± 3.82 10.34 ± 3.77

0.8%

0.6%

92.6%

<0.05%

3.0%

0.6%

0.6%

1.4%

0.4%

Figure 8: Root-mean-square error (RMSE; in dBZ) as a function of cloud type for the different
models. The box and whisker plots summarize all samples in the test set. Little icons highlight what
the different cloud types look like, and the percentages show the representation of each cloud type in
our dataset. Even when limiting our dataset to CloudSat tracks that contain at least 20% clouds, clear
sky measurements are still vastly over-represented. Stronger radar reflectivities (i.e. from cumulus,
nimbostratus, or deep convective clouds) lead to higher absolute errors. Furthermore, the sparse
representation of nimbostratus clouds contributes to larger errors for this cloud type.
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