
Jrystal: A JAX-based Differentiable Density
Functional Theory Framework for Materials

Tianbo Li1,a, Zekun Shi1,2,b, Stephen Gregory Dale3,c, Giovanni Vignale3,d, Min Lin1,e

1SEA AI Lab
2School of Computing, National University of Singapore

3Institute for Functional Intelligent Materials, National University of Singapore
{alitb, bshizk, elinmin}@sea.com,

{csdale, dvgnl.g}@nus.edu.sg

Abstract

Density functional theory (DFT) is crucial for studying materials at the atomic
level, known for its accurate predictions and computational efficiency. However,
integrating AI techniques into current DFT packages is challenging due to the
iterative nature of the self-consistent field methods. To address these challenges,
we developed Jrystal, a JAX-based differentiable DFT framework that integrates
modern deep learning frameworks with automatic differentiation and adopts a direct
optimization approach using plane wave bases. This makes Jrystal a powerful tool
for designing new DFT algorithms with machine learning techniques.

1 Introduction

Density functional theory (DFT) [9] is a key method for studying the behavior of materials at the
atomic level, gaining widespread use in both scientific research and industry [12]. DFT allows
scientists to study the electronic structure of materials by focusing on the density of electrons rather
than solving the more complex many-body problem, making it possible to predict important properties
of materials—such as how they conduct electricity, respond to magnetic fields, or transfer heat—with
high accuracy, while still being computationally manageable. Despite requiring some approximations,
DFT has been extensively used to model materials ranging from superconductors [11], energy storage
[16], to nanotechnology [3], among many others, playing a critical role in the development of new
technologies and discovery of new functional materials.

As the DFT method has become a cornerstone in the field of material discovery, numerous computa-
tional packages have been developed and released over the past decades. Notable examples include
VASP [7], Quantum Espresso [4], and SIESTA [15]. Despite their widespread use, the advent of
artificial intelligence has shifted research interest toward integrating AI techniques to enhance DFT.
However, current DFT packages face several challenges in incorporating neural networks and other
machine learning methods. Firstly, the optimization of DFT relies on the self-consistent field (SCF)
algorithm, which involves iterative eigendecomposition and Direct Inversion in the Iterative Subspace
(DIIS) [13] algorithms, making it difficult to achieve differentiability. Secondly, these packages
are typically written in languages and frameworks that are not easily compatible with modern deep
learning frameworks, further complicating their integration with AI techniques.

To address the need for enhancing the DFT method with machine learning, we have developed a novel
JAX-based differentiable density functional theory framework, named Jrystal, for crystalline solid-
state material modeling and discovery. This package offers several unique features that distinguish it
from existing quantum chemistry packages:

Machine Learning and the Physical Sciences Workshop, NeurIPS 2024.

• Differentiability: By leveraging the JAX library [1], Jrystal enables automatic differentiation,
facilitating the integration of neural networks and other machine learning techniques into the
DFT workflow. This makes it convenient to calculate gradients for all physical quantities.

• Direct Optimization: Jrystal adopts a direct optimization approach for solving DFT with
plane wave bases. Unlike the traditional SCF optimization method, our framework defines
the objective function as the total energy of the system, or the Gibbs free energy for finite
temperature scenarios. We parameterize the orthogonal wave functions and minimize these
parameters using gradient-based optimization algorithms such as Adam [8].

• Functional Programming: Inherited from JAX, our framework is developed in a functional
programming style. It provides various pure functions to construct the entire computation
process. All APIs are designed as pure functions, ensuring no side effects. This approach
makes reasoning about code behavior easier and improves extensibility.

2 Method

Total Energy Minimization Density Functional Theory (DFT) [9] is a quantum mechanical method
used to calculate the electronic structure of materials by transforming the complex many-electron
problem into a system of non-interacting electrons, governed by effective potentials derived from
electron density. Traditionally, the DFT equations are solved using the Self-Consistent Field (SCF)
method, an iterative algorithm that can be challenging to differentiate. Instead, we adopt a total
energy minimization approach for this problem. The total energy is defined as a functional of the
wave functions {ψi} and orbital occupation numbers {fi}:

E[{ψi}, {fi}] = Ts[{ψi}, {fi}] + Eext[n] + EHxc[n] + Enuc. (1)
In this equation, Ts is the kinetic energy, which is defined by Ts = − 1

2

∑
i fi

∫
ψ∗
i (∇2ψi)dr.

The external potential energy Eext and Hartree-exchange-correlation energy EHxc[n] are given by
Eext =

∫
vext(r)n(r)dr and EHxc =

1
2

∫ n(r)n(r′)
|r−r′| drr′+Exc, where Exc is the exchange-correlation

energy. Both Eext and EHxc depend on the electron density n(r) which is constructed from the wave
functions and occupation numbers as n =

∑
i fi|ψi|2.

Parameterize Wave Functions For a periodic system, plane wave basis is often used, which is
given by

ψik(r) =
1√
Ω

∑
G

ciG(k) exp (i(k +G)r) . (2)

In this expression, the wave function is indexed by both i and k. k is a vector in the Brillouin zone,
and G is a reciprocal lattice vector and Ω is the volume of the unit cell. The coefficients ciG(k)
correspond to the plane wave components and are indexed by the band index i, the k-point k, and the
reciprocal lattice vector G. These coefficients are subject to an orthonormality constraint,∑

G

c†iG(k)cjG(k) = δij . (3)

This can be achieved using a QR decomposition, which effectively transforms the problem into a
more computationally efficient form. For a given wave vector k, we can represent the coefficients
as a matrix denoted as C(k), which possesses orthogonal columns. The reparameterization of this
orthogonal coefficients can be expressed as follows:

C(k) = QR(Xk) (4)
where Xk denotes the set of variational parameters that are subject to optimization. This method
ensures that the orthogonality of the coefficients is maintained during the optimization process.

Smearing Scheme for Finite-Temperature To involve the smearing scheme for direct optimization
at finite temperature, it is a common practice to introduce an entropy term into the objective function
to minimize the free energy [10, 14, 2, 6]:

E − TS (5)
where T is an electronic temperature, and S is the entropy associated with the occupation numbers.
In the case of the Fermi-Dirac distribution, the entropy is defined as,

SFD = −
∑
i,k

fik log fik + (1− fik) log(1− fik). (6)

2

Computational Graph A differentiable computational graph of our method is presented in Fig. 1.

<latexit sha1_base64="gdMQ8YtulTcC4cmXjWxkrTc+DHI=">AAACHnicbVDLSsNAFJ3UV62vqEs3g0VwVRKpj2WxG10oFewDmlgmk2k7dDIJMxOhhHyJG3/FjQtFBFf6N07aCNp6YZjDOfdy7zlexKhUlvVlFBYWl5ZXiqultfWNzS1ze6clw1hg0sQhC0XHQ5IwyklTUcVIJxIEBR4jbW9Uz/T2PRGShvxWjSPiBmjAaZ9ipDTVM4+h44XMl+NAf0k7hQ7l0AmQGnpeUk/vkktH0YBICK/gD7pOe2bZqliTgvPAzkEZ5NXomR+OH+I4IFxhhqTs2lak3AQJRTEjacmJJYkQHqEB6WrIkV7kJhN7KTzQjA/7odCPKzhhf08kKJCZAd2ZHS5ntYz8T+vGqn/mJpRHsSIcTxf1YwZVCLOsoE8FwYqNNUBYUH0rxEMkEFY60ZIOwZ61PA9aRxX7pFK9qZZr53kcRbAH9sEhsMEpqIEL0ABNgMEDeAIv4NV4NJ6NN+N92low8pld8KeMz2+F2KIW</latexit>

W 2 CI⇥M⇥N
QR <latexit sha1_base64="rsB+lsT9uNjNMfbsTgsGHceY8Nc=">AAACHnicbVDLSsNAFJ3UV62vqEs3g0VwVRKpj2WxG10oFewDmlgmk2k7dDIJMxOhhHyJG3/FjQtFBFf6N07aCNp6YZhzz72Xe8/xIkalsqwvo7CwuLS8Ulwtra1vbG6Z2zstGcYCkyYOWSg6HpKEUU6aiipGOpEgKPAYaXujelZv3xMhachv1TgiboAGnPYpRkpTPfMYOl7IfDkO9JfUU+hQDp0AqaHn6fQuuXQUDYiE8Ar+oOu0Z5atijUJOA/sHJRBHo2e+eH4IY4DwhVmSMqubUXKTZBQFDOSlpxYkgjhERqQroYc6UVuMpGXwgPN+LAfCv24ghP290SCApkJ0J3Z4XK2lpH/1bqx6p+5CeVRrAjH00X9mEEVwswr6FNBsGJjDRAWVN8K8RAJhJV2tKRNsGclz4PWUcU+qVRvquXaeW5HEeyBfXAIbHAKauACNEATYPAAnsALeDUejWfjzXifthaMfGYX/Anj8xtkfKIC</latexit>

C 2 CI⇥M⇥N
inverse
FFT

<latexit sha1_base64="qW/vDra4o531R7034mW89K+Sx6s=">AAACfXicjVFLSwMxEM6ur1pfVY9egqWgImVXivVYFEEPShWrQreWbJptQ7PZJZkVy7L/wl/mzb/iRbO1Qn0cHAj55pv5MpkZPxZcg+O8WvbM7Nz8QmGxuLS8srpWWt+41VGiKGvRSETq3ieaCS5ZCzgIdh8rRkJfsDt/eJLH7x6Z0jySNzCKWSckfckDTgkYqlt6rmDPj0RPj0JzpScZ9rjEXkhg4PvGfUjPPeAh0xhf4C90mRWNrKn5zrT2Ouum077Mst1/vnZqlMCeIB1yo8LdUtmpOmPDv4E7AWU0sWa39OL1IpqETAIVROu268TQSYkCTgXLil6iWUzokPRZ20BJTOFOOp5ehiuG6eEgUuZIwGN2WpGSUOctmcy8Ef0zlpN/xdoJBEedlMs4ASbpZ6EgERginK8C97hiFMTIAEIVN3/FdEAUoWAWVjRDcH+2/BvcHlTdw2rtqlZuHE/GUUBbaBvtIBfVUQOdoSZqIYreLGztWnvWu12x9+3qZ6ptTTSb6JvZ9Q/d9MGo</latexit>

Ekin

square<latexit sha1_base64="xG5HiGmerZWe2CH7GKBQIK6KWIQ=">AAACfnicjVHJTsMwEHXCXrYCRy6GqohFlARVwBGBkOAAKojSSk2pHNdtrTpOZE8QVZTP4Me48S1ccEqRynJgJMtv3szzLPYjwTU4zptlT0xOTc/MzuXmFxaXlvMrqw86jBVlVRqKUNV9opngklWBg2D1SDES+ILV/P55Fq89MaV5KO9hELFmQLqSdzglYKhW/qWIPT8UbT0IzJWcp9jjEnsBgZ7vG/cxufKAB0xjfI2/0E2a8yqab48r79JWMu4Habrzz7eK+MJogT1D0ucyTXGulS84JWdo+DdwR6CARlZp5V+9dkjjgEmggmjdcJ0ImglRwKlgpt1Ys4jQPumyhoGSmNrNZLi+FBcN08adUJkjAQ/ZcUVCAp1NZTKzWfTPWEb+FWvE0DlpJlxGMTBJPwt1YoEhxNlf4DZXjIIYGECo4qZXTHtEEQrmx7IluD9H/g0eDkvuUal8Wy6cno3WMYvW0SbaRi46RqfoElVQFVH0bm1Yu9aejewte98++Ey1rZFmDX0z++QDRSHAvA==</latexit>

 (Rm) 2 CI⇥M⇥N FFT<latexit sha1_base64="FoshYqvamZQcE0Pc3C+WiNGINSY=">AAACfnicdVFJSwMxFM6Me92qHr1ES8UF64yIehRF0IOiYlXo1JJJ0zY0kwzJG7EM8zP8Y978LV7M1Ap1exDyveV7axgLbsDz3hx3ZHRsfGJyqjA9Mzs3X1xYvDMq0ZRVqRJKP4TEMMElqwIHwR5izUgUCnYfdk9y//0T04YreQu9mNUj0pa8xSkBa2oUX8o4CJVoml5kv/QkwwGXOIgIdMLQqo/peQA8YgbjC/yFLrNCoDtqfZh5kzXSYT3Kso1vuW7+zVXGp5YL7BnSLpdZhguNYsmreH3Bv4E/ACU0kKtG8TVoKppETAIVxJia78VQT4kGTgWz7SaGxYR2SZvVLJTE1q6n/fVluGwtTdxS2j4JuG8dZqQkMvlUNjKfxfz05ca/fLUEWof1lMs4ASbpZ6FWIjAonN8CN7lmFETPAkI1t71i2iGaULAXy5fg/xz5N7jbrfj7lb3rvdLR8WAdk2gZraJ15KMDdITO0BWqIorenRVn09lykbvmbrs7n6GuM+AsoW/iHn4AlMHA6A==</latexit>

⇢(Rm) 2 RI⇥M⇥N
<latexit sha1_base64="besmL4PbPFy09xtN5yC+k2SHP4s=">AAAC0XicfVJNTxsxEPUutKVLKWk5crGIkOgl2kUIekRFFeUAAtoAUjaNvI5DrHjtlT1bNbJcIa78O279B/wMvCFISfgYyfLzzDy/mbGzQnADcfw/COfm37x9t/A+Wvyw9HG59unzmVGlpqxJlVD6IiOGCS5ZEzgIdlFoRvJMsPNssFfFz/8wbbiSv2BYsHZOLiXvcUrAuzq1u3WcZkp0zTD3m91zOOUSpzmBfpb54297kALPmcH4ED+iIxd5mu6rjUnuqevYyXPu3Jep205fue275wL7C3bApXM4SvsEbCXhpjT2ZzTkrMaLFXdq9bgRjww/BckY1NHYjju127SraJkzCVQQY1pJXEDbEg2cCuaitDSsIHRALlnLQ0m8UNuOXsThde/p4p7SfknAI+8kw5LcVC34zKpwMxurnM/FWiX0vrYtl0UJTNIHoV4pMChcPS/ucs0oiKEHhGrua8W0TzSh4D9B5IeQzLb8FJxtNpLtxtbJVn3323gcC2gVraENlKAdtIt+oGPURDQ4CiBwwb/wZzgMr8Lrh9QwGHNW0JSFN/fO1OJj</latexit>

⇢̂(Gn) 2 CI⇥M⇥N

<latexit sha1_base64="80dOSZIysAOiD4oY/Rxqgoqu+2U=">AAAC4nicfVJNbxMxEPUupR8ptCkce7GIKpVLtIuqwrFqhYADVamatlI2XXm9TmPFa6/s2aqR5SMXDiDElV/FrT+FG940oCRtGcny84zfvJmxs1JwA1F0E4SPFh4vLi2vNFafPF1bb248OzWq0pR1qBJKn2fEMMEl6wAHwc5LzUiRCXaWDQ/q+NkV04YreQKjkvUKcil5n1MC3pU2f2/hJFMiN6PCb/bA4YRLnBQEBlnmjxf2QwK8YAbjj/gvOnQNT9MDtT3NPXapnT4Xzr2cyXb8n2xvPRfYNdghl87hOv+AgK1F3IzKuzkVOa/ycM3/NK6pl0ibragdjQ3fBfEEtNDEjtLmryRXtCqYBCqIMd04KqFniQZOBXONpDKsJHRILlnXQ0m8bs+On8jhLe/JcV9pvyTgsXeaYUlh6o78zboPMx+rnffFuhX03/Qsl2UFTNJboX4lMChcvzfOuWYUxMgDQjX3tWI6IJpQ8L+i4YcQz7d8F5y+ase77Z1PO629/ck4ltEmeoG2UYxeoz30Hh2hDqJBGnwOvgbfwjz8En4Pf9xeDYMJ5zmasfDnHyvh6Qw=</latexit>

Exc

<latexit sha1_base64="F6c39wl2KDPF9k1i4+vXaYjfIAE=">AAAC43icfVLBbhMxEPVugZYUaFqOXCyiSuUS7aKqcKxaIeAAKhVpK2VD8DqTxorXXtmzFZHlKxcOIMSVn+LGr3DCm4YqSYGRLD/PzJvnGTsvpbCYJD+jeOXGzVura7cb63fu3ttobm6dWF0ZDh2upTZnObMghYIOCpRwVhpgRS7hNB8f1vHTCzBWaPUWJyX0CnauxFBwhsHVb/7aplmu5cBOirC5Q08zoWhWMBzleTi+cy8zFAVYSl/RP+i1bwSaGemdee6x77v5c+H9o4Vqx/+p9ixwET6gGwvlPa3rjxi6WsQvqDxfUlHLKv++85XGiBnvG/1mK2knU6PXQToDLTKzo37zRzbQvCpAIZfM2m6alNhzzKDgEnwjqyyUjI/ZOXQDVCwI99z0jTzdDp4BHWoTlkI69c4zHCts3VLIrBuxy7Ha+bdYt8Lh054TqqwQFL8UGlaSoqb1g9OBMMBRTgJg3IhwV8rDABjH8C3qIaTLLV8HJ4/b6V57981ua/9gNo418oA8JDskJU/IPnlBjkiH8Oh99DH6HH2JIf4Uf42/XabG0YxznyxY/P03HoTpYA==</latexit>

Ehar
<latexit sha1_base64="zApOJnzD68bDmtc/LtdqmU/O+68=">AAAC43icfVLBbhMxEPVugZYUaFqOXCyiSuUS7aKqcKxaIeAAKhVpK2VD8DqTxorXXtmzFZHlKxcOIMSVn+LGr3DCm4YqSYGRLD/P+M3zzDgvpbCYJD+jeOXGzVura7cb63fu3ttobm6dWF0ZDh2upTZnObMghYIOCpRwVhpgRS7hNB8f1vHTCzBWaPUWJyX0CnauxFBwhsHVb/7aplmu5cBOirC5Q08zoWhWMBzleTi+cy8zFAVYSl/RP+i1bwSaGemdee6x77v5c+H9o4Vsx//J9ixwET6gGwvlPa3zjxi6WsQvqDxfUlHLKv9+85VGWN43+s1W0k6mRq+DdAZaZGZH/eaPbKB5VYBCLpm13TQpseeYQcEl+EZWWSgZH7Nz6AaoWBDuuemMPN0OngEdahOWQjr1zjMcK2xdUrhZF2KXY7Xzb7FuhcOnPSdUWSEofik0rCRFTeuB04EwwFFOAmDciPBWykfMMI7hW9RNSJdLvg5OHrfTvfbum93W/sGsHWvkAXlIdkhKnpB98oIckQ7h0fvoY/Q5+hJD/Cn+Gn+7vBpHM859smDx999AL+l2</latexit>

Eext

learnable
parameter

wavefunction
coefficients

wavefunction
in real space

density function
in real space

density function
in reciprocal space

<latexit sha1_base64="NjSQKlveGM49IiU/EECHy2qYYrs=">AAAC5XicfVJNTxsxEPVuP4DQllCOXCwiJLhEuxUCjghUlR6oADWAlA2R13ESK157Zc9WjSzfe+mhVcWV/8St/4UD3pBWSfgYyfLzjN+8mbHTXHADUfQ3CF+8fPV6bn6hsvjm7bul6vL7M6MKTVmDKqH0RUoME1yyBnAQ7CLXjGSpYOfp4KCMn39j2nAlv8IwZ62M9CTvckrAu9rV23WcpEp0zDDzmz1wOOESJxmBfpr646X9nADPmMH4CP9DX1zF03RfbUxyT13bTp4z5zansp0+k+2j5wL7DnbApXO4zN8nYEsRN6XyaUZFzqo8XfN/DVBAhHOVdrUW1aOR4YcgHoMaGttxu3qTdBQtMiaBCmJMM45yaFmigVPBXCUpDMsJHZAea3ooiZdu2dErObzuPR3cVdovCXjknWRYkpmyKX+zbMXMxkrnY7FmAd3dluUyL4BJei/ULQQGhcsnxx2uGQUx9IBQzX2tmPaJJhT8xyiHEM+2/BCcfajH2/Wtk63a3v54HPNoFa2hDRSjHbSHDtExaiAapMGP4FfwO+yFP8M/4dX91TAYc1bQlIXXd4bi6l0=</latexit>

Etotal

Figure 1: The computational graph shows the methodology for total energy minimization. Within
this graph, arrows symbolize the sequence of forward computations. Every operation within this
computational graph is differentiable, facilitating the gradient backpropagation.

3 The Framework

The Jrystal framework is built on JAX [1], a Python library that facilitates high-performance numerical
computing and machine learning through automatic differentiation and GPU/TPU acceleration.
Leveraging JAX, Jrystal provides user-friendly functions for performing computations related to
atomic-scale material modeling and simulations. Below, we present examples demonstrating the
novel features of our package.

Functional Programming Unlike other object-oriented programming packages, Jrystal defines plane-
wave functions in a functional programming manner. This means there are no stateful parameters
within the plane-wave object. Once the object is initiated, no internal parameter can be changed. The
wave function can be created as follows:
>>> import jrystal as jr
create a plane wave object with fft mesh 64*64*64 and 12 bands
>>> pw = jr.PlaneWave(num_bands=12, grid_sizes=[64, 64, 64])
intialize parameter with a random key
>>> params = pw.init(key)
>>> wave_grid = pw.wave_grid(params, crystal)

In this example, pw is an immutable object. The params is the optimizable parameter, which is
a PyTree object containing all the optimizable parameters of PlaneWave, including the including
the parameters Xk and occupation number {fik}. crystal is a dataclass that stores the crystal
parameters. To obtain the wave function value evaluated at the mesh grid, you simply call the member
function wave_grid, which is a pure function with no side effects.

Various APIs for DFT Jrystal provides various APIs for calculating energy functionals and other
physical quantities, greatly facilitating DFT calculations. For example, the kinetic energy and total
energy can be calculated as follows:
>>> kinetic_energy = jr.energy.kinetic(wave_grid, crystal)
>>> total_energy = jr.energy.total(wave_grid, crystal)

Another example is the calculation of the band structure, which is defined as the eigenvalues of the
Hamiltonian matrix. This can be calculated in Jrystal:
>>> from jax.numpy.linalg import eigvalsh
>>> hamiltonian = jr.hamiltonian(wave_grid, crystal, ...)
>>> eigenvalues = eigvalsh(hamiltonian)

Automatic Differentiation Inherited from JAX, Jrystal can easily obtain all-order gradients of the
functionals. A good example is calculating the forces in quantum systems. Thanks to JAX’s automatic
differentiation mechanism, forces can be easily obtained using jax.grad. The following example
demonstrates how to compute the forces on the nuclei:

3

X M
K point

10

5

0

5

10

Ei
ge

nv
al

ue
 (e

V)

Al

Our method
Quantum Espresso

L X L
K point

10

0

10

Ei
ge

nv
al

ue
 (e

V)

Si

Our method
Quantum espresso

Figure 2: Comparison of the electronic band structures of Aluminum and Silicon calculated using the
proposed method and Quantum Espresso. We use 3× 3× 3 k-point mesh, cutoff energy of 100 Ha,
smearing/temperature values of T = 0.01Ha for both materials. As our method is an all-electron
method, we have tuned the pseudo-potentials in our Quantum Espresso calculations to allow for an
all-electron calculation. Quantum Espresso employs the conventional self-consistent field (SCF)
Kohn-Sham DFT with LDA_X and a plane-wave basis in the pseudopotential projector-augmented
wave formalism.

define a total energy function w.r.t. nuclei's positions
>>> def total_energy(nuclei_positions):
>>> wave_grid = pw.wave_grid(params, nuclei_positions, ...)
>>> return jr.energy.total(wave_grid, crystal)
calculate the force at nuclei_positions
>>> force = jax.grad(total_energy)(nuclei_positions)

These forces can be used in geometry optimization to update the positions of nuclei. With Jrystal,
this calculation becomes very convenient and straightforward.

4 Results

We evaluate the effectiveness of our direct optimization approach in two tasks: band structure
calculation (Figure 2) and geometry optimization (Figure 3).

In this test we compare our computed band structure of Aluminum and Silicon results to those
computed the conventional self-consistent (SCF) method, as implemented in Quantum Espresso.[5]
The resulting band structures are presented in Figure 2. The two methods yield similar energy band
structures, indicating a strong agreement between the two approaches. This demonstrates the accuracy
of the proposed method in reproducing the correct band structures and suggests that the occupation
numbers and eigenfunctions are also well-aligned with the conventional SCF method.

In the second experiment, we examine the structure of a diamond-structured carbon crystal, which
consists of two carbon atoms. One carbon atom is anchored at the origin, and we seek to ascertain
the position of the second carbon atom as it moves along the plane highlighted in red, as depicted in
Figure 3(d). The corresponding potential energy surface (PES) is computed and illustrated in Figure
3(a). The optimum is denoted by the star point, accurately representing the experimentally known
diamond structure. Observations reveal the presence of multiple local optima and saddle points
interspersed across the PES, underscoring the complexity of the energy landscapes typically found
in atomic systems. Results show that both Yogi and Adam algorithms successfully reach the global
optimum, while SGD lands at a local minimum (Figure 3(b)). In some cases, Yogi and SGD become
stuck at a saddle point, whereas Adam finds the global optimum in the adjacent unit cell (Figure 3(c)).
The local minimum found by Adam approaches a graphite-like atomic structure (Figure 3(f)).

4

(a) (b)

(d) (e) (f)

(c)

(g)

A

B

A

C

A

B

B

A

Figure 3: Illustration on the geometry optimization. The PES shown in (a-c) is computed by moving
the atom in the centre of the unit-cell in (d) around the highlighted plane in a regular 50× 50 grid.
‘yogi’, ‘adam’, and ‘sgd’ highlight optimization paths by the respective optimization method from
their starting points as shown in (b, c). The global minimum is highlighted with a black star, and the
geometry of the crystal at point A is given in (e), and consistent with the known structure of diamond.
The geometry of the local minima at point B to which the sgd method converges to is presented in (f),
which can be seen to approach the known structure of graphite. The different band structures of A
and B are shown in (g).

References
[1] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal

Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018.

[2] Christoph Freysoldt, Sixten Boeck, and Jörg Neugebauer. Direct minimization technique for
metals in density functional theory. Physical Review B, 79(24):241103, 2009.

[3] LJ Douglas Frink, AG Salinger, MP Sears, JD Weinhold, and AL Frischknecht. Numerical
challenges in the application of density functional theory to biology and nanotechnology.
Journal of Physics: Condensed Matter, 14(46):12167, 2002.

[4] Paolo Giannozzi, Oliviero Andreussi, Thomas Brumme, Oana Bunau, M Buongiorno Nardelli,
Matteo Calandra, Roberto Car, Carlo Cavazzoni, Davide Ceresoli, Matteo Cococcioni, et al.
Advanced capabilities for materials modelling with quantum espresso. Journal of physics:
Condensed matter, 29(46):465901, 2017.

[5] Paolo Giannozzi, Stefano Baroni, Nicola Bonini, Matteo Calandra, Roberto Car, Carlo Cavaz-
zoni, Davide Ceresoli, Guido L Chiarotti, Matteo Cococcioni, Ismaila Dabo, et al. Quantum
espresso: a modular and open-source software project for quantum simulations of materials.
Journal of physics: Condensed matter, 21(39):395502, 2009.

[6] Xavier Gonze, Samare Rostami, and Christian Tantardini. Variational density functional
perturbation theory for metals. Phys. Rev. B, 109:014317, Jan 2024.

[7] Jürgen Hafner. Ab-initio simulations of materials using vasp: Density-functional theory and
beyond. Journal of computational chemistry, 29(13):2044–2078, 2008.

[8] Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

5

[9] Walter Kohn and Lu Jeu Sham. Self-consistent equations including exchange and correlation
effects. Physical review, 140(4A):A1133, 1965.

[10] Nicola Marzari, David Vanderbilt, and Mike C Payne. Ensemble density-functional theory
for ab initio molecular dynamics of metals and finite-temperature insulators. Physical review
letters, 79(7):1337, 1997.

[11] Luiz Nunes de Oliveira, EKU Gross, and W Kohn. Density-functional theory for superconduc-
tors. Physical review letters, 60(23):2430, 1988.

[12] Aurora Pribram-Jones, David A Gross, and Kieron Burke. Dft: A theory full of holes? Annual
review of physical chemistry, 66:283–304, 2015.

[13] Péter Pulay. Convergence acceleration of iterative sequences. the case of scf iteration. Chemical
Physics Letters, 73(2):393–398, 1980.

[14] Álvaro Ruiz-Serrano and Chris-Kriton Skylaris. A variational method for density functional
theory calculations on metallic systems with thousands of atoms. The Journal of chemical
physics, 139(5), 2013.

[15] José M Soler, Emilio Artacho, Julian D Gale, Alberto García, Javier Junquera, Pablo Ordejón,
and Daniel Sánchez-Portal. The siesta method for ab initio order-n materials simulation. Journal
of Physics: Condensed Matter, 14(11):2745, 2002.

[16] Evan Walter Clark Spotte-Smith, Ronald L Kam, Daniel Barter, Xiaowei Xie, Tingzheng Hou,
Shyam Dwaraknath, Samuel M Blau, and Kristin A Persson. Toward a mechanistic model
of solid–electrolyte interphase formation and evolution in lithium-ion batteries. ACS Energy
Letters, 7(4):1446–1453, 2022.

6

	Introduction
	Method
	The Framework
	Results

