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Abstract

Flow matching is an incredibly powerful technique that can be used to sample
arbitrary distributions. Recently, flow matching posterior estimation (FMPE) has
been introduced in simulation-based inference (SBI) as a scalable alternative to
standard neural posterior estimation (NPE) using normalizing flows. However,
FMPE suffers from a lower sampling efficiency than NPE because it requires multi-
ple network evaluations per sample. In this work, we propose extensions of FMPE
based on mini-batch optimal transport that reduce the required number of network
evaluations for high-quality samples. We investigate the extensions theoretically
and show that they can lead to straight probability flows in the appropriate limit.
Finally, we demonstrate the performance of the method on simple toy models and
high-dimensional gravitational wave source parameter inference, showing that it is
possible to increase the sample efficiency of FMPE while achieving approximately
the same performance over different tasks.

1 Introduction

Bayesian inference connects model parameters to observed data via the likelihood function [1], but in
many cases, this function is intractable or difficult to evaluate. Simulation-based inference (SBI), or
likelihood-free inference, addresses this by using numerical simulators without needing to explicitly
calculate the likelihood [2]. Traditional SBI methods like approximate Bayesian computation (ABC)
[3, 4] and synthetic likelihood approaches [5, 6] can model complex distributions but struggle with
high-dimensional data and require many simulations. More efficient approaches use neural networks
[7–13], including normalizing flows [14], to approximate distributions. Theoretically, normalizing
flows are universal density approximators [14], however, they face challenges in scaling and efficiency.

Recently, advanced generative models such as score-matching diffusion [15–17], consistency models
[18, 19] and flow matching [20, 21] have been applied to SBI [22–26]. These models, unlike
normalizing flows, use a vector field with a continuous time parameter, requiring the solution of
a differential equation for sampling [27]. This allows for more flexible network architectures but
increases the computational cost. This work explores methods to reduce the number of function
evaluations in flow matching for SBI, proposing new generalizations of mini-batch optimal transport
[28, 29] to improve sample efficiency.

Related Work Flow matching was first used for SBI in [26]. Mini-batch optimal couplings have
been investigated by [28] and [29] for unconditional or simple class-conditional generation. We will
mostly build upon the theory and notation introduced in [28]. Other works that involve continuous
normalizing flows and optimal transport are for example [30–34]. However, these works use a
significantly different approach and try to improve the flows with regularization or different training
objectives. Neural optimal transport techniques [35–38] create generative models that try to learn
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the optimal transport map directly with neural networks. These usually do not involve continuous
normalizing flows.

Contributions We propose three generalizations of mini-batch optimal transport for SBI, introduc-
ing additional terms into the cost matrix. We theoretically and empirically evaluate these methods,
showing they can straighten flows while maintaining performance.

2 Flow Matching & SBI

Preliminaries The goal of simulation-based inference (SBI) is to sample or estimate the posterior
distribution p(θ|x) of the underlying model parameters θ given empirically observed data x. In SBI
we only have indirect access to the likelihood p(x|θ) via a simulator that can sample x ∼ p(x|θ)
for any parameter vector θ inside the support of our prior p(θ). There are SBI techniques based
on modelling the posterior distribution, likelihood function and likelihood-to-evidence ratio [7–13].
Additionally, they can be divided into amortized and sequential methods, where amortized methods
learn a general model of the posterior and sequential models usually work iteratively and require new
simulations to perform inference on new observations. In this work, we will only consider amortized
methods that estimate (and sample) the posterior distribution directly.

Continous Normalizing Flows Normalizing flows [14] transform a simple base distribution q0
into an arbitrary distribution q1 via an invertible function ψ parameterized by a neural network.
Learning invertible functions greatly restricts the possible architectures of the neural networks and
fundamentally limits the scalability of the method. Continuous normalizing flows [27] overcome
this limitation by instead learning a vector field vt with a continuous time component t ∈ [0, 1] that
smoothly transforms the initial distribution into the target distribution. For SBI, we additionally
condition the vector field on the observed data x. The vector field defines the differential equation

d

dt
ψt,x (θ) = vt,x(ψt,x (θ))), ψ0,x (θ) = θ ∼ q0. (1)

This differential equation, commonly referred to as neural ODE, has a unique solution if the vector
field is continuous in t and Lipschitz continuous in θt, which is true for most neural network
architectures used in practice. The density of the learned posterior distribution can be evaluated by
using the instantaneous change of variables [27] and integrating over time

q(θ|x) = q0(θ0) exp

(
−
∫ 1

0

∇ · vt,x(θt)dt
)
, (2)

where θt ≡ ψt,x (θ) follows the trajectory of a solution of the neural ODE (1) and the divergence
is calculated with respect to θt. Continuous normalizing flows can be trained like normalizing flow
by maximizing the (log-)likelihood of the target distribution. However, the evaluation of density via
the integral in equation (2) requires multiple network evaluations for a single mini-batch, making
training overall more costly than normalizing flows.

Flow Matching Flow matching [20] provides an alternative objective function to train continuous
normalizing flows. It does not require the evaluation of the density via equation (2), instead, it directly
optimizes the vector field vt,x. We refer the interested reader to [20] for a detailed description of the
formalism and focus on flow matching posterior estimation introduced in [26]. The FMPE loss is
given by

LFMPE = Et∼λ(t),x∼p(x|θ1),θ1∼p(θ),θ0∼N (0,1)∥vt,x(θt)− (θ1 − θ0)∥2, (3)

where p(θ) is the prior of the model parameters, p(x|θ1) is sampled via the simulator, the initial
parameters θ0 are sampled from a standard normal distribution and the time component is usually
sampled uniformly t ∼ λ(t) = U [0, 1]. This loss is obtained from the original flow matching loss
proposed in [20] by applying Bayes’ theorem and using the observation x as a condition of the
flow. Therefore, it converges to the true probability flow that transforms samples from the initial
distribution to posterior samples. It has been shown [26] that FMPE achieves competitive results
on the SBI benchmark suite [39] and high-dimensional gravitational wave data where the observed
data vector has ∼ 10, 000 dimensions. However, sampling the trained posterior takes significantly
longer than for standard normalizing flows. A possible way to increase the sample efficiency is to
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Standard Naive OCOT

Figure 1: The sampled posterior distributions and example trajectories of an FMPE model trained on
the Two Moons task. The left panel shows a model trained with the standard FMPE objective (curved
trajectories), the middle panel shows the naive application (m = β = 0) of mini-batch optimal
transport (leads to failure) and the right panel shows a model trained using OCOT and a match rate of
m = 0.3 (straight trajectories, correct posterior).

“straighten” the flows of the trained vector field. Straightness increases the sample efficiency because
it simplifies the integration of the trajectory from Equation (1). For straight, constant velocity flows,
the neural ODE can be solved in a single step. It is easy to show [21] that the FMPE objective of
equation (3) does not lead to straight flows, which is also visualized in Figure 1. This can be related
to the fact that θ0 and θ1 are sampled independently [28].

Mini-batch Optimal Couplings For unconditional data generation tasks, e.g. images, with θ0 ∼ q0
and θ1 ∼ q1, it can be shown that sampling any coupling γ(θ0, θ1) with marginal distributions q0
and q1 in the flow matching loss will lead to a vector field that maps q0 to q1 and only affects the
trajectories [28, 29]. Further, [28, 29] show that choosing a coupling that is optimal with respect to a
Wasserstein-p distance

Wp(p0, p1) = min
γ∈Γ(q0,q1)

[Eγd(θ0, θ1)
p]

1/p
, (4)

where d is a distance, leads to straight, constant velocity flows. We provide more details regarding the
connection of optimal transport and straight flows in Appendix A. Finding such a coupling is generally
intractable. A more feasible approach suggested by [28] is to solve the optimal transport problem of
Equation (4) for discretely sampled mini-batches. Let θ(i)0 ∼ q0 and θ(i)1 ∼ q1 (i ∈ {1, . . . , n}, the
optimal transport problem of equation (4) is then fully defined by the cost matrix

Cij = d
(
θ
(i)
0 , θ

(j)
1

)
. (5)

The exact solution can be found with standard solvers, e.g. as implemented in POT [40], with an
overall runtime complexity of O(n3) [41] or an approximate solution can be found via entropic
regularization and Sinkhorn’s algorithm with a runtime complexity of O(n2) [42]. The solution is
given in the form of a permutation matrix, which is a type of doubly-stochastic matrix [28]. For most
practical applications, the solution is not degenerate, i.e. there is only a single unique coupling that
minimizes the total cost and one can simply rearrange the pairings (θ(i)0 , θ

(j)
1 ) such that they attain

minimal cost. For unconditional generation tasks, i.e. ignoring the x dependency in the FMPE loss
(3), this is easy to do during the training and significantly improves the straightness of the trajectories
of the vector field [28, 29]. However, adding the condition on the observed data x is non-trivial.
In SBI we usually have only a single parameter vector θ per condition (observation x), making it
impossible to apply mini-batch optimal transport per observation, i.e. reordering parameter pairs
(θ

(i)
0 , θ

(j)
1 ) that share the same condition x. Therefore, we propose to add an additional term to the

cost matrix of Equation (5) weighted by the conditional weight β

Cij = d
(
θ
(i)
0 , θ

(j)
1

)
+ βd

(
s(i), s(j)

)
, (6)

where s can be the observation x, a summary statistics of x or the parameter θ1 itself. For s = x,
we call it observation conditional optional transport (OCOT), for s = f(x) summary conditional
optimal transport (SCOT) and for s = θ1 parameter conditional optimal transport (PCOT). The idea
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Figure 2: Example 2D contours of a gravitational wave parameter inference. The Jensen Shannon
divergence (JSD) is calculated with the 1D marginals with respect to the standard FMPE results.

is to reorder pairs of initial and final parameters (θ(i)0 , θ
(j)
1 ) only if the corresponding d(s(i), s(j)) is

small. We analyse the theoretical properties of this extension in Appendix B and show that SCOT and
OCOT can lead to straight, constant velocity flows in the limit of β → ∞ and batch size n→ ∞.

The distance d can also affect the efficiency of the proposed methods similarly to the distances used
in approximate Bayesian computation (ABC) [43]. However, we leave the examination of these
effects to future work and focus only on the standard Euclidean distance here.

Choosing the correct conditional weight β can be difficult as it is theoretically unbounded. Therefore,
we also introduce the match rate 0 ≤ m ≤ 1, which is the fraction of samples in a batch that is not
reordered after solving the optimal transport problem. Setting m is more intuitive and translates
better between tasks. How the match rate is enforced during training is explained in Appendix C.1.

3 Experiments

Toy Models We use the Two Moons and SLCP Distractors tasks from the simulation-based
inference benchmarks [39] to evaluate our methods and perform ablation studies. The detailed results
are presented in Appendix C. We show examples of trajectories and posterior samples for the Two
Moons task in Figure 1. It can be seen that OCOT straightens the trajectories and recovers the correct
posterior while the naive application of mini-batch optimal transport fails. We find similar results for
the SLCP Distractors task (see Appendix C).

Graviational Wave Inference To demonstrate the performance of our methods in real-world
scenarios, we reproduce the gravitational wave source parameter inference (dim(x) = 15, 744) from
[26] using their publicly available code and compared the standard reference results to runs with
SCOT and PCOT using a matching rate of m = 0.5. Because of the high dimensionality of the
observation, we decided to not run OCOT. For SCOT we use the 2048-dimensional embedding of
the embedding network that was used in their approach. The only other change was that we reduced
the batch size from 4096 to 2048. It should be noted that reducing the batch size by a factor of two
increases the training time as well. We solve the optimal transport problem of Equation (6) using
entropic regularization and Sinkhorn’s algorithm that can be run on GPUs and does not significantly
affect the training time. We show example 2D posteriors and the Jensen Shanon divergence between
the reference run and our methods in Figure 2. We find that the contours agree extremely well
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between all methods with the JSD being below 10−3 nat for all 1D distributions. Additionally, using
the adaptive solver dopri5 from the torchdiffeq package [44], both PCOT and SCOT reduce the
number of required network evaluations by 20% when sampling. If the probability of the posterior
samples is also computed (using Equation (2) and requires the divergence of the vector field) the
number of function evaluations is reduced by 16%. This shows that PCOT and SCOT can be applied
to high-dimensional problems and effectively reduce the number of network evaluations without
degrading the performance of FMPE. Additional details are provided in Appendix D.

4 Discussion & Conclusion

Flow matching is a powerful tool in SBI, offering strong results in posterior estimation but with
higher inference times. We introduced three mini-batch optimal coupling methods to address this,
adding a term to the cost matrix weighted by the hyperparameter β. These methods generally enhance
vector field straightness without much performance loss, though their effectiveness varies by task and
hyperparameter choice. Future work could explore these methods in the sequential version of FMPE
or apply them to other generative tasks like image generation.
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A Optimal Transport and Straight Flows

In this Appendix, we provided a more detailed description of the connection between optimal transport
and straight flows. We start with a formal definition of straightness. For a fixed observation x, the
straightness of a flow is defined as [28]

Sx = Et∼λ(t),θ0∼q0

[
∥vt,x(θt)∥2 − ∥θ1 − θ0∥2

]
. (7)

It can be shown [28] that S ≥ 0 and S = 0 only if vt,x(θt) is constant along t, indicating that the
trajectory of θt with initial condition θ0 is a straight line. Straightness increases the sample efficiency
because it simplifies the integration of the trajectory from equation (1). Theoretically, for a perfectly
straight flow (Sx = 0), the integration can be performed in a single step.

Intuitively, the FMPE objective function can not lead to straight flow because it is an expected value
over independently drawn samples θ0 and θ1. In the objective function, these two independent
samples are connected via a straight line, leading to many overlapping trajectories. However, the
learned vector field vt,x is deterministic and can only go into a single direction from any given
point, meaning that intersection points are impossible. Instead, the resulting vector field takes the
expected direction of all trajectories in an intersection point of the training data [21] which causes the
curvature.

Optimal Transport Flows The definition of the Wasserstein-p distance from Equation (4) is a
special case of the general optimal transport problem, where the distance d can be replaced with an
arbitrary cost function c. Using the Euclidean distance, it can be shown that the optimal coupling γ∗
is unique for p > 1 if p0 and p1 satisfy some weak regularity assumptions [45]. An optimal coupling
induces a constant speed geodesic between the two distributions [45]. Such a geodesic can be thought
of as a linear interpolation between the two distributions that connects samples via straight lines.
We will focus on the Wasserstein-2 distance, which is one of the most studied and well-understood
Wasserstein distances, but other cost functions are possible [28]. For the Wasserstein-2 distance
there exists an equivalent formulation based on probability flows that illustrates the concept of
constant-speed geodesics and straight flows. As shown in [46], the Wasserstein-2 distance can be
written as

W2(p0, p1) = min
qt,ut

∫ 1

0

∥ut(x)∥2qt(x)dxdt, (8)

where ut is a flow generating qt and qt has boundary conditions qt=0 = p0 and qt=1 = p1. The
optimal qt of equation (8) is a constant speed geodesic of p0 and p1 and the corresponding optimal
vector field ut is constant along the trajectories. Sampling from Wasserstein-2-optimal couplings
would lead to pairs (θ0, θ1) that almost surely do not intersect. Using such a coupling in our loss
function instead of the classic independent coupling will therefore create straight, constant-velocity
flows [28, 29].

B Theoretical Analysis

This Appendix contains a theoretical analysis of the proposed extensions to mini-batch optimal
transport. The additional term in the cost matrix of Equation (6) depends either on the observation
x, a summary of the observation f(x) or the underlying model parameter θ. Before we go into the
theoretical properties of the extension, we will first explain the notion of the summary used in the
extension in more detail. Summaries, sometimes just called summary statistics, are commonly used
in SBI. The goal of summary statistics is to reduce the dimensionality of the observations x while
preserving the relevant information about the model parameters θ. The summary statistics can be
expressed in terms of a function acting on the observation f(x), where f can by any function, e.g. a
neural network. A summary statistics is called sufficient if it preserves all the information about model
parameters. A sufficient summary leads to the same posterior distribution as the original observation
p(θ|f(x)) = p(θ|x). Note that such a sufficient summary statistics does not always exist [47]. Good
summary statistics can be obtained for example via domain experts, training a compression network
along with the flow matching objective or pre-training a network with a specialized loss [48]. In this
work, we will only consider training a compression network alongside the FMPE objective, e.g. as in
the gravitational wave source parameter inference of the main paper.

9



For unconditional generation, it can be shown that the optimal solution of the flow matching objective
is a straight flow as the batch size goes towards infinity [28]. Using the notion of a sufficient summary
statistics, we can generalize the informal theorem 4.2 of [28] for conditional generation.

Theorem 1 (Informal). Let s be a sufficient summary statistics of x with model parameters θ.
Suppose FMPE is run with SCOP with batch size n and conditional weight β in the cost matrix. Then
as n, β → ∞,

(i) The value of the objective function (equation (3) for the optimal vector field vt,x converges to
zero.

(ii) The straightness Sx (equation (7)) of the optimal vector field converges to zero.

Proof Sketch: The proof relies on the ABC approximation of the posterior distribution [43]

pABC(θ|so) ∝
∫
Kh (∥s− s0∥) p(s|θ)p(θ)ds,

where Kh(x) = K(x/h)/h is a kernel density function with scale parameter h. The ABC posterior
converges to the true posterior for h→ 0 if s is sufficient. Using the constant base kernel (K(x) =
1/2 if |x| ≤ 1 and 0 otherwise), we see that we can obtain the true posterior by integrating over
summaries that are close to our summary of interest s0 with respect to the norm ∥ · ∥. It follows that
as β → ∞, SCOP will only reorder triplets θ(i)0 , θ

(i)
1 , s(i) that have the same posterior distribution.

The rest then follows from the proof for unconditional generation provided in [28].

This shows the potential of SCOT (and OCOT) to generate straight flows for SBI applications. It
is also possible to apply the same arguments to the other benefits of mini-batch optimal couplings
presented in [28], such as a reduced variance of the gradients and a faster convergence. Of course, in
practical applications with finite batch sizes, setting large values for β will result in classical FMPE
and all these benefits are lost.

It should be noted that the heuristic of PCOT does not lead to straight flows or even the correct
posterior for n, β → ∞. The reason is that observation with the same underlying parameter will
generally not create the same posterior distribution. Therefore, as n, β → ∞, PCOT will not act
on triplets with the same posterior. We nevertheless investigate PCOT as a heuristic for practical
applications with finite batch sizes.

C Experiments on the SBI Benchmarks

This appendix contains our experiments on the SBI benchmark tasks Two Moons and SLCP Dis-
tractors. We provide several results that show how the proposed methods improve the straightness
of the trajectories. We chose the Two Moons task with dim(θ) = dim(x) = 2 because it is easy
to visualize and fast to train. The slightly more difficult SLCP Distractors task with dim(θ) = 5
and dim(x) = 100 was chosen because the dimensionality of the observation is higher than the
dimensionality of the model parameters such that it is possible to compress the observation for SCOP.

C.1 Training and Evaluation

We created 100,000 simulations for both tasks and used 5% for validation during the training. The
models parametrizing the vector fields in this work are fully connected residual networks [49] with
three residual blocks and a hidden dimension of 256. Our default batch size is 1024 and we train for
100 epochs using the cosine annealing schedule [50] and the ADAM optimizer [51] with an initial
learning rate of 10−3 and default moments. All models were trained on a single GPU. The dominant
part of the training was the evaluation of the C2ST score as provided in the SBI benchmark package
which does not have GPU support as of the writing of this paper. We find that this training setup
reproduces the results from [26] for standard FMPE, without the need to use GLU conditioning or a
re-scaled time prior.

For SCOT we train a fully connected residual embedding network with three residual blocks which
reduces the dimensionality of the observation. Motivated by [48] we set the dimensionality of the
summary to dim(s) = 2 dim(θ). The cost matrix used for SCOT is calculated during each training
step after the observations pass through the embedding network. The optimal transport problem is
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Figure 3: C2ST scores vs evaluation budget for the two tasks and different match rates for a single
observation.

solved exactly for all tasks and methods. This is possible since we only consider batch sizes of 1024
or lower for the toy models.

To achieve the correct match rate m we adapt β during each iteration of the training. Starting with
β = 1.0, we calculate the empirical match rate after each batch and increase or decrease β by 10%
towards the desired match rate. This way, the match rate stabilizes around the correct value after
∼ 20 iterations.

We evaluate the performance of the models in terms of the C2ST score [52, 53]. The C2ST score
is the accuracy of a classifier trained to distinguish true (reference) posterior samples and posterior
samples generated with the trained model. The score ranges from 0.5 (best) to 1.0 (worst). We sample
the posterior of our models by integrating equation (2) via the explicit Euler method. This allows
us fix the number of function evaluations (NFE) used to sample the posterior. We also used other
evaluation metrics from the SBI benchmarks but found very similar results and trends, such that we
decided to omit them here.

The straightness of the trajectories is evaluated by calculating the C2ST score for different NFE used
to integrate the neural ODE (Equation (1)) via explicit Euler. Obtaining a better C2ST score with
fewer NFE indicates straighter trajectories.

C.2 Impact of the Match Rate

The match rate m (or conditional weight β) is the only hyperparameter of the proposed methods.
The match rate is always between 0 and 1, where m = 0 corresponds to the naive application of
mini-batch optimal couplings that are unaware of the conditional observation and m = 1 corresponds
to standard FMPE. Choosing a match rate that is too low will diminish the performance (see e.g.
Figure 1), while a match rate that is too high will have curved trajectories like standard FMPE. We
present the results for the two tasks and three different match rates ([0.3, 0.5, 0.7]) in Figure 3. For the
simple Two Moons task, OCOT and SCOT perform best for the lowest match rate. PCOT performs
like standard FMPE for all match rates. For the SLCP Distractor task, one can see that the lowest
match rate diminishes the performance of all extensions. SCOT performs best for m = 0.5. For both
tasks, all results approach the performance of standard FMPE for m = 0.7, as expected for higher
match rates.

This shows that the performance of the methods depends strongly on the chosen match rate and that
the optimal match rate might differ between tasks. However, SCOT leads to straighter trajectories for
both tasks if the match rate is chosen carefully.
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Figure 4: C2ST scores vs evaluation budget for the two tasks and different batch sizes for a single
observation and a match rate of m = 0.5.

C.3 Impact of the Batch Size

Another important hyperparameter for the proposed methods is the batch size that is used during the
training. Theoretically, we would expect the performance of OCOT and SCOT to be better for larger
batch sizes. The results are presented in Figure 4. It can be seen that the performance of the simple
Two Moons task is very similar for all three examined batch sizes of 256, 512 and 1024. For the
SLCP Distractors task, there is a tendency for larger batch sizes to lead to better performance. We
expect this tendency to become clearer for even larger batch sizes.

D Graviational Wave Source Parameter Inference

The gravitational source parameter inference was performed in the same way as presented in [26].
We provide a list of inferred parameters and their priors in Table 1. Note that not all of the parameters
are constrained, some are derived. For example, component masses of the binary system are not
inferred directly but can be calculated from the chirp mass Mchrip and the mass ratio q. The example
contours shown in Figure 2 are the same as in [26] for the sake of consistency.

Description Parameter Prior
component masses m1,m2 [10, 120]M⊙, m1 > m2

chirp mass Mchrip = (m1m2)
3/5/(m1 +m2)

1/5 [20, 120]M⊙
mass ratio q = m2/m1 0.125, 1.0]
spin magnitudes a1, a2 [0, 0.99]
spin angles θ1, θ2, ϕ12, ϕJL standard as in [54]
time of coalescence tc [−0.03, 0.03] s
luminosity distance dL [100, 1000] Mpc
reference phase ϕc [0, 2π]
inclination θJN [0, π] uniform in sine
polarization ψ [0, π]
sky position α, β uniform over sky

Table 1: The parameters used in the gravitational wave source parameter inference.

Finally, it is interesting to see that PCOT improves the straightness for the high-dimensional gravita-
tional source parameter inference but not for the two toy models. We believe that this is partly caused
by the larger batch size of 2048 and partly task-dependent because PCOT is a simple heuristic that is
not well-suited for all inference tasks.
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