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Abstract

The next decade of large-scale astronomical surveys will facilitate the detection
and characterization of millions of supernovae across multiple frequency domains.
However, this photometry cannot easily be combined across astronomical surveys
with different filter profiles, observing patterns, and systematics. Here, we present
a survey-agnostic variational autoencoder that can encode supernova light curves
into a shared latent space irrespective of the observing instrument. We show that
encouraging a filter-invariant latent space through pre-training and contrastive
learning (1) yields reconstructions that evolve smoothly over filter wavelength and
(2) improves classification of encodings from sparser surveys.

Introduction

Supernovae (SNe), or the explosive deaths of stars, are discovered by the thousands annually thanks
to various ground-based astronomical surveys like the Zwicky Transient Facility (ZTF; [1]) and the
Young Supernova Experiment (YSE; [2]). Although SNe have been historically classified based
on their spectroscopic properties (see e.g., [3] for a review), the abundance of photometric survey
data has driven the development of new data-driven methodologies for photometric classification
(i.e., using a time series of flux measurements). There are many examples of photometric supernova
classification pipelines that perform well [4, 5, 6, 7, 8, and others]; however, they are all trained to be
used with data from a single survey. In anticipation of the Vera C. Rubin Legacy Survey of Space and
Time (LSST; [9],[10]), scalable and generalizable architectures are critical for properly analyzing
large amounts of data while minimizing computational cost [11].

Here, we build on recent efforts to use variational autoencoders (VAEs) to learn a smooth latent
representation of SN observations [12, 13, 14]. We present the first survey-agnostic VAE for SN
science that can leverage multiple, disparate datasets to learn a more informed latent representation.
As one downstream application, we show that a SN classifier trained on survey-agnostic encodings
outperforms one trained on encodings from a baseline single-survey VAE. Our code is publicly
available via Github1.

1https://github.com/kdesoto-astro/survey-agnostic-sn-vae

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/kdesoto-astro/survey-agnostic-sn-vae
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Figure 1: Overview of model architecture. Photometry is divided into single-filter light curves and
passed through a time- and filter-distributed multilayer perceptron (MLP). The per-filter outputs
are averaged and passed into a gated recurrent unit (GRU) and subsequently encoded in a four-
dimensional latent space. A point in latent space can then be decoded back through an MLP into a
reconstructed light curve.

Methods

Data: We pre-train our network using multiband photometry generated by the “default” model
of MOSFiT, a standard one-zone SN model powered by radioactive decay [15]. We simulate light
curves across multiple bands from Rubin, ZTF, Pan-STARRS [16], SWIFT [17], and 2MASS [18].
We set survey observing details according to Appendix A. We further augment the simulated events
by resampling magnitudes from uncertainties, subsampling observed phases, and/or truncating the
light curve within randomly selected phase ranges.

We fine-tune the pre-trained VAE using photometry from ZTF, downloaded from the Transient Name
Server (TNS;[19]) and ALeRCE data broker [20], and Pan-STARRS, downloaded from the YSE
Data Release 1 (DR1; [21]). These are well-suited for our study here: while ZTF typically has longer
baselines and higher-cadence data compared to YSE, YSE has higher wavelength coverage (here we
include ZTF’s g- and r-bands, and Pan-STARRS’s g-, r-, i-, and z-bands for YSE). Additionally, the
YSE dataset has sufficiently few events and observations per event to benefit from blending with the
larger ZTF dataset. For both the simulated and observed ZTF datasets, we exclude bands with fewer
than five SNR ≥ 4 detections (we keep sparser Pan-STARRS light curves). We then remove events
with fewer than two remaining bands. This leaves 4,622 events in the augmented pre-training dataset
and 8,666 events in the combined ZTF and Pan-STARRS dataset. 1,576 samples have both ZTF and
Pan-STARRS observations, 6,700 have only ZTF observations, and 390 have only Pan-STARRS
observations.

For each sample, single-filter light curves are duplicated until there are six total bands to maintain
uniform input dimensionality, and a Gaussian process is used to interpolate missing filters for each
observed phase. All interpolated light curves are either truncated or padded to 32 time steps. The
model input for each event is then a series of phases with associated multiband absolute magnitudes,
magnitude uncertainties, filter central wavelengths, and filter widths.

Model Architecture: A schematic of our pipeline is shown in Figure 1. To ensure the encodings are
invariant to the input filter order (which is typically fixed in the literature), the inputs are separated by
filter and passed into a time- and filter-distributed encoder: here, a multi-layer perceptron (MLP) with
two dense layers. Because permutation invariance corresponds to an arithmetic mean across filters
[22], we average the outputs of the single-filter network across filters before feeding into a gated
recurrent unit (GRU). We pass the final state of the GRU into two dense layers that output a four-
dimensional latent mean and latent log variance. We sample from these defined latent distributions
using the reparametrization trick [23], and concatenate these samples with the original phases, central
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filter wavelengths, and filter widths. These inputs pass through a decoder of time distributed dense
layers, yielding reconstructed absolute magnitudes. All hidden layers have sixteen nodes and are
divided by leaky ReLU activations. We note that this architecture is more appropriate than, e.g.,
one-hot encoding survey as an appended integer (as then the system must be retrained for each
new survey, [24]). Transfer VAEs (in which an observation is “conditioned” on a survey by again
appending a relevant latent variable), similarly, requires retraining for novel surveys.

Loss function: Our loss function is a sum of reconstruction loss, Kullback-Leibler (KL) divergence,
and contrastive loss. The KL divergence enforces continuity and regularity in the latent space by
pushing latent distributions closer to unit Gaussians [25]. The reconstruction loss measures similarity
between the original and reconstructed light curves:

Lrecon =
1

Ntot

NLC∑
j

Nt,j∑
i

(Mpred,(i,j) −M(i,j))
2

σ2
M,(i,j)

(1)

where Mpred,(i,j) is the absolute magnitude at the ith time step of the jth single-filter light curve.
NLC is the number of such light curves in the dataset, Nt,j is the number of time steps for light curve
j; and Ntot =

∑NLC

j Nt,j is the total number of time steps across all light curves. We do not include
interpolated or padded magnitudes in this calculation.

Finally, the contrastive loss ensures that observations from the same event observed in multiple
surveys will be co-located in the learned latent space:

Lcontrast =
1

N2

N∑
i

log

∑
j∈ϕ(i) exp

[
− d(zi, zj)/τ

]
∑

j ̸=i exp
[
− d(zi, zj)/τ

] (2)

where N is the number of events and τ is a temperature parameter we set to 1. The mapping ϕ(i)
returns all sample indices not equal to i that correspond to the same underlying event, and d(zi, zj) is
the standard Mahalanobis distance between the latent encodings zi and zj [26].

Training loop: We split both the pre-training and observed datasets into a train and validation set
(9:1). Each epoch, we randomly divide each sample into two sets of photometry by subsampling
three filters for each. This creates training pairs for contrastive learning. We train the aforementioned
architecture with batch size of 128 and learning rate of 0.001. We first pre-train with the simulated
dataset and 250 epochs of only the contrastive and KL loss (no reconstruction) to ensure that the
encodings are grouped by unique events. Then, reconstruction loss is added and training continues
for 1,150 epochs (until validation losses plateau). We note that, due to limited samples, we do not
include a separate test set; such a set would validate “true” performance on unseen data and will be
explored when this model is pushed into production.

After pre-training, we continue training five variants of the model using the ZTF and Pan-STARRS
datasets to explore the importance of various components of our pipeline. The first two variants
use the full dataset and are trained with the contrastive loss. The first variant “freezes” all layers
excluding the bottleneck mean/log variance layers and first decoder layer. Previous works [27] have
explored the benefits of partially frozen pre-trained networks in transfer learning to smaller or sparser
datasets. The third variant does not utilize the contrastive loss. Finally, the last two are trained without
pre-training and only on either the ZTF or Pan-STARRS light curves. These serve as our baseline
models and most closely align with previous works. We note that we do not train a model on the
combined ZTF/Pan-STARRS dataset without pre-training; while this work focuses on the impact of
contrastive learning on VAE performance, future work will better isolate the effect of pre-training.
For each variant, we train for an additional 200 epochs (following pre-training) at the same learning
rate of 0.001. Training plateaus by this epoch in all variants.

Results & Discussion

We see from Table 1 that all validation set loss terms are minimized by the unfrozen model that
is trained on both Pan-STARRS and ZTF light curves and uses contrastive learning (the “optimal”
model). Without contrastive learning, there is greater overfitting and divergence between the train
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Table 1: Final Validation Metrics for Model Variants

Dataset Contrastive Frozen log10 Ltotal log10 Lrecon log10 LKL log10 Lcontrast

Full yes yes 1.34 ± 0.01 1.20 ± 0.01 0.42 ± 0.01 0.56 ± 0.02
Full yes no 1.01 ± 0.03 0.73 ± 0.04 0.27 ± 0.01 0.48 ± 0.03
Full no no 1.22 ± 0.07 1.20 ± 0.08 -0.02 ± 0.02 N/A
ZTF no no 1.21 ± 0.07 1.18 ± 0.08 0.02 ± 0.02 N/A

Pan-STARRS no no 1.05 ± 0.01 0.99 ± 0.02 0.18 ± 0.01 N/A
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Figure 2: Reconstructions of example YSE light curves for two Type Ia supernovae (left and center),
and a Type II (right) supernova using the optimal model with colors corresponding to linearly spaced
wavelengths in Angstroms. The observed datapoints are overlaid to highlight the features captured by
and missing from the reconstructions.

and validation losses. When trained only on Pan-STARRS data, we see lower losses simply because
the YSE Pan-STARRS light curves are sparser than those from ZTF.

Using the optimal model, we encode example photometry from our observed dataset, and reconstruct
light curves for an evenly sampled range of wavelengths and a constant filter width of 1300 Å.
Figure 2 shows that the decodings correctly recreate the flatter plateaus of SNe II and secondary
bumps among longer wavelengths for SNe Ia, but fail to capture the magnitude disparity between
high and low wavelengths. A higher-dimensional latent space could potentially remedy this, but for
our downstream classification task, reconstruction contrast between SN classes is more important
than reconstruction fidelity within classes.

Classification: Finally, we show that shared learning across surveys leads to higher classification
accuracy. We use events labeled spectroscopically as SNe Ia, SNe II, SNe IIn, SLSNe-I, and SNe Ib/c
to train a random forest (RF) for three-way (Ia, II, Ib/c), four-way (plus IIn), and five-way (plus SLSN-
I) classification. Filtering events with missing or miscellaneous labels leaves 7,053 samples (6,693
from ZTF and 360 from Pan-STARRS). The RF takes in eight input features: the four-dimensional
latent means and log variances. For this task, we compare performance using encodings from the
optimal model, the full dataset model without contrastive learning, and the baseline Pan-STARRS
model. For each model, we compare RF performance on Pan-STARRS encodings when we include
or exclude ZTF encodings during training.

Table 2: Pan-STARRS F1-score (Accuracy) Including/Excluding ZTF Encodings

Model no ZTF with ZTF

3-way 4-way 5-way 3-way 4-way 5-way

Optimal 0.60 (0.77) 0.53 (0.75) 0.42 (0.74) 0.59 (0.77) 0.47 (0.73) 0.54 (0.74)
No Contrastive 0.57 (0.78) 0.48 (0.74) 0.39 (0.74) 0.60 (0.78) 0.51 (0.75) 0.46 (0.76)

Baseline 0.55 (0.73) 0.44 (0.67) 0.33 (0.68) N/A N/A N/A
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The resulting classification accuracies and macro-averaged F1 scores are shown in Table 2. We see
significant improvement from baseline for both pre-trained models, suggesting that a latent space
pre-trained with a variety of surveys and filters better captures intrinsic differences between SN
classes. When not incorporating ZTF encodings, the optimal model has the best performance; the
Pan-STARRS encodings are more closely aligned with the ZTF encodings and therefore are better
organized in the latent space. When ZTF encodings are included during RF training, the two full
dataset models yield similar performance.

We also consider RF performance across ZTF encodings. The resulting Table 5 is in Appendix B;
there is negligible change when Pan-STARRS encodings are included in the RF training, and only a
slight performance increase from the baseline ZTF model. This is expected, as there are ∼ 20 times
fewer labeled Pan-STARRS events than ZTF events.

Conclusion

We present a framework for jointly encoding SN events observed across multiple (here, two) surveys.
We show that via a combination of (1) a symmetry-informed embedding, (2) pre-training across a
large range of wavelengths, and (3) enforcing a shared embedding space with contrastive learning,
we can increase accuracy of downstream tasks (e.g., classification) across unique surveys within one
learned representation space.

Future work will expand our training sets to a greater number of surveys (e.g., ATLAS; [28]) and
present a “production” quality version of this pipeline on Rubin Alert Brokers. We plan to further
quantify reconstruction fidelity as a function of the input and reconstructed wavelengths, such that
future pre-training can target wavelength regimes of poor reconstruction and reduce the need for
extrapolation.
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Mario Jurić, Scott F. Daniel, and Peter Yoachim. Photometric Redshifts with the LSST:
Evaluating Survey Observing Strategies. The Astronomical Journal, 155(1):1, January 2018.
doi: 10.3847/1538-3881/aa99d4.

[12] V. Ashley Villar, Griffin Hosseinzadeh, Edo Berger, Michelle Ntampaka, David O. Jones,
Peter Challis, Ryan Chornock, Maria R. Drout, Ryan J. Foley, Robert P. Kirshner, Ragnhild
Lunnan, Raffaella Margutti, Dan Milisavljevic, Nathan Sanders, Yen-Chen Pan, Armin Rest,
Daniel M. Scolnic, Eugene Magnier, Nigel Metcalfe, Richard Wainscoat, and Christopher
Waters. SuperRAENN: A Semisupervised Supernova Photometric Classification Pipeline
Trained on Pan-STARRS1 Medium-Deep Survey Supernovae. The Astrophysical Journal, 905
(2):94, December 2020. doi: 10.3847/1538-4357/abc6fd.

[13] Kyle Boone. ParSNIP: Generative Models of Transient Light Curves with Physics-enabled Deep
Learning. The Astronomical Journal, 162(6):275, December 2021. doi: 10.3847/1538-3881/
ac2a2d.

7



[14] George Stein, Uroš Seljak, Vanessa Böhm, G. Aldering, P. Antilogus, C. Aragon, S. Bailey,
C. Baltay, S. Bongard, K. Boone, C. Buton, Y. Copin, S. Dixon, D. Fouchez, E. Gangler,
R. Gupta, B. Hayden, W. Hillebrandt, M. Karmen, A. G. Kim, M. Kowalski, D. Küsters, P. F.
Léget, F. Mondon, J. Nordin, R. Pain, E. Pecontal, R. Pereira, S. Perlmutter, K. A. Ponder,
D. Rabinowitz, M. Rigault, D. Rubin, K. Runge, C. Saunders, G. Smadja, N. Suzuki, C. Tao,
S. Taubenberger, R. C. Thomas, M. Vincenzi, and Nearby Supernova Factory. A Probabilistic
Autoencoder for Type Ia Supernova Spectral Time Series. The Astrophysical Journal, 935(1):5,
August 2022. doi: 10.3847/1538-4357/ac7c08.

[15] James Guillochon, Matt Nicholl, V. Ashley Villar, Brenna Mockler, Gautham Narayan, Kaisey S.
Mandel, Edo Berger, and Peter K. G. Williams. MOSFiT: Modular Open Source Fitter for
Transients. The Astrophysical Journal Supplement Series, 236(1):6, May 2018. doi: 10.3847/
1538-4365/aab761.

[16] K. C. Chambers, E. A. Magnier, N. Metcalfe, H. A. Flewelling, M. E. Huber, C. Z. Waters,
L. Denneau, P. W. Draper, D. Farrow, D. P. Finkbeiner, C. Holmberg, J. Koppenhoefer, P. A.
Price, A. Rest, R. P. Saglia, E. F. Schlafly, S. J. Smartt, W. Sweeney, R. J. Wainscoat, W. S.
Burgett, S. Chastel, T. Grav, J. N. Heasley, K. W. Hodapp, R. Jedicke, N. Kaiser, R. P. Kudritzki,
G. A. Luppino, R. H. Lupton, D. G. Monet, J. S. Morgan, P. M. Onaka, B. Shiao, C. W. Stubbs,
J. L. Tonry, R. White, E. Bañados, E. F. Bell, R. Bender, E. J. Bernard, M. Boegner, F. Boffi,
M. T. Botticella, A. Calamida, S. Casertano, W. P. Chen, X. Chen, S. Cole, N. Deacon, C. Frenk,
A. Fitzsimmons, S. Gezari, V. Gibbs, C. Goessl, T. Goggia, R. Gourgue, B. Goldman, P. Grant,
E. K. Grebel, N. C. Hambly, G. Hasinger, A. F. Heavens, T. M. Heckman, R. Henderson,
T. Henning, M. Holman, U. Hopp, W. H. Ip, S. Isani, M. Jackson, C. D. Keyes, A. M. Koekemoer,
R. Kotak, D. Le, D. Liska, K. S. Long, J. R. Lucey, M. Liu, N. F. Martin, G. Masci, B. McLean,
E. Mindel, P. Misra, E. Morganson, D. N. A. Murphy, A. Obaika, G. Narayan, M. A. Nieto-
Santisteban, P. Norberg, J. A. Peacock, E. A. Pier, M. Postman, N. Primak, C. Rae, A. Rai,
A. Riess, A. Riffeser, H. W. Rix, S. Röser, R. Russel, L. Rutz, E. Schilbach, A. S. B. Schultz,
D. Scolnic, L. Strolger, A. Szalay, S. Seitz, E. Small, K. W. Smith, D. R. Soderblom, P. Taylor,
R. Thomson, A. N. Taylor, A. R. Thakar, J. Thiel, D. Thilker, D. Unger, Y. Urata, J. Valenti,
J. Wagner, T. Walder, F. Walter, S. P. Watters, S. Werner, W. M. Wood-Vasey, and R. Wyse.
The Pan-STARRS1 Surveys. arXiv e-prints, art. arXiv:1612.05560, December 2016. doi:
10.48550/arXiv.1612.05560.

[17] N. Gehrels, G. Chincarini, P. Giommi, K. O. Mason, J. A. Nousek, A. A. Wells, N. E. White,
S. D. Barthelmy, D. N. Burrows, L. R. Cominsky, K. C. Hurley, F. E. Marshall, P. Mészáros,
P. W. A. Roming, L. Angelini, L. M. Barbier, T. Belloni, S. Campana, P. A. Caraveo, M. M.
Chester, O. Citterio, T. L. Cline, M. S. Cropper, J. R. Cummings, A. J. Dean, E. D. Feigelson,
E. E. Fenimore, D. A. Frail, A. S. Fruchter, G. P. Garmire, K. Gendreau, G. Ghisellini, J. Greiner,
J. E. Hill, S. D. Hunsberger, H. A. Krimm, S. R. Kulkarni, P. Kumar, F. Lebrun, N. M. Lloyd-
Ronning, C. B. Markwardt, B. J. Mattson, R. F. Mushotzky, J. P. Norris, J. Osborne, B. Paczynski,
D. M. Palmer, H. S. Park, A. M. Parsons, J. Paul, M. J. Rees, C. S. Reynolds, J. E. Rhoads,
T. P. Sasseen, B. E. Schaefer, A. T. Short, A. P. Smale, I. A. Smith, L. Stella, G. Tagliaferri,
T. Takahashi, M. Tashiro, L. K. Townsley, J. Tueller, M. J. L. Turner, M. Vietri, W. Voges, M. J.
Ward, R. Willingale, F. M. Zerbi, and W. W. Zhang. The Swift Gamma-Ray Burst Mission. The
Astrophysical Journal, 611(2):1005–1020, August 2004. doi: 10.1086/422091.

[18] M. F. Skrutskie, R. M. Cutri, R. Stiening, M. D. Weinberg, S. Schneider, J. M. Carpenter,
C. Beichman, R. Capps, T. Chester, J. Elias, J. Huchra, J. Liebert, C. Lonsdale, D. G. Monet,
S. Price, P. Seitzer, T. Jarrett, J. D. Kirkpatrick, J. E. Gizis, E. Howard, T. Evans, J. Fowler,
L. Fullmer, R. Hurt, R. Light, E. L. Kopan, K. A. Marsh, H. L. McCallon, R. Tam, S. Van Dyk,
and S. Wheelock. The Two Micron All Sky Survey (2MASS). The Astronomical Journal, 131
(2):1163–1183, February 2006. doi: 10.1086/498708.

[19] A. Gal-Yam. The TNS alert system. In American Astronomical Society Meeting Abstracts,
volume 237 of American Astronomical Society Meeting Abstracts, page 423.05, January 2021.

[20] P. Sánchez-Sáez, I. Reyes, C. Valenzuela, F. Förster, S. Eyheramendy, F. Elorrieta, F. E.
Bauer, G. Cabrera-Vives, P. A. Estévez, M. Catelan, G. Pignata, P. Huijse, D. De Cicco,
P. Arévalo, R. Carrasco-Davis, J. Abril, R. Kurtev, J. Borissova, J. Arredondo, E. Castillo-
Navarrete, D. Rodriguez, D. Ruz-Mieres, A. Moya, L. Sabatini-Gacitúa, C. Sepúlveda-Cobo,

8



and E. Camacho-Iñiguez. Alert Classification for the ALeRCE Broker System: The Light
Curve Classifier. The Astronomical Journal, 161(3):141, March 2021. doi: 10.3847/1538-3881/
abd5c1.

[21] P. D. Aleo, K. Malanchev, S. Sharief, D. O. Jones, G. Narayan, R. J. Foley, V. A. Villar, C. R.
Angus, V. F. Baldassare, M. J. Bustamante-Rosell, D. Chatterjee, C. Cold, D. A. Coulter, K. W.
Davis, S. Dhawan, M. R. Drout, A. Engel, K. D. French, A. Gagliano, C. Gall, J. Hjorth,
M. E. Huber, W. V. Jacobson-Galán, C. D. Kilpatrick, D. Langeroodi, P. Macias, K. S. Mandel,
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Table 3: MOSFIT Model Constraints

Parameter Value

kappa 0.1
kappagamma 1000
temperature 3000
codeltatime 0.001

doeltalambda 0.1
redshift 0.02

Table 4: MOSFIT Survey Properties

Survey Bands Mean σM Cadence (d)

ZTF g, r 0.2 2.0
Pan-STARRS g, r, i, z 0.12 3.0

LSST u, g, r, i, z, Y 0.1 4.0
SWIFT B, UVM2, UVW1, UVW2, U, V 0.14 5.0
2MASS H, J, Ks 0.4 6.0

A MOSFIT Details

To simulate SN photometry, we use the “default” MOSFIT model [15] with parameters set according
to Table 3. Observed photometry is generated for the survey bands and limiting magnitudes detailed
in Table 4. Magnitude uncertainties are drawn from Gaussians with means from the table and standard
deviation equal to the means divided by five.

B Supplemental Table

Here we show classification metrics for a random forest trained on ZTF and, optionally, Pan-STARRS
encodings. Including Pan-STARRS encodings during training negligibly affects RF performance.

Table 5: ZTF F1-score (Accuracy) Including/Excluding Pan-STARRS Encodings

Model no PS1 with PS1

3-way 4-way 5-way 3-way 4-way 5-way

Optimal 0.70 (0.90) 0.67 (0.88) 0.63 (0.87) 0.71 (0.91) 0.67 (0.89) 0.64 (0.88)
No Contrastive 0.70 (0.91) 0.67 (0.88) 0.64 (0.87) 0.70 (0.90) 0.67 (0.88) 0.65 (0.87)

Baseline 0.68 (0.90) 0.64 (0.87) 0.63 (0.87) N/A N/A N/A
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