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Abstract
The expected atmospheric signal when performing exoplanet transit spectroscopy,
especially for terrestrial planets, is measured in a few tens of parts per million.
The technique is thus very sensitive to various sources of noise. This is partic-
ularly true when using the Single Object Slitless Spectroscopy (SOSS) mode on
the NIRISS instrument aboard the JWST, given the wide spectral traces of its im-
ages. Current methods to deal with 1/f (correlated) noise leave residuals that are
almost double that of the expected readout noise. Here, we explore the use of
Score-Based Models (SBM) to learn the distribution of noise in dark SOSS im-
ages, which we then use as a likelihood model in the Scored-based Likelihood
Characterization (SLIC) framework to produce posterior samples of the underly-
ing (noiseless) spectral traces. We aim to apply this method to time-series spectro-
scopic observations, potentially reducing our error to the photon noise limit. This
could substantially improve our signal-to-noise by up to a factor of two for some
spectral regions and thus enable higher precision transit spectroscopy.

1 Introduction
One of the biggest obstacles to the analysis of astrophysical images is the simultaneous presence
of many different sources of noise associated with infrared detectors used in a space environment.
These include the readout noise, dark current, epoxy voids, cosmic ray hits, and 1/f noise. The latter-
most source is a correlated noise structure appearing in images as stripes of varying amplitudes,
along the fast readout direction. It affects all near-infrared Teledyne detectors used onboard JWST
and is caused by the 1/f variability of the reference voltage of each detector’s readout electronics [1].
This noise can be difficult to calibrate out, and residuals can creep into calibration reference images.
This type of instrumental noise is especially dominant at low flux levels typical of spectroscopic
applications with moderate spectral dispersion.

Arguably the current most pressing impact of 1/f noise is within the field of exoplanet transit spec-
troscopy. The Near-Infrared and Slitless Spectrograph (NIRISS)[2] aboard the JWST has an ob-
serving mode, Single-Object Slitless Spectroscopy (SOSS)[3] that is optimized for time-series ob-
servations of transiting exoplanets. The spatially defocused spectral traces of SOSS hide a larger
number of pixels whose 1/f correction cannot easily be performed, and, in particular, uncorrected
1/f noise residuals in spectrographic images add a source of noise equivalent to doubling the readout
noise [3]. Even after correcting for the 1/f noise using current methods, the derived precision of the
resulting spectral trace can be as much as 2.2 times lower than that of the expected precision [4] at
the longer wavelength limit of 2.8 µm [2].

The non-Gaussian nature of this noise structure renders it difficult to correct for using current data
reduction methods. The typical reduction involves the subtraction of a constant value from each
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Figure 1: (First row) The mock observation (left) constructed by overlaying the simulated spectral
trace (right) and real noise. (Second row) The reconstructed image after applying the conventional
1/f correction method (left) compared with the median of 100 posterior samples using our method
(right). (Third row) The residuals of observation reconstructed using the state-of-the-art method
(left) and the median of the residuals obtained with our method (right). (Fourth row) The 85%−15%
confidence interval on our 100 posterior samples.

individual detector column as shown in the state-of-the-art reconstructed spectral trace in Figure 1,
which is done after having subtracted the time-series median frame and masked the spectral traces
where the photon noise residuals are dominant. However, this approach leaves residuals that are
likely from higher-frequency 1/f structures still present in the image [3]. Assuming a Gaussian
model for the remaining residuals is not enough to reach the expected photon-limited precision,
especially between 1.2-2.8 µm [3]. In the context of exoplanet transit spectroscopy, this spectral
region is crucial for the detection of molecules such as H2O, N2, CO2, and CH4 [4, 5]. Recently,
machine learning methods have been proposed to denoise astronomical data [6] , however, existing
techniques only provide point estimates of denoised images, leaving out uncertainties and limiting
their applicability to real data.

This prompts a search for probabilistic techniques capable of learning the underlying noise distribu-
tion. In this work, we consider Score-Based diffusion Models (SBMs) [7, 8]. This framework has
been shown to be effective in modeling non-Gaussian noise in telescope images [9], since an SBM
trained using noise patches can be used as a likelihood model. When combined with a prior SBM in
a Bayesian inference setting, we show that our framework is able to perform denoising on spectral
traces from the JWST NIRISS instrument.

2 Methods
2.1 Score-based models for linear inverse problems
Focusing on the purely additive noise component, we can cast the problem of denoising a spectral
trace as a special case of a linear inverse problem with the following data generation process

y = Ax+ η (1)
where y ∈ Rd is a vector containing the pixel values of an observed spectral trace from the NIRISS
instrument, x ∈ Rd are the parameters of interest — the pixel values of an image of the noiseless
spectral trace — and η ∈ Rd is a random variable that represents additive noise corrupting the
observation. A is the forward model applied to the noiseless spectral trace. Throughout this work,
we use the identity A ≡ 1d×d as our forward model.

Our goal is to recover the parameters of interest, x, from the corrupted observation, y. In this work,
we model x as an image — a 2-dimensional grid of pixel values. Focusing on the spectral traces
only limits the scope of this study strictly to the denoising stage of the preprocessing pipeline of
spectral traces [10], which is the first step towards conducting atmospheric retrievals.

Equation (1) becomes an ill-posed inverse problem for our purpose of denoising a spectral trace.
This is due to the fact that the distribution from which η is sampled is not analytically defined, owing
to the non-Gaussian nature of the 1/f noise. To solve this problem, we aim to recover the posterior
distribution over noiseless spectral traces, p(x | y), in a framework given by Bayes’ theorem

p(x | y) ∝ p(y | x)p(x) , (2)
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Figure 2: (Top) A real noise sample from the NIRISS darks. (Middle) A generated noise sample.
(Bottom) Close-up 128x128 patches of various generated samples. The leftmost patch contains an
epoxy void patch (small ring-like structure). The patch second from the left contains a bright cosmic
ray. These features, along with the 1/f noise, have been learned by the model.

where p(x) is the prior distribution and p(y | x) is the likelihood distribution defined by the noise
model from which η is sampled, q(η).

The prior and noise models are characterized using the Stochastic Differential Equation (SDE)
formalism for diffusion models [7]. More specifically, we train U-net [11] neural networks
sθ(t,x) : [0, 1]×Rd → Rd to learn the score of the prior, ∇xt

log pt(xt) , and the score of the noise
model, ∇ηt

log qt(ηt) with the denoising score-matching loss [12, 13] using the score-models1

package.

To solve the inverse problem (1), we use the trained SBMs as in [14] to solve the reverse-time SDE
with time-index t and with the posterior pt(xt | y) as its t = 0 boundary condition. Using Bayes’
theorem, the posterior score can be written as a sum of the prior and likelihood scores

∇xt log pt(xt | y) = ∇xt log pt(y | xt) +∇xt log pt(xt) . (3)

The second term on the RHS is the score of the prior. It can be learned directly as described above
using score-matching and a training dataset of simulated, noiseless spectral traces (see section 2.3).

For the likelihood score, we use the SLIC framework [9] to rewrite the likelihood score in terms of
the score of the noise model via the chain rule at t = 0. For t > 0, we use the convolved likelihood
approximation [14–17] to write

∇xt
log pt(y | xt) ≈ −∇ηt

log qt(ηt)A . (4)

This redefinition makes use of the linearity of the data generating process (1) w.r.t. to xt, and the
fact that noise is additive, to reinterpret ηt = y−xt as the residuals between the observation and the
model. Crucially, with this redefinition we can use the score-matching procedure mentioned above
to train an SBM on a dataset of noise samples described in section 2.2 to represent the likelihood.

2.2 The noise dataset
To train the noise model, we construct a training set using time-series observations of dark cali-
bration images obtained during the commissioning phase of the NIRISS instrument, which can be
found in the MAST2 portal . These images were taken in the SUB256 mode as part of the NIS-
006 program [18], with each observation consisting of 30 integrations comprising 30 up-the-ramp
reads with a size of 256x2048 pixels. We also apply minimal preprocessing consisting of remov-
ing the superbias and constructing a bad pixel map using the jwst data reduction package [19].

1github.com/AlexandreAdam/score_models
2MAST
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870 spectral trace images per time-series observation are obtained by subtracting read 1 from read
2, read 3 from read 4, and so on, assuming the individual reads are approximately independently
and identically distributed (iid). This ensures that training images capture the accumulation rate of
cosmic rays. With eight time-series dark observations, this yields 6960 individual dark images, of
which 4000 are randomly selected to train the noise model due to the high dimensionality of the
images and the size of the U-nets, which constrains the number of images that can fit on one GPU.
This method assumes that there are no significant temporal correlations from one dark read to the
next. A representative example from the true noise training set is displayed in panel 1 of Figure 2.

Figure 3: Examples of stellar trace simulations
used to train the prior model. The first order
trace is the brightest spectral trace at the bot-
tom, ranging from 0.84µm to 2.83µm, while
the second order trace ranges from ∼ 0.6µm
to 0.82µm [3]. A very faint third order trace
is also visible at the top. Absorption lines dif-
fer depending on the stellar model used — the
top and bottom traces were simulated for stars
at T = 2800K and T = 6800K respectively.

2.3 Stellar trace simulations
To train the prior model, we generate simula-
tions of noiseless spectral traces. Specifically, we
use PHOENIX stellar models [20] ranging from
stars with surface temperatures between 2400K
to 6900K, and produce simulations of traces by
convolving these spectra with real PSFs from
the NIRISS instrument acquired between June
and August 2022. The PSFs were simulated
with WebbPSF [21], using optical path difference
(OPD) maps produced by the JWST wavefront
sensor. To achieve a diverse training set, we also
vary the horizontal shift, the rotation of the trace
on the detector, and the brightness of the under-
lying trace. This results in 19,035 training exam-
ples for the prior model (see Figure 3).

3 Results and discussion
3.1 Noise model
We first visually assess the accuracy of the trained noise model. Figure 2 compares a SBM-generated
noise sample with a sample from the real JWST darks. To make the comparison easier, we also
display zoom-ins of different regions of the generated darks. Samples from the noise model can
reproduce all the features of the various sources of noise in dark images, including epoxy void
patches, 1/f noise, dead pixels, and cosmic rays. To quantitively assess the statistical accuracy of
the model, we perform the PQMass test [22], which is a density-free, sample-based method for
assessing the quality of generative models. This approach enables the estimation of the probability
that two sets of samples are drawn from the same distribution. This comparison can be conducted
by dividing the space into non-overlapping regions and comparing the number of data samples in
each region. Since it can be applied directly to high-dimensional data, it obviates the need for
dimensionality reduction typically required in quality assessment metrics. In our case, we use 10
regions and compute the probability that 2000 real darks and 2000 generated samples are drawn
from the same underlying data-generating process. We obtain a χ2

PQM of 43, which is within 2σ of
the expected value of 9, testifying to the quality of the over 500,000-dimensional samples generated
by our trained noise model.

3.2 Inference
To evaluate the performance of our inference methodology for a spectral trace observed with the
NIRISS instrument, we sample the underlying trace from the mock observation in Figure 1. The
mock observation was constructed by overlaying a test simulation made from a PHOENIX stellar
model at T = 2400K with a real dark image. Figure 1 shows that our method recovers the spectrum
well, with clearer features than those seen in the clean spectrum reconstructed with the state-of-
the-art method. The residual shows faint artifacts along the location of the first- and second-order
spectral traces, which we suspect are due to the prior model not representing the distribution of
simulations sufficiently well.

To further test the performance of our noise correction technique, we extract the 1-dimensional
spectrum of the star using the ground truth trace, the state-of-the-art reconstructed traces, and the 100
posterior samples. We first perform the state-of-the-art 1/f and cosmic ray correction on 100 mock
observations constructed using the same ground truth spectral trace overlayed with 100 different real
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dark realizations. Then, we fit the three orders of the trace for the ground truth, median of the 100
mock observations, and median of the 100 posterior samples, and finally perform box extractions
using the jwst package [19]. This results in the extraction of the 1-dimensional spectrum of the
star for each of the three spectral traces. Figure 4 highlights the median extracted fluxes in arbitrary
units (fluxes were normalized between 0 and 1 for ease of display), as well as the standard deviation
comparison between the state-of-the-art denoising method and our own. The pixel range shown
reflects the wavelength regions of highest concern, from 2.4 to 2.84 µm, where the excess noise is
1.3-1.5 times higher than expected under the state-of-the-art method [3].

Figure 4: (Top) The extracted 1-d spectrum of the ground truth spectral trace. (Middle top) The ex-
tracted 1-d spectrum of the median of our 100 posterior samples, with the 1σ and 2σ uncertainties.
(Middle bottom) The extracted 1-d spectrum of the median of 100 mock observations reconstructed
with the state-of-the-art method, with the 1σ and 2σ uncertainties. (Bottom) The standard devia-
tions of the median posterior extracted spectrum (green) and the median state-of-the-art extracted
spectrum (blue). With median standard deviations of 9.0 and 6.6 for the state-of-the-art method
and our method respectively, this shows a 36% increase in precision within the 1-500 pixel range,
corresponding to the wavelength range of 2.4-2.8 µm.

In the last panel of Figure 1, we display the pixel-wise 85% − 15% confidence interval of the
100 posterior reconstructions to represent their uncertainties. These emphasize that the very bright
regions of the trace are modeled with larger uncertainties. Given that the noise structures are absent
from the reconstructions and the high performance of the noise model under the PQMass test, the
bright region in the confidence interval map alludes to our prior model being misspecified and thus
poorly representing the more extreme values in the pixel distribution. We further note that, due to
the very large dimensionality of the images (256x2048), our architecture might have suboptimal
inductive biases and benefit from hyperparameter fine-tuning tailored for the large-scale correlation
structures found in our trace simulations. We leave this to future work.

Our work showcases the potential of score-based likelihoods and priors in mitigating 1/f noise in
spectroscopic data. This proof-of-concept used a simplified model without considering up-the-ramp
accumulation or Poisson noise. Future work will incorporate these elements to accurately model in-
dividual spectral trace reads. Applied across a time-series of traces, this approach could significantly
enhance transit spectroscopy sensitivity, advancing exoplanet atmosphere characterization.
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