
PolarBERT: A Foundation Model for IceCube

Inar Timiryasov
University of Copenhagen

Niels Bohr Institute
Jagtvej 155A, DK-2200
Copenhagen, Denmark

inar.timiryasov@nbi.ku.dk

Jean-Loup Tastet
University of Copenhagen

Department of Computer Science
Universitetsparken 1, DK-2100

Copenhagen, Denmark
jeta@di.ku.dk

Oleg Ruchayskiy
University of Copenhagen

Niels Bohr Institute
Jagtvej 155A, DK-2200
Copenhagen, Denmark

oleg.ruchayskiy@nbi.ku.dk

Abstract

The IceCube Neutrino Observatory at the South Pole is a cubic kilometer of
Antarctic ice, instrumented with 5,160 digital optical modules. These modules
collect light induced by neutrino interactions in the ice. This data is then used to
identify the neutrino directions, their energies, and types, which are essential inputs
for both particle physics and astrophysics. Deep learning methods, such as graph
neural networks, have been successfully applied to the steady stream of incoming
data IceCube is receiving. In this work, we build a foundation model on the IceCube
data in a self-supervised way without any data labeling. This pre-trained model
can be fine-tuned for the downstream task of directional reconstruction of neutrino
events in a sample-efficient way.

1 Introduction

The IceCube Neutrino Observatory [1] is a cubic-kilometer-sized neutrino detector located at the
South Pole. It consists of 5,160 digital optical modules (DOMs) distributed over 86 vertical strings
deep inside the Antarctic ice. The DOMs are sensitive to Cherenkov light produced by charged
particles moving through the ice faster than the speed of light in ice. The main goal of the IceCube
experiment is to identify the sources of cosmic rays and to study the properties of neutrinos.

Traditionally, IceCube data analysis is based on sophisticated maximum likelihood estimators [2].
These methods are used to reconstruct the direction of the incoming neutrino and to estimate the
energy of the neutrino and its type. The likelihood-based methods are computationally expensive and
require significant human effort to tune the parameters of the reconstruction algorithm.

Recently, deep learning methods have been successfully applied to IceCube data analysis, see,
e.g., [3, 4, 5]. These models are trained using synthetic Monte Carlo data. Simulating light propagation
in a cubic kilometer of ice is a challenging and expensive process. IceCube accumulates vast amounts
of real data, with a detection rate of 2.15 kHz [6] yielding approximately 70 billion events annually.
While atmospheric muons constitute the majority of these events, they share fundamental physical
properties with signal events. This abundance of real data naturally motivates the exploration of
self-supervised learning methods for IceCube observations.
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In this work, we propose a foundation model for IceCube, which we call PolarBERT. The model is
similar to BERT [7] but instead of masked token prediction, we perform “masked DOM prediction”.
We pre-train PolarBERT on the publicly available high-quality Monte Carlo data prepared by the
IceCube collaboration for the Kaggle competition [8]. Using the directional labels available in the
dataset, we then fine-tune the model for the downstream task of directional reconstruction of neutrino
events.

Remarkably, the foundation model can be trained without requiring explicit knowledge of the IceCube
detector geometry or individual optical module sensitivities. This suggests that when trained on real
experimental data, the model could autonomously learn crucial detector characteristics, including ice
transparency and DOM quantum efficiency, directly from the observations. However, it is important
to note that while the model may internally encode these properties, extracting such information from
the trained model remains challenging and is not guaranteed to be feasible.

2 Related work

Recently, several foundation models have been proposed in particle physics, particularly for jet
reconstruction at the Large Hadron Collider [9, 10, 11, 12]. For an up-to-date review of the field,
see [13].

The main challenge in self-supervised pre-training for particle physics lies in data representation.
To apply self-supervised learning, raw data must be converted into a sequence of tokens, allowing
the model to predict a probability distribution over these tokens. For example, the authors of [12]
and [11] use VQ-VAE to convert jet constituent momenta into tokens from a fixed-size dictionary.
Alternative approaches often embed raw particle features directly into the model space, such as in
jet-transformer [14], which is trained in a supervised manner.

For IceCube, the 5,160 DOMs provide a natural tokenization scheme. However, each pulse registered
by a DOM contains multiple features, with time of the pulse and charge being the most significant.
Given the nature of IceCube data, we adopt a hybrid approach: we treat DOMs as tokens and linearly
embed other features into a high-dimensional space. The unique timestamp of each pulse also
provides a natural ordering for the pulse sequence.

3 IceCube Data

Publicly available data. The IceCube collaboration has released a high-quality Monte Carlo dataset
for the Kaggle competition [8]. The dataset consists of 131,000,000 simulated neutrino events. These
events were caused by neutrinos (or background muons) of all flavors with energies ranging from
100 GeV to 100 PeV. The events were simulated with an energy spectrum of E−1.5 for energies up to
1 PeV and E−1 for higher energies. The neutrino directions (azimuth and zenith) are provided as
labels. Other ground truth parameters, such as energy or neutrino type, are not specified. The number
of pulses per event—a proxy for the neutrino energy—ranges from 2 to 100,000. The data is available
in parquet format on the Kaggle platform. For every pulse, the following data is provided: the time
of the pulse in nanoseconds within the current event time window; DOM ID; charge, an estimate of
the amount of light in the pulse, in units of photoelectrons (p.e.); and a Boolean variable auxiliary.
If auxiliary is True, the pulse was not fully digitized, is of lower quality, and was more likely to
originate from noise. In the future, we plan to pre-train the model on real data and use synthetic data
only at the fine-tuning stage. However, a study using real data can only be conducted as part of the
IceCube collaboration. Therefore, in this study, we use synthetic data for both stages as a proof of
concept.

IceCube Data as Time Series. Since all pulses within an event have unique timestamps, we can
treat each event as a time series. The time series data is a sequence of pulses, where each pulse is
represented by a vector of features. These features are the time, DOM ID, charge, and auxiliary flag
(see Figure 1).

Down Sampling. The main challenge of the IceCube data is that the number of pulses per event
varies significantly. This problem is not specific to our time series representation. In this work,
we fix the maximum sequence length seq_len and down-sample the events with more pulses. We
also pad events with fewer pulses with zeros. There are several ways to down-sample events. We
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prioritize fully digitized pulses (auxiliary = False), which we refer to as primary pulses. If an event
contains more than seq_len primary pulses, we randomly select seq_len of them. If an event
contains fewer than seq_len primary pulses, we add randomly selected auxiliary pulses (auxiliary
= True). A similar strategy has been used by the top Kaggle solutions [15]. We found that down-
sampling reduces the reconstruction accuracy for the most energetic events. Due to the power-law
distribution of neutrino energies, there are relatively few high-energy events, so this is not an issue
when considering average accuracy, as was the case in the Kaggle competition. For physics purposes,
fast reconstruction of the most energetic events is crucial and will be addressed in future work.
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Figure 1: A sketch representing how pulses are embedded into the model space. Each DOM ID
corresponds to a trainable embedding vector. There are also embedding vectors for masking and
padding. The time and charge are linearly embedded into the model space.

4 Model design

Pulse embeddings. The pulses are encoded as follows (see Figure 1). DOM IDs are embedded
using a standard dimensionality embedding layer dmodel/2. The vocabulary size of the embedding
vector is NDOMs + 3, where NDOMs = 5160 is the number of DOMs, and there are three additional
special “tokens”: the padding token, the mask token, and the regression token. The time, charge, and
auxiliary flag are linearly projected into a dmodel/2 dimensional space. Before applying the affine
transformation, we rescale the features as follows: time → time−104ns

3×104 ns , charge → 1
3 log10(charge),

aux → aux − 0.5. The resulting two vectors—DOM embedding and other features—are then
concatenated into a single vector of dimensionality dmodel. We prepend a special trainable regression
embedding, used for the downstream task, to each sequence. In this work, we downsample and pad
all events to seq_len= 128.

The rationale behind this embedding approach stems from the unique challenges of handling mixed
data types. Masking time and charge values would necessitate their digitization, similar to approaches
used in jet physics [12, 11], or require more sophisticated objectives as recently proposed in [16].
Therefore, to leverage the natural “tokenization” offered by IceCube DOMs, we divided the features
into two distinct categories. Our experimental investigations included frequency-based untrainable
time encodings—analogous to those in the original transformer—though these proved suboptimal
for model training. Future work will explore incorporating DOM spatial positions into the masked
embedding components.

Transformer model. The model architecture is inspired by BERT [7]. The encoder-only architecture
has demonstrated empirical success with IceCube data [15]. The model consists of an embedding
layer and an encoder-only, pre-layer norm variant of the transformer [17]. The model dimension is
dmodel. The transformer encoder consists of NL layers. We have experimented with both the standard
MLP and SwiGLU [18] layers but did not observe significant differences in performance. For the rest
of this work, we use the standard MLP with ReLU non-linearity. We do not use positional encodings
since the timestamps already provide information about the relative position of pulses in the sequence.
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Masking strategy. During pre-training, we mask a fraction of pulses by replacing the DOM
embedding with a trainable masking embedding. We found that a masking fraction of 0.25 leads to
the best downstream performance. Note that we only mask DOM embeddings and not other features
like time. We have found it crucial to mask only primary pulses. The auxiliary pulses are mostly
due to random noise, and the model cannot predict in which DOM an auxiliary pulse takes place.
Nevertheless, we discovered that complete removal of auxiliary pulses degraded model performance,
suggesting they contribute meaningful contextual information despite their stochastic nature.

Pre-training. To enhance the model’s ability to capture important event information in the regression
embedding, we introduced an auxiliary prediction task. In addition to the masked DOM prediction,
we task the model with predicting the logarithm of the total charge of all pulses. This auxiliary feature
is available in the unlabeled data and cannot be linearly extracted from the input, as we provide the
model with logarithms of individual pulse charges. The resulting loss is a combination of the usual
cross-entropy loss for the masked DOMs and an MSE loss for the regression task:

l = LCE + λLMSE , (1)

where LMSE is the mean squared error loss between true and predicted logarithm of total charge,
and the default value of λ = 1. The second term quickly reaches nearly zero values during training,
but removing this term significantly decreases the fine-tuning capacity.

Fine-tuning. Once the model is pre-trained, we remove the unembedding layer and add an MLP
prediction head (with a single hidden layer of size 4 × dmodel). This prediction head converts the
regression embedding into a three-dimensional unit vector. This unit vector is used to predict the
direction with the mean angular error loss [8].

Currently, neutrino direction represents the sole ground-truth label available in the kaggle dataset. We
plan to use open-source data from the Prometheus project [19] when a large enough dataset becomes
available.

5 Experiments

PolarBERT is implemented1 in PyTorch and utilizes FlashAttention [20] for numerical efficiency.
A dataset with 100,000,000 neutrino events was saved as a memory-mapped file. Two separate
datasets with 1,000,000 events each are used for validation and fine-tuning. For pre-training, we used
the Adam optimizer [21] with a cosine schedule and tuned the learning rate (with the largest batch
size fitting the device). During fine-tuning, we observed that the final results depend strongly on the
initialization of the prediction head. Therefore, we opted for the recently introduced schedule-free
version of Adam [22]. The schedule-free optimizer allowed for better and faster convergence of
fine-tuning.
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Figure 2: Left: The evaluation loss as a function of model size demonstrates a clear scaling law. All
models were trained on 10 million neutrino events. Right: Downstream performance: mean angular
error (lower is better) as a function of the fine-tuning dataset size.

We pre-trained a family of PolarBERT models ranging from 2.2 to 159 million parameters on a
dataset containing 10 million neutrino events for one epoch. The resulting losses follow a clear power

1https://github.com/timinar/PolarBERT
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law similar to that observed for large language models [23], with results presented in the left panel of
Figure 2. Our largest configuration (159M parameters) required 4 hours of training on a single 40GB
A100 GPU with learning rate 3× 10−4, cosine schedule, and batch size 512.

For comprehensive pre-training, we focused on a more efficient 8M-parameter model (8 layers,
dmodel = 256, MLP hidden size 1024) due to resource constraints. This model was trained on 100
million events for one epoch using batch size 2048 and maximum learning rate 5× 10−4 with cosine
annealing schedule. After 4 hours of training on a single 40GB A100 GPU, it achieved an evaluation
cross-entropy loss of 2.08, demonstrating superior computational efficiency compared to the 159M
model by reaching a lower final loss within the same training budget. Based on this performance, we
selected this configuration for subsequent fine-tuning experiments.

We further fine-tuned the model on 10,000, 100,000, and 1,000,000 unique events. We used the
pre-trained 8M backbone and added a prediction head. We did not freeze the backbone parameters
since this would reduce the quality of the final results. We also trained several models from scratch
on the same datasets. In both cases we limited the number of unique events used for fine-tuning, but
did not limit the number of epochs and trained until the validation loss stopped decreasing.

The original PolarBERT architecture does not generalize if trained only on such small datasets, so we
had to modify it by adding positional encodings and DOM coordinates to the embeddings. With these
modifications, the model can be trained on 1 million events, but still significantly underperforms
compared to the fine-tuning of the pre-trained model, see the right panel of Figure 2.

It is worth noting that our model, when fine-tuned on less than one percent of the dataset, does not
yet reach the accuracy of the best models trained in a supervised manner [15]. However, our model
could in principle be pre-trained using real data, eliminating the simulation gap and leveraging the
much higher number of recorded events.

6 Conclusions

In this work, we have demonstrated the feasibility and effectiveness of using a foundation model
approach for IceCube neutrino event reconstruction. Our proposed model, PolarBERT, leverages
self-supervised learning on large amounts of unlabeled data to create a powerful pre-trained model
that can be fine-tuned for specific tasks with limited labeled data.

Our key findings are: (i) Our hybrid embedding approach and masking strategy are effective in
capturing relevant information from the raw data. (ii) We observe a clear scaling law in pre-training
performance, similar to that seen in large language models. (iii) There are significant improvements
in sample efficiency and performance when fine-tuning the pre-trained model compared to training
from scratch, especially on smaller labeled datasets.

Further architecture refinements, as well as using real data for pre-training and scaling up the models
are natural directions for future research.

7 Broader Impact Statement

We expect that this work will stimulate further research into foundation models in physics. Our mixed
masking strategy and pre-training with an additional regression target could be readily applied to
other particle physics settings.

The observation of a power-law relationship between model performance and size suggests that with
more computing power, the performance of models in particle physics will continue to improve. This
finding has implications for the future of data analysis in experimental physics.
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