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Abstract

Generative models for molecules have shown considerable promise for use in
computational chemistry, but remain difficult to use for non-experts. For this
reason, we introduce open-source infrastructure for easily building generative
molecular models into the widely used DeepChem [25] library with the aim of
creating a robust and reusable molecular generation pipeline. In particular, we add
high quality PyTorch [20] implementations of the Molecular Generative Adversarial
Networks (MolGAN) [2] and Normalizing Flows [19]. Our implementations show
strong performance comparable with past work [13, 2].

1 Introduction

The discovery of new molecules and materials is key to addressing challenges in chemistry, such as
treating diseases and combating climate change [15, 27]. Traditional methods, however, are time-
consuming and costly, limiting the exploration of the vast chemical space [22]. Generative models
offer a deep learning-based solution, designing molecules with desired properties more efficiently.
Despite their potential, these models typically require significant expertise in Python and machine
learning.

To address this, we introduce open-source implementations of Molecular Generative Adversarial
Networks (MolGAN) [2] and Normalizing Flow models [19] in pytorch into DeepChem[25], a
widely used molecular machine learning library. MolGAN utilizes adversarial training [7] to generate
novel molecules, while Normalizing Flow models employ exact likelihood methods for molecular
generation. Our contributions simplify their use by providing accessible pipelines that require minimal
prior knowledge, while also allowing advanced users to modify the models as needed.

2 Methods and Background

2.1 DeepChem and Generative Molecular Models

DeepChem [25] is a versatile open-source Python library tailored for machine learning on molecular
and quantum datasets [24]. Its framework supports applications in areas such as drug discovery and
biotech [32], breaking down scientific tasks into workflows built from core primitives. DeepChem has
facilitated significant advancements, including large-scale molecular machine learning benchmarks
via MoleculeNet [32], protein-ligand modeling [5], and generative molecule modeling [4].

While older DeepChem implementations of MolGANs and Normalizing Flows used TensorFlow,
we migrate these models to PyTorch, ensuring tighter integration with DeepChem’s ecosystem
and broader compatibility. This enables users to leverage DeepChem’s extensive layer library to
experiment and build new models.
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2.2 Representation of Molecules

The strength of neural networks lies in their ability to take in a complex input representation and
transform it into a latent representation needed to solve a particular task. In this way, the choice
of input representation plays a key role in governing how the model learns information about the
molecule. Input representations often fall into one of two categories: (1) one-dimensional (e.g.,
string-based representations), (2) two-dimensional (e.g., molecular graphs).

2.2.1 One-dimensional representations

The most common one-dimensional representation of molecules is SMILES (Simplified Molecular
Input Line Entry System) [31], which transforms a molecule into a sequence of characters based on
predefined atom ordering rules. This representation enables the use of neural network architectures
developed for language processing. For instance, previous work [6, 18] used recurrent neural
networks as generative models to create SMILES strings. However, these methods often produce
invalid SMILES that cannot be converted to molecular structures due to their disregard for SMILES
grammar. To overcome this limitation, [12] introduced SELFIES (Self-Referencing Embedded
Strings), an improved string representation. With SELFIES, a recurrent neural network can generate
molecules with 100% validity, though validity here pertains to valency rules and does not guarantee
molecular stability.

2.2.2 Molecules as Graphs

Molecules can also be represented as graphs, where atoms are nodes and bonds are edges. For
MolGAN, molecules are undirected graphs G with edges E and nodes V , we employ the adjacency
matrix formulation, A. Each atom is represented by a one-hot vector, and each bond type is represented
as an adjacency tensor. This graphical approach captures molecular connectivity directly, unlike 1D
representations.

2.3 MolGAN

Figure 1: Model Architecture of MolGAN

Molecular Generative Adversarial Network (MolGAN) represents a novel approach in the Generative
Space for molecules by employing the GAN framework, which allows for an implicit, likelihood-free
generative model which overcomes various problems (like graph matching [29] and node ordering
heuristics) with previous models. MolGAN performs similarly to current SMILES-based approaches
as well, albeit it is more susceptible to model collapse. We have incorporated the following loss used
by the paper

L(x(i), Gθ(z
(i));ϕ) = −Dϕ(x

(i)) +Dϕ(Gθ(z
(i)))︸ ︷︷ ︸

Original WGAN Loss

+α(||∇x̂(i)Dϕ(x̂
(i))|| − 1)2︸ ︷︷ ︸

Gradient Penalty

(1)

This is an improved form of the WGAN [1] loss, where Gθ is the generator, Dϕ is the discriminator,
x(i) ∼ pdata(x) and z(i) ∼ pz(z) and x̂(i) is a sampled linear combination as the following equation
x̂(i) = ϵx(i) + (1− ϵ)Gθ(z

(i)) with ϵ ∼ U(0, 1). The model architecture is displayed in Figure 1.
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2.4 Normalizing Flows

Normalizing Flows constitute a generative model that uses invertible transformations to model a
probability distribution. This methodology enables the computation of likelihoods and the generation
of samples by transforming simple base distributions (e.g., gaussian) into more complex ones through
a sequence of invertible (& differentiable) transformations. Normalizing flows allow for direct
sampling from the target distribution and thus are amazing for property-guided generation. The
model architecture is displayed in Figure 2.

Figure 2: Model Architecture of Normalizing Flow models

3 Implementation

The generative models were implemented in three main components: Layers, Base Model, and
Molecule Generation Pipeline. We standardize (“deepchemize” [24]) molecule generation by provid-
ing BasicMolGANModel and NormalizingFlowModel which are highly flexible, allowing users to
experiment with generators, discriminators, flow layers, and more.

3.1 Layers

MolGAN: The Discriminator in MolGAN begins with an encoder layer composed of multiple
convolutional layers, followed by an aggregation layer. The architecture is flexible, allowing easy
customization based on user requirements.

Normalizing Flows: Normalizing Flow layers are responsible for both forward and backward
computation. In DeepChem, the Normalizing Flows pipeline supports linear layers, which are
computationally efficient compared to more complex layers like planar or autoregressive. These layers
use linear transformations to model relationships between molecular dimensions: g(x) = Wx+ b
Here, W ∈ RD×D and b ∈ RD are parameters, and if W is invertible, the function is invertible as
well.

3.2 Base Model

The Base Model consists of three primary components: the Generator, Discriminator, and Normalizing
Flow model. Each component is modular and can be adjusted independently for flexibility in
experimentation.

The Generator is modeled as an MLP [17] with varying units to implicitly model a probability
distribution over molecular graphs. It outputs continuous objects representing nodes and edges, which
are transformed using the Gumbel Softmax trick [9]. The model can also be adapted to use other
methods such as the straight-through estimator [21].

The Discriminator scores the generated molecular graph through a series of relational graph convolu-
tional layers [28]. These layers update node representations based on their neighbors and edge types.
After several layers of convolution, MLPs extract the final score of the graph. More detailed mathe-
matical formulations of the Generator, Discriminator, and Normalizing Flow model are mentioned in
Appendix A
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Figure 3: Molecule generation pipeline for MolGAN

3.3 Molecule Generation Pipelines

3.3.1 MolGAN

Training / Generating from MolGAN on custom datasets follows a very simple pipeline, which can
be achieved in a few lines of code; we describe the pipeline in Figure 3, which involves extracting
SMILES [31] representations and wrapping them in a DeepChem dataset that can be used to train the
model. The full pipeline is demonstrated in B.1 with a few lines of code.

3.3.2 Normalizing Flows

Figure 4: Molecule generation pipeline for Normalizing flows

Analogous to the MolGAN pipeline, the Normalizing Flows pipeline (Figure 4) expects a SELF-
IES [12] string as input. There are added steps for Dequantization (i.e., adding noise in [0, 1) to every
input) The full pipeline is demonstrated in B.2 with a few lines of code.

4 Experiments

4.1 Datasets

We use the following publicly available datasets: QM7 [26], BBBP [16], Lipophilicity [8], PPB [30],
and QM9 [23]. QM7 is a subset of GDB-13, consisting of molecules with up to 7 heavy atoms (C, N, O,
and S). The BBBP dataset includes around 2,000 molecules with binary labels related to blood-brain
barrier permeability. The Lipophilicity dataset, sourced from ChEMBL, contains 4,200 compounds.
The PPB dataset, curated from PubChem BioAssay by the Maximum Unbiased Validation (MUV)
group, includes around 11,000 compounds. QM9 is a subset of GDB-17, comprising 134,000 organic
molecules with up to 9 heavy atoms. All datasets were obtained through MoleculeNet [32].

For nomalizing flows we utilize the full dataset for all experiments, however, following [2], for
MolGAN, we only use molecules that only have C, N, O and F in them. The final number of valid
molecules in every dataset are shown in 1.

Dataset Number of Samples

BBBP 1631
PPB 1291
QM7 5470
QM9 105984
Lipophilicity 3360

Table 1: Number of samples in each dataset.
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4.2 Experimental Setup

For MolGAN, we use four edge types (single, double, triple, and no-bond), five node types (C, N, O,
F, and PAD) similar to [2], whilst our discriminator discriminates among molecules of all lengths, our
generator is restricted to small molecule generation, limited to 9 vertices. To allow this, we would set
the maximum number of allowed atoms to the maximum in a dataset. We report mean results across
10 seeds, each involving generation of 6400 molecules, as in [2].

For Normalizing Flows, we used two layers of flows with Masked Affine Flows [3] along with an
ActNorm layer [11]. We used a Multivariate Normal Distribution from PyTorch [20] to build our flow
model. All hyper-parameters are listed in C. All experiments used Python 3.10.

4.3 Results

Dataset Model Val(↑) Uni(↑) Nov(↑) SAS(↓) Dru(↑)

QM7 MolGAN 92.1 4.18 100.0 2.11 70.45

Norm Flow 100.0 91.87 100.0 5.29 52.19

QM9
MolGAN 89.67 4.46 100.0 2.83 66.03

Norm Flow 100.0 99.15 100.0 6.58 44.55

Original Implementation [2] 87.7 2.9 97.7 ––* ––*

BBBP MolGAN 57.18 0.28 100.0 5.24 55.42

Norm Flow 92.83 98.98 100.0 5.76 49.50

Lipophilicity MolGAN 49.57 0.08 100.0 5.75 53.58

Norm Flow 100.0 99.36 100.0 6.18 49.39

PPB MolGAN 14.04 25.07 100.0 9.17 18.31

Norm Flow 100.0 98.60 100.0 5.95 50.30

Table 2: Evaluation performance of the open-source models on QM7, BBBP, Lipophilicity, PPB,
QM9 datasets. The models are evaluated on the Validity of molecules generated (Val), Uniqueness
(Uni), Novelty (Nov), Synthetic Accessibility Score (SAS) out of 10, and Druglikeliness (Dru). SAS
is reported out of 10, whereas everything else is a %. (* - not reported in the paper)

Our results 2 demonstrate that our implementation’s performance is comparable to existing work
( [2, 13]). For a fair comparison, we only compare our implementation to the non-RL results from [2],
also [2] only train and evaluate on QM9.

5 Conclusion & Discussion

In this work, we improve DeepChem’s generative modeling tools and provide a more standardized
and scalable implementation that makes generative molecular methods more accessible to scientists.
Standard Machine Learning practices are built within DeepChem (e.g., checkpointing, validation,
logging, etc.), which would otherwise need some form of human expertise. Benchmarks show
comparable performance with existing implementations, and the tight integration with DeepChem
facilitates fast future improvements. This will also allow for Reinforcement Learning [2] based
approaches to be incorporated easily. We observed high variance for datasets where the average
number of atoms in a molecule was much larger than 9, and leave this for future work. We will
provide multi-GPU training support in future work using Distributed Data Parallelism [14], Sharding
& PyTorch [20].

Impact Statement

This paper makes Generative Molecular modeling accessible to a broad spectrum of people, and
while this is intended, it is not tough to modify these models to make them generate toxic and harmful
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molecules. However, the synthesis of novel molecules is an area that requires a lot of human expertise,
and in general, is not easy to do. In a future where synthesis methods are also equally accessible,
these models can be potentially dangerous, but at the present time, the positive outcomes outweigh
the negative ones.
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Appendix

A Mathematical Formulations

A.1 Molecules as Graphs

For MolGAN, each molecule can be represented as an undirected Graph G with a set of edges E
and nodes V . Each atom vi ∈ V is associated with a D-dimensional one-hot vector xi. Each edge
(vi, vj) ∈ E is also associated with a bond type y ∈ {1, . . . , Y }. Thus, we have a representation
of a graph as two objects: a X = [x1, . . . ,xn]

T ∈ RN×D and an adjacency tensor A ∈ RN×N×Y .
Ai,j ∈ RY is a one-hot vector indicating the type of edge between i and j.
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A.2 Generator

For any latent variable
z ∼ N (0, I)

the generator Gθ(z) outputs two continuous objects:

X ∈ RN×D,A ∈ RN×N×D

Using the Gumbel Softmax trick [9], categorical sampling is performed as:

X̃ = X+ Gumbel(µ = 0, β = 1) (2)

Ã = Aijy + Gumbel(µ = 0, β = 1) (3)

Alternatively, X̃ and Ã can remain as X and A.

A.3 Discriminator

The discriminator updates node representations through relational graph convolution as:

h
′(ℓ+1)
i = f (ℓ)

s

(
h
(ℓ)
i ,xi

)
+

N∑
j=1

Y∑
y=1

Ãijy

|Ni|
f (ℓ)
y

(
h
(ℓ)
j ,xj

)
(4)

h
(ℓ+1)
i = tanh

(
h
′(ℓ+1)
i

)
(5)

where h
(l)
i represents the signal at node i and layer l, and f

(l)
s is a self-connection transformation.

After several layers of graph convolution, the graph score is calculated as:

h′
G =

∑
v∈V

σ
(
i
(
h(L)
v ,xv

))
⊙ tanh

(
j
(
h(L)
v ,xv

))
(6)

hG = tanh(h′
G) (7)

where σ is the sigmoid function σ = 1
1+e−x .

A.4 Normalizing Flow Model

The Normalizing Flow model starts with a base distribution pz and transforms it into a density
function px. The transformation x = L(z) is invertible, and the probability density is updated as:

ρX(x) = ρZ(z) · |det(JL(z))|−1

where JL(z) is the Jacobian determinant of the transformation.

B Code Snippets

B.1 MolGAN Pipeline

Training -

1 from deepchem.models.torch_models import BasicMolGANModel as
MolGAN

2 from deepchem.models.optimizers import ExponentialDecay
3 import deepchem as dc
4 import torch.nn.functional as F
5 import torch
6 ...
7 gan = MolGAN(learning_rate=ExponentialDecay (0.001 , 0.9, 5000))
8 dataset = dc.data.NumpyDataset ([x.adjacency_matrix for x in

features],[x.node_features for x in features ])
9 def iterbatches(epochs):

10 for i in range(epochs):
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11 for batch in dataset.iterbatches(batch_size=gan.batch_size
, pad_batches=True):

12 adjacency_tensor = F.one_hot(
13 torch.Tensor(batch [0]).to(torch.int64),
14 gan.edges).to(torch.float32)
15 node_tensor = F.one_hot(
16 torch.Tensor(batch [1]).to(torch.int64),
17 gan.nodes).to(torch.float32)
18 yield {gan.data_inputs [0]: adjacency_tensor , gan.

data_inputs [1]: node_tensor}
19 # train model
20 gan.fit_gan(iterbatches (8), generator_steps =0.2,

checkpoint_interval =0)

Inference -

1 generated_data = gan.predict_gan_generator (10)
2 # convert graphs to RDKitmolecules
3 new_mols = feat.defeaturize(generated_data)

B.2 NormalizngFlows Pipeline

Training -

1 import deepchem as dc
2 from deepchem.data import NumpyDataset
3 from torch.distributions.multivariate_normal import

MultivariateNormal
4 from rdkit import Chem
5 from dc.torch_models.nflows import *
6

7 # Pass data through pipeline (mentioned above)
8 ...
9

10 # Construct flow model
11 flows = [ActNorm(latent_size)]
12 nfm = NormFlow(flows , distribution , dim)
13 nfm.fit(max_iterations , optimizer)

Inference -

1 mols = nfm.generate(num_molecules =1000)
2 valid_mols = validate_mols(mols)

C Hyperparameters

For our MolGAN implementation, similar to [2], we vary the given hyperparameters, and pick the
best for each dataset prioritising Validity of generations. Except for QM9, we train each model for 30
epochs on the whole dataset. QM9 is trained similar to [2], i.e., 300 epochs on a random 5k subset,
we also perform early stopping if the uniqueness goes below 2%. Apart from this we fix Generator
Steps to 0.2, i.e., one step every 5 discriminator steps, a batch size of 32, learning rate of 1e− 4, and
an embedding dimension of 32.

Hyperparameter Values

Dropout Rates {0.0, 0.1, 0.25}
Sampling Mode Straight-through, Gumbel, SoftMax

Table 3: Hyperparameter settings for MolGAN.
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For the Normalizing Flows implementation, we use a learning rate of 1e-4, and an equal weight
decay. We train on a batch size of 1024 for 100 epochs. Both the models were trained on with Adam
optimizer [10].

10


	Introduction
	Methods and Background
	DeepChem and Generative Molecular Models
	Representation of Molecules
	One-dimensional representations
	Molecules as Graphs

	MolGAN
	Normalizing Flows

	Implementation
	Layers
	Base Model
	Molecule Generation Pipelines
	MolGAN
	Normalizing Flows


	Experiments
	Datasets
	Experimental Setup
	Results

	Conclusion & Discussion
	Mathematical Formulations
	Molecules as Graphs
	Generator
	Discriminator
	Normalizing Flow Model

	Code Snippets
	MolGAN Pipeline
	NormalizngFlows Pipeline

	Hyperparameters

