
Speak so a physicist can understand you!
TetrisCNN for detecting phase transitions

and order parameters

Kacper Cybiński
Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland

James Enouen
Department of Computer Science, University of Southern California,

Los Angeles, CA 90089, USA

Antoine Georges
Center for Computational Quantum Physics, Flatiron Institute,

162 Fifth Avenue, New York, NY 10010, USA
Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France

CPHT, CNRS, École Polytechnique, IP Paris, F-91128 Palaiseau, France
DQMP, Université de Genève, 24 quai Ernest Ansermet, CH-1211 Genève, Switzerland

Anna Dawid∗

Center for Computational Quantum Physics, Flatiron Institute,
162 Fifth Avenue, New York, NY 10010, USA

adawid@flatironinstitute.org

Abstract

Recently, neural networks (NNs) have become a powerful tool for detecting quan-
tum phases of matter. Unfortunately, NNs are black boxes and only identify phases
without elucidating their properties. Novel physics benefits most from insights
about phases, traditionally extracted in spin systems using spin correlators. Here,
we combine two approaches and design TetrisCNN, a convolutional NN with par-
allel branches using different kernels that detects the phases of spin systems and
expresses their essential descriptors, called order parameters, in a symbolic form
based on spin correlators. We demonstrate this on the example of snapshots of the
one-dimensional transverse-field Ising model taken in various bases. We show also
that TetrisCNN can detect more complex order parameters using the example of
two-dimensional Ising gauge theory. This work can lead to the integration of NNs
with quantum simulators to study new exotic phases of matter.

1 Introduction

Machine learning promises a revolution in quantum sciences [1–4], similar to the current revolution
in industry [5]. Recently, neural networks (NNs) have become a powerful tool for detecting phases
of matter [6–13], which is especially promising in the context of experimental data [14–19]. An
ultimate goal of this forefront is to make such automated approaches interpretable [20–28], which

∗Corresponding author.

Machine Learning and the Physical Sciences Workshop, NeurIPS 2024.

Figure 1: TetrisCNN is composed of parallel branches that use kernels of different shapes that
map to spin correlators. Its regularized bottleneck suppresses activations of branches containing
non-unique or irrelevant information. The remaining active branches are analyzed with symbolic
regression (SR), which provide a symbolic formula for the network based on spin correlators.

should lead to learning phases of matter and understanding their properties, in particular the detected
order parameters [18, 19, 29–39].

Here, we report on designing a convolutional neural network (CNN) with parallel convolutional
branches that use kernels of different sizes and shapes. We dub this network ‘TetrisCNN‘ and show
here that it detects the phases of spin systems and expresses their order parameters in a symbolic form
based on spin correlators. TetrisCNN takes inspiration from Refs. [29, 36] and improves on them in
terms of simplicity, computational cost, and inclusion of multiple measurement bases. Moreover, we
use symbolic regression (SR) [40] to provide symbolic formulas for the detected order parameters
and the network itself, making our method particularly attractive to physicists.

2 Methods

We test TetrisCNN ability to detect phase transitions and relevant order parameters on the example of
three datasets derived from two paradigmatic spin models: 1D quantum transverse-field Ising model
(TFIM) and 2D Ising gauge theory (IGT). Each spin at site i can take only two values Si = ±1. We
use Si =

1
N

∑
i Si to symbolize averaging over all N system sites.

1D transverse-field Ising model (TFIM). 1D TFIM describes a spin chain of length N that
exhibits quantum phases. The Hamiltonian of the system is given by:

ĤTFIM = −J(
∑
i

Ŝz
i Ŝ

z
i+1 + g

∑
i

Ŝx
i) (1)

where J is the spin-spin interaction strength, g is the transverse field strength, and Ŝz and Ŝx are
Pauli matrices representing the spin operators. When J dominates g, the system is in the ordered
ferromagnetic phase with all spins aligned with each other in the z direction. The critical point of
the system occurs when g balances J , and the system transitions to the disordered (paramagnetic)
phase. We obtain ground states of 1D TFIM for various values of g (J = 1, N = 150) using the
Density Matrix Renormalization Group (DMRG) [41] and ITensors.jl [42]. We take measurements
(snapshots) of ground states in z and y bases and use them as input data for TetrisCNN to imitate
experimental measurements on a quantum system.

2D Ising gauge theory (IGT) model IGT is a classical spin model that exhibits a topological phase
of matter, defined on a square lattice with periodic boundary conditions. This time the interaction
between spins is defined within plaquettes p on the lattice and is of four-body nature:

HIGT = −J
∑
p

∏
i∈p

Si . (2)

2

0 20 40
Epoch

0.00

0.25

0.50

0.75

1.00

M
ea

n
br

an
ch

ac
tiv

at
io

ns
(a) 1D TFIM, z basis

0 100 200
Epoch

0.2

0.1

0.0

0.1
(b) 1D TFIM, y basis

0 100 200
Epoch

0.10

0.05

0.00

0.05

0.10
(c) 2D IGT

Notation - [(shape), dilation]
[(1, 1), 1]
[(2, 1), 1]

[(2, 1), 2]
[(2, 1), 3]

[(3, 1), 1]
[(3, 1), 2]

[(3, 1), 3]
[(3, 2), 1]

[(3, 3), 1]
[(2, 3), 1]

[(2, 2), 1]
[(1, 2), 1]

[(1, 2), 2]
[(1, 3), 1]

Figure 2: Activation of TetrisCNN branches across training on different datasets. During training,
branches without uniquely important information die out. In all three datasets, only one branch
remains active. It relies on (a) the (1,1) kernel in the 1D TFIM measured in z basis, (b) the (2,1)
kernel in the 1D TFIM measured in y basis, and (c) (2,2) kernel in the 2D IGT.

The (highly degenerate) ground state of this Hamiltonian meets the local constraint that the product of
spins along each plaquette is

∏
i∈p Si = 1. The system exhibits a transition from the low-temperature

topological phase to the high-temperature phase with violated constraints (see Sec. 3.1.2 in Ref. [3]).
We obtain spin configurations of IGT for different temperatures using the Monte Carlo method [9].

Architecture of TetrisCNN The main idea behind TetrisCNN is to allow the network to utilize
a multitude of differently shaped convolutional kernels, similar to Tetris pieces, within multiple
parallel branches, as presented in Fig. 1. The results of their parallel computation, after global average
pooling, enter the TetrisCNN bottleneck as ak, which we regularize with Lbottle =

∑
k λk|ak|,

where k is a branch index. As such, we deactivate branches without important and unique information.
We additionally choose λk so that they promote the use of simpler kernels over more complicated
ones. After the bottleneck, fully-connected layers solve the posed task, given the learned sparse data
representation. We describe the architecture in more detail in App. A.

TetrisCNN interpretation If we apply TetrisCNN now to spin configurations (where each input
element can be only Si = ±1), due to TetrisCNN construction, each branch activation ak can be
mapped exactly to a linear function of a specific spin correlator (see App. A.1 and Ref. [29] for more
details). For example, the branch using kernel (2,1) can only learn a nearest-neighbor spin correlator
SiSi+1 (it can also learn a one-body Si but we can ignore it if the branch using (1,1) got deactivated).
Therefore, we can easily understand what each branch computes, and linear regression is enough
to find a formula for ak. The bottleneck sparsity also enables obtaining a symbolic formula for the
whole network using SR [40] (see App. A.2), which otherwise fails due to the large input size. We
stress that the SR analysis is a ‘cherry on top‘ (hopefully making it easier for physicists to engage
with this work) because the analysis of the branch activations is enough to detect dominant spin
correlators in the data.

Task In the following, we combine TetrisCNN with the prediction-based method [43, 9], which
allows for an unsupervised detection of phase transitions. First, the network is trained in a regression
task to predict a tuning parameter of the system. For 1D TFIM, it is the transverse field value, g;
for 2D IGT, it is an inverse temperature, β. Then, the phase transition is identified by locating
the maximum of the derivative of the network output as a function of the label. Intuitively, the
prediction-based method relies on the difficulty of a successful regression in the transition vicinity.
We provide the implementation details in App. B and in the accompanying GitHub repository [44].

3 Results

The branch activation depends on relevant correlators present in the data The interpretability
of TetrisCNN relies on the sparsity of its bottleneck, i.e., a small number of its non-zero elements.

3

0.00 0.25 0.50 0.75 1.00 1.25 1.50
0.0

0.5

1.0
No

rm
al

ize
d

de
riv

at
iv

e

(a) 1D TFIM, z basis

0.00 0.25 0.50 0.75 1.00 1.25 1.50
1

0

1
(b) 1D TFIM, y basis

0 1 2 3 4 5
0.0

0.5

1.0

(c) 2D IGT

0.00 0.25 0.50 0.75 1.00 1.25 1.50
True g

1

0

M
ea

n
br

an
ch

ac
tiv

at
io

ns

a[(1, 1), 1] = 0.426 1.176 Sz
i , R2 = 1.00

g = |2.798 Sz
i 1.013|, R2 = 0.97

0.00 0.25 0.50 0.75 1.00 1.25 1.50
True g

0.02

0.00

0.02

a[(2, 1), 1] = 0.122 Sy
i Sy

i + 1 + 0.0015, R2 = 1.00
g = 107.985((Sy

i Sy
i + 1 + 0.16)2 0.067)2 + 0.226, R2 = 1.00

0 1 2 3 4 5
True

0.4

0.2

0.0

a[(2, 2), 1] = 4.95 S1
(i, j)S1

(i, j + 1)S2
(i, j + 1)S2

(i 1, j + 1) 0.322, R2 = 0.99
g = 1074.214(S1

(i, j)S1
(i, j + 1)S2

(i, j + 1)S2
(i 1, j + 1) +

0.002|6421 S1
(i, j)S1

(i, j + 1)S2
(i, j + 1)S2

(i 1, j + 1) 392| 0.044)2 + 0.015, R2 = 0.99

Output derivative Active branch derivative Theoretical phase
transition point

Figure 3: Identification of phase transition location and the relevant spin correlators with
TetrisCNN and prediction-based method. (a)-(b) Results for 1D TFIM measures in z and y basis,
respectively. (c) Results for 2D IGT.

Ideally, the bottleneck should contain only crucial information on the dataset. In Fig. 2, we show
how, during training, TetrisCNN branches that pick up irrelevant correlations in the data deactivate,
i.e., their respective activations in the bottleneck go to zero. The branch (or branches) that remains
active uses the kernel that computes the relevant correlators present in the data.

For 1D TFIM, the order parameter that determines the transition between the ferro- and paramagnetic
phases is the system magnetization in the z direction, ⟨Ŝz

i ⟩. It is a one-body quantity, and as expected,
in Fig. 2(a) we see that the remaining active branch of TetrisCNN uses the kernel of shape (1,1).
However, the magnetization in the y direction does not have information on the phase transition. In
Fig. 2(b) we see that when TetrisCNN analyzes TFIM measurements taken in y basis, it uses the
branch with the kernel of shape (2,1). Indeed, we can check that the value of the nearest-neighbor spin
correlator ⟨Ŝy

i Ŝ
y
i+1⟩ changes fast when the system undergoes a phase transition. Finally, TetrisCNN

correctly focuses on the relevant correlator of the IGT, i.e., a four-body spin correlator related to the
plaquette. We study how the detected correlators depend on λk in Lbottle in App. C.

TetrisCNN identifies the phase transition location in an unsupervised way In the first row of
Fig. 3, we recover unsupervised detection of phases from Refs. [43, 9]. The predicted transition
locations are in good agreement with the theoretical predictions for both Ising models. In the second
row of Fig. 3, we plot the branch activations as functions of the respective label, i.e., g for 1D TFIM
and β for 2D IGT. We see that the values of the active branches exhibit a fast change in the vicinity
of the phase transition, reminding of the expected behavior of the order parameter. As a result, we
can also recover the transition location by studying the derivative of the branch activation for data for
different labels. The maxima of the derivatives of the branch activations and of the network output
are slightly shifted, indicating different locations for the phase transition. The reason for this will
become clear in the next section.

TetrisCNN identifies the order parameter and provides its symbolic formula Most excitingly,
we can analyze the trained TetrisCNN with SR. For brevity, we focus here on results for TetrisCNN
trained on 1D TFIM in y basis and place the rest in App. D. The first mapping we find is between the
dominant branch activation and the spin correlation it detects. As seen in Fig. 2(b), TetrisCNN has an
active branch that uses [(2,1),1] kernel and its activation is

a[(2,1),1] = 0.122⟨Sy
i S

y
i+1⟩+ 0.0015 (R2=1.00) , (3)

where ⟨·⟩ means averaging over snapshots or spin configurations obtained for the same tuning
parameter. R2 coefficient in parenthesis shows that the fit is excellent. We see that in 1D TFIM, the
active branches of TetrisCNN learn the magnetization in the z direction from the data measured in
the z basis and a nearest-neighbor spin correlator in y direction from the data measured in the y basis.
In 2D IGT, TetrisCNN branch is a linear function of the plaquette ⟨S1

(i,j)S
1
(i,j+1)S

2
(i,j+1)S

2
(i−1,j+1)⟩.

4

The next step is to find the mapping between the non-zero branch activations and the network output.
In the same example, the predicted g is

g = 107.985

((
⟨Sy

i S
y
i+1⟩+ 0.16

)2
− 0.067

)2

+ 0.226 (R2=1.00) . (4)

As we see, the full network is a cumulant of the detected spin correlator. This explains the shift in
the phase transition location predicted from the derivative of the branch activation compared to the
derivative of the network output. We leave the question of which is a better indicator of the phase
transition for future work.

4 Limitations and Outlook

An obvious limitation of TetrisCNN is the combinatorial complexity of kernels that increases fast
for highly non-local order parameters. Currently, it can handle correlators up to (5,5). However, the
main challenge is at the level of finding a symbolic formula for the whole network, while interpreting
the bottleneck scales much better thanks to the direct linear mapping between the kernel shapes
and spin correlators. In a way, TetrisCNN automatically searches for relevant correlators [45], but
also learns an arbitrary useful function of correlators. Moreover, the learned correlators should be
task-dependent, but we leave this aspect for future work.

The next steps are to expand TetrisCNN to spin models on lattices of different geometries. An exciting
avenue is to modify the approach to detect and give formulas for long-range, nematic, and topological
orders in data, following the developments of Refs. [19, 39]. Although TetrisCNN was developed
with spin models in mind, it may tackle other correlation-based tasks, e.g., in molecular gases.

Acknowledgments and Disclosure of Funding

We thank Eliška Greplová for useful discussions. K.C. acknowledges the financial support from
the Polish Ministry of Science and Higher Education within the “Excellence initiative – research
university” program. The Flatiron Institute is a division of the Simons Foundation.

References
[1] J. Carrasquilla, Machine learning for quantum matter, Adv. Phys.: X 5, 1797528 (2020).

[2] M. Krenn, J. Landgraf, T. Foesel, and F. Marquardt, Artificial intelligence and machine learning for
quantum technologies, Phys. Rev. A 107, 010101 (2023).

[3] A. Dawid, J. Arnold, B. Requena, A. Gresch, M. Płodzień, K. Donatella, K. A. Nicoli, P. Stornati,
R. Koch, M. Büttner, R. Okuła, G. Muñoz-Gil, R. A. Vargas-Hernández, A. Cervera-Lierta, J. Carrasquilla,
V. Dunjko, M. Gabrié, P. Huembeli, E. van Nieuwenburg, F. Vicentini, L. Wang, S. J. Wetzel, G. Carleo,
E. Greplová, R. Krems, F. Marquardt, M. Tomza, M. Lewenstein, and A. Dauphin, Modern applications of
machine learning in quantum sciences (2023), arXiv:2204.04198 [quant-ph] .

[4] M. Medvidović and J. R. Moreno, Neural-network quantum states for many-body physics, Eur. Phys. J.
Plus 139, 631 (2024).

[5] A. Dawid and Y. LeCun, Introduction to latent variable energy-based models: a path toward autonomous
machine intelligence, J. Stat. Mech. 2024, 104011 (2024).

[6] J. Carrasquilla and R. G. Melko, Machine learning phases of matter, Nat. Phys. 13, 431 (2017).

[7] E. P. L. Van Nieuwenburg, Y.-H. Liu, and S. D. Huber, Learning phase transitions by confusion, Nat. Phys.
13, 435 (2017).

[8] S. J. Wetzel, Unsupervised learning of phase transitions: From principal component analysis to variational
autoencoders, Phys. Rev. E 96, 022140 (2017).

[9] E. Greplova, A. Valenti, G. Boschung, F. Schäfer, N. Lörch, and S. D. Huber, Unsupervised identification
of topological phase transitions using predictive models, New J. Phys. 22, 045003 (2020).

5

https://doi.org/10.1080/23746149.2020.1797528
https://doi.org/10.1103/PhysRevA.107.010101
https://arxiv.org/abs/2204.04198
https://doi.org/10.1140/epjp/s13360-024-05311-y
https://doi.org/10.1140/epjp/s13360-024-05311-y
https://doi.org/10.1088/1742-5468/ad292b
https://doi.org/10.1038/nphys4035
https://doi.org/10.1038/nphys4037
https://doi.org/10.1038/nphys4037
https://doi.org/10.1103/PhysRevE.96.022140
https://doi.org/10.1088/1367-2630/ab7771

[10] A. Bohrdt, S. Kim, A. Lukin, M. Rispoli, R. Schittko, M. Knap, M. Greiner, and J. Léonard, Analyzing
nonequilibrium quantum states through snapshots with artificial neural networks, Phys. Rev. Lett. 127,
150504 (2021).

[11] Z. Patel, E. Merali, and S. J. Wetzel, Unsupervised learning of rydberg atom array phase diagram with
siamese neural networks, New J. Phys. 24, 113021 (2022).

[12] J. Arnold, F. Schäfer, A. Edelman, and C. Bruder, Mapping out phase diagrams with generative classifiers,
Phys. Rev. Lett. 132, 207301 (2024).

[13] H. Kim, Y. Zhou, Y. Xu, K. Varma, A. H. Karamlou, I. T. Rosen, J. C. Hoke, C. Wan, J. P. Zhou,
W. D. Oliver, Y. D. Lensky, K. Q. Weinberger, and E.-A. Kim, Attention to quantum complexity (2024),
arXiv:2405.11632 [quant-ph] .

[14] B. S. Rem, N. Käming, M. Tarnowski, L. Asteria, N. Fläschner, C. Becker, K. Sengstock, and C. Weitenberg,
Identifying quantum phase transitions using artificial neural networks on experimental data, Nat. Phys. 15,
917 (2019).

[15] E. Khatami, E. Guardado-Sanchez, B. M. Spar, J. F. Carrasquilla, W. S. Bakr, and R. T. Scalettar, Visualizing
strange metallic correlations in the two-dimensional fermi-hubbard model with artificial intelligence, Phys.
Rev. A 102, 033326 (2020).

[16] N. Käming, A. Dawid, K. Kottmann, M. Lewenstein, K. Sengstock, A. Dauphin, and C. Weitenberg,
Unsupervised machine learning of topological phase transitions from experimental data, Mach. Learn.:
Sci. Technol. 2, 035037 (2021).

[17] M. Link, K. Gao, A. Kell, M. Breyer, D. Eberz, B. Rauf, and M. Köhl, Machine learning the phase diagram
of a strongly interacting fermi gas, Phys. Rev. Lett. 130, 203401 (2023).

[18] C. Miles, R. Samajdar, S. Ebadi, T. T. Wang, H. Pichler, S. Sachdev, M. D. Lukin, M. Greiner, K. Q.
Weinberger, and E.-A. Kim, Machine learning discovery of new phases in programmable quantum simulator
snapshots, Phys. Rev. Res. 5, 013026 (2023).

[19] N. Sadoune, I. Pogorelov, C. L. Edmunds, G. Giudici, G. Giudice, C. D. Marciniak, M. Ringbauer,
T. Monz, and L. Pollet, Learning symmetry-protected topological order from trapped-ion experiments
(2024), arXiv:2408.05017 [quant-ph] .

[20] A. Dawid, P. Huembeli, M. Tomza, M. Lewenstein, and A. Dauphin, Phase detection with neural networks:
interpreting the black box, New J. Phys. 22, 115001 (2020).

[21] S. J. Wetzel, R. G. Melko, J. Scott, M. Panju, and V. Ganesh, Discovering symmetry invariants and
conserved quantities by interpreting siamese neural networks, Phys. Rev. Res. 2, 033499 (2020).

[22] A. Dawid, P. Huembeli, M. Tomza, M. Lewenstein, and A. Dauphin, Hessian-based toolbox for reliable
and interpretable machine learning in physics, Mach. Learn.: Sci. Techn. 3, 015002 (2021).

[23] J. Arnold, F. Schäfer, M. Žonda, and A. U. J. Lode, Interpretable and unsupervised phase classification,
Phys. Rev. Research 3, 033052 (2021).

[24] J. Arnold and F. Schäfer, Replacing neural networks by optimal analytical predictors for the detection of
phase transitions, Phys. Rev. X 12, 031044 (2022).

[25] J. Arnold, N. Lörch, F. Holtorf, and F. Schäfer, Machine learning phase transitions: Connections to the
fisher information (2023), arXiv:2311.10710 [cond-mat.dis-nn] .

[26] S. J. Wetzel, Closed-form interpretation of neural network classifiers with symbolic regression gradients
(2024), arXiv:2401.04978 [cs.LG] .

[27] Y. Zhan, A. Elben, H.-Y. Huang, and Y. Tong, Learning conservation laws in unknown quantum dynamics,
PRX Quantum 5, 010350 (2024).

[28] K. Cybinski, M. Płodzień, M. Tomza, M. Lewenstein, A. Dauphin, and A. Dawid, Characterizing out-of-
distribution generalization of neural networks: application to the disordered Su-Schrieffer-Heeger model,
Mach. Learn.: Sci. Technol. 10.1088/2632-2153/ad9079 (2024).

[29] S. J. Wetzel and M. Scherzer, Machine learning of explicit order parameters: From the Ising model to
SU(2) lattice gauge theory, Phys. Rev. B 96, 184410 (2017).

[30] J. Greitemann, K. Liu, and L. Pollet, Probing hidden spin order with interpretable machine learning, Phys.
Rev. B 99, 060404 (2019).

6

https://doi.org/10.1103/PhysRevLett.127.150504
https://doi.org/10.1103/PhysRevLett.127.150504
https://doi.org/10.1088/1367-2630/ac9c7a
https://doi.org/10.1103/PhysRevLett.132.207301
https://arxiv.org/abs/2405.11632
https://doi.org/10.1038/s41567-019-0554-0
https://doi.org/10.1038/s41567-019-0554-0
https://doi.org/10.1103/PhysRevA.102.033326
https://doi.org/10.1103/PhysRevA.102.033326
https://doi.org/10.1088/2632-2153/abffe7
https://doi.org/10.1088/2632-2153/abffe7
https://doi.org/10.1103/PhysRevLett.130.203401
https://doi.org/10.1103/PhysRevResearch.5.013026
https://arxiv.org/abs/2408.05017
https://arxiv.org/abs/2408.05017
https://doi.org/10.1088/1367-2630/abc463
https://doi.org/10.1103/PhysRevResearch.2.033499
https://doi.org/10.1088/2632-2153/ac338d
https://doi.org/10.1103/PhysRevResearch.3.033052
https://doi.org/10.1103/PhysRevX.12.031044
https://arxiv.org/abs/2311.10710
https://arxiv.org/abs/2311.10710
https://arxiv.org/abs/2311.10710
https://arxiv.org/abs/2401.04978
https://doi.org/10.1103/PRXQuantum.5.010350
https://doi.org/10.1088/2632-2153/ad9079
https://doi.org/10.1103/PhysRevB.96.184410
https://doi.org/10.1103/PhysRevB.99.060404
https://doi.org/10.1103/PhysRevB.99.060404

[31] K. Liu, J. Greitemann, and L. Pollet, Learning multiple order parameters with interpretable machines,
Phys. Rev. B 99, 104410 (2019).

[32] J. Greitemann, K. Liu, L. D. C. Jaubert, H. Yan, N. Shannon, and L. Pollet, Identification of emergent
constraints and hidden order in frustrated magnets using tensorial kernel methods of machine learning,
Phys. Rev. B 100, 174408 (2019).

[33] N. Sadoune, G. Giudici, K. Liu, and L. Pollet, Unsupervised interpretable learning of phases from
many-qubit systems, Phys. Rev. Res. 5, 013082 (2023).

[34] N. Sadoune, K. Liu, H. Yan, L. D. C. Jaubert, N. Shannon, and L. Pollet, Human-machine collaboration:
ordering mechanism of rank−2 spin liquid on breathing pyrochlore lattice (2024), arXiv:2402.10658
[cond-mat.str-el] .

[35] A. Cole, G. J. Loges, and G. Shiu, Quantitative and interpretable order parameters for phase transitions
from persistent homology, Phys. Rev. B 104, 104426 (2021).

[36] C. Miles, A. Bohrdt, R. Wu, C. Chiu, M. Xu, G. Ji, M. Greiner, K. Q. Weinberger, E. Demler, and E.-A.
Kim, Correlator convolutional neural networks as an interpretable architecture for image-like quantum
matter data, Nat. Commun. 12, 3905 (2021).

[37] H. Schlömer and A. Bohrdt, Fluctuation based interpretable analysis scheme for quantum many-body
snapshots, SciPost Phys. 15, 099 (2023).

[38] C. Cao, F. M. Gambetta, A. Montanaro, and R. A. Santos, Unveiling quantum phase transitions from traps
in variational quantum algorithms (2024), arXiv:2405.08441 [quant-ph] .

[39] A. Suresh, H. Schlömer, B. Hashemi, and A. Bohrdt, Interpretable correlator transformer for image-like
quantum matter data (2024), arXiv:2407.21502 [cond-mat.quant-gas] .

[40] M. Cranmer, Interpretable machine learning for science with PySR and SymbolicRegression.jl (2023),
arXiv:2305.01582 [astro-ph.IM] .

[41] S. R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett. 69, 2863
(1992).

[42] E. Stoudenmire and D. J. Schwab, Supervised learning with tensor networks, in Advances in Neural
Information Processing Systems, Vol. 29, edited by D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and
R. Garnett (Curran Associates, Inc., 2016).

[43] F. Schäfer and N. Lörch, Vector field divergence of predictive model output as indication of phase transitions,
Phys. Rev. E 99, 062107 (2019).

[44] K. Cybiński, J. Enouen, A. Georges, and A. Dawid, GitHub repository with the demonstration code for
this paper (2024), doi:10.5281/zenodo.14035852.

[45] R. Verdel, V. Vitale, R. K. Panda, E. D. Donkor, A. Rodriguez, S. Lannig, Y. Deller, H. Strobel, M. K.
Oberthaler, and M. Dalmonte, Data-driven discovery of statistically relevant information in quantum
simulators, Phys. Rev. B 109, 075152 (2024).

[46] T.-Y. Lin, A. RoyChowdhury, and S. Maji, Bilinear CNN models for fine-grained visual recognition, in
Proceedings of the IEEE international conference on computer vision (2015) pp. 1449–1457.

[47] J. Ansel, E. Yang, H. He, N. Gimelshein, A. Jain, M. Voznesensky, B. Bao, P. Bell, D. Berard, E. Burovski,
G. Chauhan, A. Chourdia, W. Constable, A. Desmaison, Z. DeVito, E. Ellison, W. Feng, J. Gong,
M. Gschwind, B. Hirsh, S. Huang, K. Kalambarkar, L. Kirsch, M. Lazos, M. Lezcano, Y. Liang, J. Liang,
Y. Lu, C. K. Luk, B. Maher, Y. Pan, C. Puhrsch, M. Reso, M. Saroufim, M. Y. Siraichi, H. Suk, S. Zhang,
M. Suo, P. Tillet, X. Zhao, E. Wang, K. Zhou, R. Zou, X. Wang, A. Mathews, W. Wen, G. Chanan, P. Wu,
and S. Chintala, Pytorch 2: Faster machine learning through dynamic python bytecode transformation and
graph compilation, in Proceedings of the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2, ASPLOS ’24 (Association for Computing
Machinery, New York, NY, USA, 2024) p. 929–947.

7

https://doi.org/10.1103/PhysRevB.99.104410
https://doi.org/10.1103/PhysRevB.100.174408
https://doi.org/10.1103/PhysRevResearch.5.013082
https://arxiv.org/abs/2402.10658
https://arxiv.org/abs/2402.10658
https://arxiv.org/abs/2402.10658
https://arxiv.org/abs/2402.10658
https://doi.org/10.1103/PhysRevB.104.104426
https://doi.org/10.1038/s41467-021-23952-w
https://doi.org/10.21468/SciPostPhys.15.3.099
https://arxiv.org/abs/2405.08441
https://arxiv.org/abs/2407.21502
https://arxiv.org/abs/2407.21502
https://arxiv.org/abs/2407.21502
https://arxiv.org/abs/2305.01582
https://arxiv.org/abs/2305.01582
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevLett.69.2863
https://proceedings.neurips.cc/paper_files/paper/2016/file/5314b9674c86e3f9d1ba25ef9bb32895-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/5314b9674c86e3f9d1ba25ef9bb32895-Paper.pdf
https://doi.org/10.1103/PhysRevE.99.062107
https://github.com/kcybinski/TetrisCNN_for_spin_systems
https://doi.org/10.1103/PhysRevB.109.075152
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3620665.3640366

TetrisCNN

B × Dc × L1 × L2

B × Dc × L′ 1 × L′ 2

B × Dc × L′ ′ 1 × L′ ′ 2

 W: ⟨L1 × L2 × Dc × Cout⟩
 B: ⟨Cout⟩

 W: ⟨L′ 1 × L′ 2 × Dc × Cout⟩
 B: ⟨Cout⟩

 W: ⟨L′ ′ 1 × L′ ′ 2 × Dc × Cout⟩
 B: ⟨Cout⟩

 W: ⟨1 × 1 × Cout × Fnum⟩
 B: ⟨Fnum⟩

 W: ⟨1 × 1 × Cout × Fnum⟩
 B: ⟨Fnum⟩

 W: ⟨1 × 1 × Cout × Fnum⟩
 B: ⟨Fnum⟩

B × (3 ⋅ Fnum)
 W: ⟨(3 ⋅ Fnum) × Cout⟩
 B: ⟨Cout⟩

 W: ⟨Cout × 1⟩
 B: ⟨1⟩ B × 1

Average

Average

Average

Input
FC FCFully-connected Fully-connected

B × Dc × L1 × L2

B × Dc × L′ 1 × L′ 2

B × Dc × L′ ′ 1 × L′ ′ 2

 W: ⟨L1 × L2 × Dc × Cout⟩
 B: ⟨Cout⟩

 W: ⟨L′ 1 × L′ 2 × Dc × Cout⟩
 B: ⟨Cout⟩

 W: ⟨L′ ′ 1 × L′ ′ 2 × Dc × Cout⟩
 B: ⟨Cout⟩

 W: ⟨1 × 1 × Cout × Fnum⟩
 B: ⟨Fnum⟩

 W: ⟨1 × 1 × Cout × Fnum⟩
 B: ⟨Fnum⟩

 W: ⟨1 × 1 × Cout × Fnum⟩
 B: ⟨Fnum⟩

B × (3 ⋅ Fnum)
 W: ⟨(3 ⋅ Fnum) × Cout⟩
 B: ⟨Cout⟩

 W: ⟨Cout × 1⟩
 B: ⟨1⟩ B × 1

Average

Average

Average

Input
FC FC

x

B × Dc × L1 × L2

B × Dc × L′ 1 × L′ 2

B × Dc × L′ ′ 1 × L′ ′ 2

 W: ⟨L1 × L2 × Dc × Cout⟩
 B: ⟨Cout⟩

 W: ⟨L′ 1 × L′ 2 × Dc × Cout⟩
 B: ⟨Cout⟩

 W: ⟨L′ ′ 1 × L′ ′ 2 × Dc × Cout⟩
 B: ⟨Cout⟩

 W: ⟨1 × 1 × Cout × Fnum⟩
 B: ⟨Fnum⟩

 W: ⟨1 × 1 × Cout × Fnum⟩
 B: ⟨Fnum⟩

 W: ⟨1 × 1 × Cout × Fnum⟩
 B: ⟨Fnum⟩

B × (3 ⋅ Fnum)
 W: ⟨(3 ⋅ Fnum) × Cout⟩
 B: ⟨Cout⟩

 W: ⟨Cout × 1⟩
 B: ⟨1⟩ B × 1

Average

Average

Average

Input
FC FC

x

B × Dc × L1 × L2

B × Dc × L′ 1 × L′ 2

B × Dc × L′ ′ 1 × L′ ′ 2

 W: ⟨L1 × L2 × Dc × Cout⟩
 B: ⟨Cout⟩

 W: ⟨L′ 1 × L′ 2 × Dc × Cout⟩
 B: ⟨Cout⟩

 W: ⟨L′ ′ 1 × L′ ′ 2 × Dc × Cout⟩
 B: ⟨Cout⟩

 W: ⟨1 × 1 × Cout × Fnum⟩
 B: ⟨Fnum⟩

 W: ⟨1 × 1 × Cout × Fnum⟩
 B: ⟨Fnum⟩

 W: ⟨1 × 1 × Cout × Fnum⟩
 B: ⟨Fnum⟩

B × (3 ⋅ Fnum)
 W: ⟨(3 ⋅ Fnum) × Cout⟩
 B: ⟨Cout⟩

 W: ⟨Cout × 1⟩
 B: ⟨1⟩ B × 1

Average

Average

Average

Input
FC FC

2. Average over channels
(possible measurement
bases) - no new spatial

correlations can be
picked up.

3. Average
over physical
system indices

B
o
t
t
l
e
n
e
c
k

4. Activations
coming from each

branch – each kernel
and corresponding

correlator.

5. Learning task:
- Classification (supervised)

- Regression (unsupervised)

7. Output
- Network learns a cumulant of the
correlations present in the input

data

6. Loss function
Promoting the use of:

- simple kernels (correlators)
- the smallest number of kernels (correlators)

Correlation extraction network Task network

[1,1,1,1, …]
[1,1,-1,1,…]
[1,-1,1,1,…]
[1,1,1,1, …]

O
u
t
p
u
t

 regularizedℓ1

1. Each branch gets its own
convolutional kernel size and shape.

Low level

(a) (b)

Figure 4: A detailed presentation of TetrisCNN architecture and how it processes spin config-
urations at each step. (a) The first part of TetrisCNN, the correlation extraction network, which
maps the spin configurations onto functions of many-body spin correlators present in the data. (b)
The second TetrisCNN subnetwork is the task network, in our case a fully-connected network. If
applied to phase detection problem, the task can bebe either unsupervised (as here, where we use the
prediction-based method) or supervised.

A Detailed explanation of the TetrisCNN architecture

A.1 TetrisCNN architecture

The TetrisCNN architecture can be divided into two general parts: correlation extraction and task
networks. They are presented in Fig. 4(a)-(b), respectively, along with a detailed description of each
data processing step. We discuss these steps in the following sections.

Extracting correlations. Let us first focus on the correlation extraction network. The input to
the network are either classical spin configurations or ’snapshots’ - projective measurements on a
simulated or experimentally realized quantum spin lattice. The architecture supports either one- or
two-dimensional systems with snapshots in any of x, y, z measurement bases or their combination.
Each combination of input bases results in a separate training and analysis routines. The snapshots
are introduced into the network and then processed in parallel by several ’branches’, reminiscent of
bilinear CNNs from Ref. [46]. Each branch consists of a convolutional layer and then averages over
the number of filters and physical indices, thus reducing each snapshot to a single number - a branch
activation ak. Following the logic presented by Ref. [8], we interpret this activation as a function of
all correlators present in the data of the same shape and size or smaller as the convolutional kernel
used in the branch. Therefore, each activation ak can be written as a function of the input snapshot -
set of spin variables Si:

ak = f({Sz
i }) (5)

We map the spin variables from {↑, ↓} to {−1, 1}. Then, further following the logic from Ref. [29],
we leverage the fact that:

(Sd
i)

p =

{
1 if p is even
Sd
i if p is odd

, (6)

and apply it to a Taylor expansion of the function:

f (Sz
i) = f0 + f1S

z
i + f1 (S

z
i)

2︸ ︷︷ ︸
1

+f2 (S
z
i)

3︸ ︷︷ ︸
Sz
i

+ . . . (7)

8

TetrisCNN
(a) Architecture

(b) Interpretation

O
u
t
p
u
t

O
u
t
p
u
t

B
o
t
t
l
e
n
e
c
k

B
o
t
t
l
e
n
e
c
k

Task network

Symbolic
Regression

Correlation extraction network

Symbolic or linear regression

[1,1,1,1, …]
[1,1,-1,1,…]
[1,-1,1,1,…]
[1,1,1,1, …]

⟨sd
i ⟩

Correlations accesible
to the network

Projective measurements

Figure 5: A high-level overview of the TetrisCNN architecture and its interpretation. The two
parts form a pipeline for the unsupervised detection of phases of matter and their order parameters.
(a) TetrisCNN architecture comprises two general parts - correlation extraction network and task
network. The two are joined by a bottleneck, which is key to the subsequent analysis. (b) Obtaining
symbolic formulas takes two steps. First, finding a mapping between correlations accessible to each
branch and this branch activation with linear or symbolic regression. Second, finding a mapping
between the network output and the branch activations in the bottleneck.

This leaves us with an activation ak being a function of all correlations of smaller or equal size than
the kernel size, but only of the first order. An example of this for kernels (1,1) and (2,1) would be:

f (szi) = F

(
1

N

∑
i

Sz
i

)
(8)

f
(
syi , s

y
i+1

)
= F

(
1

N

∑
i

Sy
i

)
+ F

(
1

N − 1

∑
i

Sy
i S

y
i+1

)
(9)

Truncation of search space. This trick still leaves us with the branch activation dependent on the
correlations also smaller than the kernel size. To tackle this, we add a term to the loss function so
that the network learns during the training to use only the simplest non-trivial kernels to achieve this
task. This is achieved by combining the activations from all branches, forming a network bottleneck.
This bottleneck is ℓ1 regularized, and the values of the activations are combined into Lbottle, which
is then added to the final loss function. As a result, once the network is trained, we can inspect the
values of the activations in the analysis routine, and the ones with the highest amplitude are perceived
as the most important to the network. Therefore, e.g., if we allow the network to be used in the
optimization process, the kernels (1,1), (2,1), (3,1), and kernel (2,1) turns out to be the one with the
highest amplitude, the function describing it presented in Eq. (9) collapses only to the second term.
The first term is either zero or not of the leading order because if it were of the leading order, then a
kernel (1,1) would not be deactivated. Therefore, only by studying the branch activations, we can
detect leading correlations in the data, solely from the interpretable design of TetrisCNN architecture.

Learning task. The second part of the network is the task network, which learns the mapping between
the branch activations and the desired output. We implement two possible tasks: classification and
regression. The variant with regression task is based on the prediction-based method [43, 9], which
allows for an unsupervised detection of the phase transition point, as opposed to the classification
task, which requires the user to supply the labels.

A.2 Interpretation with symbolic regression

Although the detection of relevant spin correlators can be done simply by studying the network
bottleneck and leveraging its interpretable design, we can additionally use regression techniques to

9

provide a symbolic formula for both bottleneck activations and the network output, all in terms of
spin correlators. To this end, we first find a mapping between the spin correlators and the branch
activations. Due to ℓ1 regularization of the bottleneck, increasing λk, and binary values of the spin
data, the bottleneck elements ak can only be linear functions of the respective spin correlators, as
explained above (i.e., kernel (1,1) can only learn Si, kernel (2,1) - only SiSi+1). We can identify this
mapping using linear regression (e.g., via least-squares minimization). However, to find a symbolic
formula for the mapping between bottleneck activations ak and network output, we need to use
symbolic regression (SR). These two steps are presented in Fig. 5(b).

Symbolic regression. Symbolic regression (SR) is a type of regression analysis that searches for
mathematical expressions that best fit the given data rather than assuming a predefined functional form
like in traditional regression. This approach is particularly useful in physics, where the goal is often
to discover underlying equations or relationships that govern the observed data [40]. The SR analysis
was performed using the PySR package, a Python interface to the SymbolicRegression.jl library in
Julia [40]. This package employs evolutionary algorithms and genetic programming to iteratively
search for and evolve mathematical expressions that best fit the activation data. Its procedure is the
following:

1. Initialization: The algorithm starts with a population of random mathematical expressions
involving basic operators (+ , −, ∗, /), constants, and the input variables (correlators).

2. Evaluation: Each expression is evaluated based on its ability to predict the kernel activations.
The evaluation metric is the default SymbolicRegression.jl loss function, which is the mean
squared error (MSE) between the predicted and actual activations.

3. Selection and Evolution: The top-performing expressions are selected, and new expressions
are generated through genetic operations such as mutation (altering parts of an expression)
and crossover (combining parts of two expressions).

4. Convergence: Depending on the size of the input, the process continues for 6000 or
18000 epochs, which allows for a good convergence of each branch evolved by the genetic
algorithm employed under the hood of PySR.

B Details on the numerical implementation and used hyperparameters

Task In this work, TetrisCNN is used in combination with the prediction-based method [43, 9].
We train TetrisCNN using PyTorch [47] by minimizing the mean squared error between the network
output and the tuning parameter. For 1D TFIM, the tuning parameter is the transverse field value, g;
for 2D IGT, the tuning parameter is an inverse temperature, β. The training hyperparameters are in
Tab. 1.

Input data The input data are spin configurations, either classical (2D IGT) or projective measure-
ments taken on a quantum system in some bases (1D TFI). Single input data therefore is a vector (for
1D systems) or matrix of {−1, 1} (for 2D systems). If a system is classical or only one measurement
basis is considered, input data has a single channel, as in case of the 1D TFI, where z and y bases
were considered separately. If two measurement bases are considered, like in the 2D IGT case, the
spin configurations (here from two sublattices) are randomly bunched into pairs consisting of two
bases, and are fed into two input channels. For three measurement bases, there are three channels.

Declaring available branches TetrisCNN requires giving a list of kernels that it needs to consider.
The kernel format we use is [(dimension1,dimension2),dilation], where dimension2 = 1 for 1D
and dilation inserting holes of specified size between the kernel consecutive elements. Dilation = 1
means no hole, dilation = 2 means hole of one element size. Each kernel is then used by a separate
parallel convolutional branch. In our numerical experiments, we used up to 20 parallel branches and
did not notice any performance drop. We report the list of kernels that we made available for every
setup described in the main text in Tab. 1.

Bottleneck regularization Interpretation of TetrisCNN via symbolic regression (SR) hinges upon
the sparsity of its bottleneck. Therefore, we regularize the bottleneck elements ak, i.e., branch

10

Table 1: Hyperparameters of TetrisCNN trained on three datasets, whose results are reported in the
main text

1D TFIM, z basis 1D TFIM, y basis 2D IGT
Learning rate 1e-2 5e-4 5e-2
Weight decay 1e-2 1e-1 1e-5
Optimizer Adagrad AdamW Adagrad
Max epochs 100 100 1500
Early stopping Yes No No
Normalized input No No MaxMinScaler

Available kernels

[(1, 1), 1],
[(2, 1), 1],
[(2, 1), 2],
[(2, 1), 3],
[(3, 1), 1],
[(3, 1), 2],
[(3, 1), 3]

[(1, 1), 1],
[(2, 1), 1],
[(2, 1), 2],
[(3, 1), 1],
[(3, 1), 2]

[(1, 1), 1],
[(2, 1), 1],
[(1, 2), 1],
[(2, 2), 1],
[(2, 1), 2],
[(1, 2), 2],
[(3, 1), 1],
[(3, 2), 1],
[(1, 3), 1],
[(2, 3), 1],
[(3, 3), 1]

Bottleneck size (# branches) 7 5 11
λmin, λmax 1e-4, 1e0 1e-4, 1e-1 1e-5, 1e-1
Task network [# branches, 32, 1] [# branches, 32, 16, 1] [# branches, 32, 16, 1]

activations averaged across channels and physical system size via the following loss term:

Lbottle = λk

∑
k

|ak| . (10)

This ℓ1 regularization encourages the bottleneck elements to go to zero, which translates into the use
of the smallest number of branches (therefore kernels and spin correlators) possible. We additionally
modulate the values of λk so it is the smallest for branches using kernels of the smallest size, also
favoring simpler correlations over more complex ones. We choose it so that they are equally distanced
on a logaritmic scale between λmin and λmax, λk = np.logscale(λmin, λmax). We report values
of λmin and λmax in Tab. 1.

Architecture of the task network While the correlation extraction network is the same across
setups, we vary the fully-connected task network between the datasets. We report its architecture also
in Tab. 1, where the input to the task network is the bottleneck (therefore branch activations) and the
next numbers indicate numbers of hidden neurons in the consecutive fully-connected layers.

C Interplay between the accuracy and sparsity of TetrisCNN via the
bottleneck regularization

Here we study how the detected spin correlators (and kernels used by the active branches of
TetrisCNN) depend on penalties λk put on the branch activations that use kernels of increasing
complexity. We set λk = np.logscale(λmin, λmax), where λmin is fixed to 10−4 and 10−5 for
1D TFIM and 2D IGT, respectively. They are applied to the branch activations ak in the order of
appearance on the list of the respective ’available kernels’ defined by a user (see Tab. 1). In Fig. 6, in
the first row, we plot the average regression performance in terms of R2 of 5 TetrisCNNs trained with
increasing λmax that is with increasing differences between applied λk that put increasing preference
towards smaller and simpler kernels (i.e., kernels from the beginning of the user-defined list). In
the second row, we plot average branch activations of the same TetrisCNNs, which we normalize
to the largest branch activation per network instance. We show here which kernels are preferred by
differently regularized networks and also how stable is their choice across 5 initializations.

Uniform λk When ℓ1 penalties put on the branch activations corrresponding to kernels of increasing
complexity are equal to each other, the regularization results only in a sparse bottleneck and in a

11

10 4 10 3 10 2 10 1 100 101 102 103 104 105 106

0.750
0.775
0.800
0.825
0.850
0.875
0.900

R
2

(a) 1D TFIM, z basis

10 4 10 3 10 2 10 1 100 101 102 103 104 105 106
0.0
0.1
0.2
0.3
0.4
0.5
0.6

(b) 1D TFIM, y basis

10 5 10 4 10 3 10 2 10 1 100 101 102 103 104 105

0.65

0.70

0.75

0.80

0.85

(c) 2D IGT

10 4 10 3 10 2 10 1 100 101 102 103 104 105 106

max

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
ac

tiv
at

io
ns

10 4 10 3 10 2 10 1 100 101 102 103 104 105 106

max

0.00

0.25

0.50

0.75

1.00

1.25

10 5 10 4 10 3 10 2 10 1 100 101 102 103 104 105

max

0.0

0.2

0.4

0.6

0.8

1.0

Notation - [(shape), dilation]
[(1, 1), 1]
[(2, 1), 1]

[(2, 1), 2]
[(2, 1), 3]

[(3, 1), 1]
[(3, 1), 2]

[(3, 1), 3]
[(3, 2), 1]

[(3, 3), 1]
[(2, 3), 1]

[(2, 2), 1]
[(1, 2), 1]

[(1, 2), 2]
[(1, 3), 1]

Figure 6: Penalties of branch activations λk and the use of kernels. We plot here the average R2

of the network output (compared to the true label) and the normalized branch activations (where 1 is
the largest branch activation value) of 5 TetrisCNN instances trained with different λmax. The larger
λmax, the larger differences between penalties λk put on the branch activations that use kernels of
increasing complexity. Increasing λmax results in a sparser bottleneck of TetrisCNN that uses simpler
and smaller kernels. At some critical λmax, we can also get a significant R2 drop, so the sparsity may
come at the cost of performance.

network preference to use a single kernel. There is no preference towards simpler kernels yet. We
see that for 1D TFIM in z basis, TetrisCNN tends to use kernel (3,1) with dilatation 1 accompanied
by kernel (2,1) with dilatation 1. For 1D TFIM in y basis, the variety of used kernels is even larger,
the dominant one also being kernel (3,1) with dilatation 1, but accompanied by kernels (3,1) with
dilatation 2 and 3.

Non-uniform λk In the case of 1D TFIM in z basis, for a bit larger differences between λk

(λmax ≥ 10−3), the dominant kernel changes to (2,1), and then to kernel (1,1) for λmax > 10−1.
These choices stay the same across 5 initializations. This kernel switch results only in a slight R2 drop,
suggesting that (1,1) learns a very relevant spin correlator. For y basis, starting from λmax = 10−2,
all network instances use kernel (2,1). From λmax ≥ 103, the kernel choice becomes unstable and is
accompanied by a large R2 drop, suggesting that using smaller kernels is detrimental.

TetrisCNN trained on 2D IGT is less dependant on λk Finally, TetrisCNNs trained on 2D IGT
samples, regardless of λk, usually use kernel (2,2) as the dominant kernel. For λmax ≤ 10−2, the only
difference is that the (2,2) kernel is accompanied by some larger kernels, and the choice becomes less
stable across initializations. Interestingly, the largest R2 is for intermediate λmax = 100 suggesting
that sparsity does not always come at the cost of performance drop.

The R2 difference between TetrisCNNs trained on 1D TFIM snapshots from z and y basis
Next to the discussion on λk and the use of kernels, the first row of Fig. 6(a)-(b) nicely suggests via
the R2 difference that the z basis contains better information for predicting the tuning parameter
g of 1D TFIM than the y basis. Indeed, the g aims to align spins in the z direction, and it is the
term breaking the symmetry underlying the phase transition. Following the regression performance
between measurement bases is, next to the simplicity of the learned spin correlator, an important
guidance on studying phases of matter with TetrisCNN using various measurements.

D Symbolic regression results

The analysis process described in App. A.2 is presented here on the example of 1D TFIM model in y
basis in Fig. 7. Panels (a) and (b) present the mapping between the spin correlators computed from
the raw input data and the learned bottleneck activations as a function of the regression parameter.
In all panels, the regression parameter is the transverse field strength g. In panel (b), we also show
the least squares fit that includes all possible correlators from Eq. (9), i.e., ⟨Sy

i ⟩ and ⟨Sy
i S

y
i+1⟩. The

12

0.02 0.01 0.00 0.01
True activation value

0.020

0.015

0.010

0.005

0.000

0.005

0.010

0.015

Pr
ed

ict
ed

 a
ct

iv
at

io
n

va
lu

e

(a)

Baseline
0.00208 | R2 = -0.000

0.0508x1 | R2 = 0.487
0.122x1 + 0.0149 | R2 = 1.000

0.0 0.5 1.0 1.5
True g

0.020

0.015

0.010

0.005

0.000

0.005

0.010

0.015

Pr
ed

ict
ed

 a
ct

iv
at

io
n

va
lu

e

(b)

Target
0.122 Sy

(i, j)S
y
(i, j + 1) + 0.015 | R2 = 1.000

Least squares fit: R^2 = 1.00
y = +0.015 + 0.122 Sy

(i, j)S
y
(i, j + 1) + 0.001 Sy

(i, j)

0.0 0.5 1.0 1.5
True g

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pr
ed

ict
ed

 g

(c)

Predicted g
True g
g = 143321.922|((a0 + 0.023)2 0.003)2| | R2 = 0.996
g = 465291.034((a0 + 0.018)2 0.001)2 + 0.243 | R2 = 1.000
g = |474493.707((a0 + 0.018)2 0.001)2 + 0.244| | R2 = 1.000

Figure 7: Symbolic regression results for TetrisCNN trained on 1D TFIM measured in y basis.
(a) Fits for a[(2,1),1](x1), where x1 = ⟨Sy

i S
y
i+1⟩. (b) Fits for g(a[(2,1),1]). (c) Fits for g(a0), where

a0 = ⟨Sy
i S

y
i+1⟩ and comparison between the predicted g of the network based on snapshots from the

y basis and the true g.

coefficient next to ⟨Sy
i S

y
i+1⟩ is two orders of magnitude larger than the one next to ⟨Sy

i ⟩, indicating
that the regularization of the bottleneck is working as planned. Finally, panel (c) presents the mapping
between the bottleneck activations and the output of the network.

In Sec. 3 we present the distilled equation for TetrisCNN predicting transverse field strength g in the
TFIM model out of measurements in y basis, but our analysis also spanned two other experimental
settings: TFIM model in z basis and IGT model. In both cases, the symbolic distillation yielded an
accurate description of the knowledge extracted by the network.

TFIM model in z basis. Here, the network correctly picked up the simplest nonzero correlator
present in the data, which is the magnetization in the direction z, using kernel (1,1). The nonzero
branch corresponding to this correlator is approximated in Eq. (11). Given this approximation, an
equation that approximates the whole TetrisCNN is presented in Eq. (12).

a[(1,1),1] = −1.176⟨Sz
i ⟩+ 0.426 (R2=1.00) (11)

g = |2.798⟨Sz
i ⟩ − 1.013| (R2=0.97) (12)

IGT model Analysis of data from IGT model presented us with a new insight into case previously
studied by Ref. [9]. We knew from their investigation that the correlations picked up by the CNN
must not exceed the receptive field of convolutional kernel (3,3), and using our analysis routine
we were able to narrow this estimate from more than 250000 possibilities to just one meaningful
correlation - a four body correlator within the convolutional kernel (2,2). Our analysis of the nonzero
TetrisCNN branch revealed this kernel to be ⟨S1

(i,j)S
1
(i,j+1)S

2
(i,j+1)S

2
(i−1,j+1)⟩, which is a product of

all spins about a given vertex, producing a pattern similar to the vertex operator present in definition
of the toric code (see Fig. 6 of Ref. [9]). Consecutive investigation of the raw data revealed that
this correlator is indeed the only one in the (2,2) receptive field that varies continuously across the
investigated β range. All other correlators of smaller or equal size converge to a constant value as
the number of snapshots per β is increased. An equation describing the nonzero branch activation is
presented in Eq. (13). The full distilled relation describing learned mapping from the input correlators
to the regression parameter, inverse temperature β, is presented in Eqs. (14) - (15).

a[(2,2),1] = 4.95⟨S1
(i,j)S

1
(i,j+1)S

2
(i,j+1)S

2
(i−1,j+1)⟩ − 0.322 (R2=0.99) (13)

β = 1074.214(⟨S1
(i,j)S

1
(i,j+1)S

2
(i,j+1)S

2
(i−1,j+1)⟩+ (14)

+0.002|6421⟨S1
(i,j)S

1
(i,j+1)S

2
(i,j+1)S

2
(i−1,j+1)⟩ − 392| − 0.044)2 + 0.015 (R2=0.99) (15)

13

	Introduction
	Methods
	Results
	Limitations and Outlook
	Detailed explanation of the TetrisCNN architecture
	TetrisCNN architecture
	Interpretation with symbolic regression

	Details on the numerical implementation and used hyperparameters
	Interplay between the accuracy and sparsity of TetrisCNN via the bottleneck regularization
	Symbolic regression results

