
Diffusion-Based Inpainting of Corrupted Spectrogram

Mahsa Massoud
Department of Computer Science

McGill University, Mila
mahsa.massoud@mail.mcgill.ca

Reyhane Askari-Hemmat
FAIR at Meta, Mila

reyhane.askari.hemmat@umontreal.ca

Kai-Feng Chen
Department of Physics, Massachusetts Institute of Technology

kfchen@mit.edu

Adrian Liu
Department of Physics and Space Institute

McGill University
adrian.liu2@mcgill.ca

Siamak Ravanbakhsh
Department of Computer Science

McGill University, Mila
siamak.ravanbakhsh@mila.quebec

Abstract

A spectrogram is a visual representation of the spectrum of frequencies in a signal
as it varies with time. An important problem in radio astronomy is removing radio
frequency interference (RFI) from the spectrogram produced by radio telescopes.
Given the competitive performance of diffusion models image inpainting, and
the similarity of spectrogram to image data, such methods seem like a natural
choice for correcting the corruption due to RFI. Unfortunately, this application is
complicated because the entire dataset is corrupted; therefore, existing solutions
relying on a clean training set are not readily applicable. Moreover, we observe that
in contrast to image data, spectrograms do not have translation symmetry along
the frequency axis undermines the prevalent use of ConvNets in processing this
kind of data. Fortunately, the RFI corruptions are often local in nature (in time or
frequency), meaning we can easily identify and mask the RFI region. In this paper,
we investigate a progressively improving series of solutions to the problem of image
inpainting, where all the training data is corrupted through masking. Moreover, we
propose a positional encoding scheme to break the translation symmetry assumed
by ConvNets. We experiment with the CIFAR10 dataset and synthetic spectrogram
data, where our initial results are quite supportive.

1 Introduction

A spectrogram is an image-like representation of a time-varying signal, with time and frequency as
the two dimensions of the image. It is used in various domains, from speech recognition and music
analysis to medical imaging and seismology. In this work, we target astrophysical data from the
Hydrogen Epoch of Reionization Array (HERA) experiment. HERA is a large radio interferometer
consisting of 300 radio dishes, and is located in the South African Karoo Desert [7, 3]. Its goal
is to characterize the three-dimensional spatial properties of our Universe around the time that
first-generation galaxies were forming. The raw data from an interferometer come in the form of
visibilities, which are complex-valued data as a function of frequency (of the cosmological radio
emission) and time.
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Unfortunately, the low-frequency radio band observed by HERA is also home to human-made radio
signals such as radio stations. Collectively, these terrestrial sources are known as Radio Frequency
Interference (RFI). RFI is typically orders of magnitude brighter than any astrophysical source
of radio waves, and thus parts of the data that are contaminated by RFI are usually taken to be
irretrievably ruined and masked. Viewing the visibility as two-dimensional functions living on the
frequency-time plane, we therefore have precisely the same problem as with the other datasets: a 2D
image with missing parts that need to be inpainted [21]. For the time being, we consider simulations
of results from this telescope, which gives us access to the ground truth – i.e., clean data before RFI
corruption. However, there are two major differences with the general inpainting problems, which
are addressed in this work:

• In contrast with the problem of image in-painting, our entire training data is corrupted by
RFI. As we show, naive application of the existing in-painting methods fails simply because
it learns the distribution of RFI along with the clean signal. We propose three progressively
more accurate solutions to this problem. We evaluate these solutions on image data and
spectrograms from the domain of interest.

• While applying ConvNets to spectrogram is a common practice, we observe that in contrast
to image data, the spectrogram does not possess translation symmetry along the frequency
axis. This is because different frequencies have consistently different characteristics. This
lack of symmetry is inconsistent with the assumptions of a convolution layer, and therefore,
a ConvNet is overly restricted when it comes to processing spectrograms. To resolve this
issue, we propose to use additional channels for positional encoding of frequencies. This
solution is analogous to the breaking of permutation symmetry in transformers using the
positional encoding of tokens.

2 Background

See Appendix for a background on denoising diffusion probabilistic models (DDPM). Here, we
discuss RePaint [20], which is an image inpainting algorithm based on DDPM and involves condi-
tioning on known image regions. The inpainting process begins with initializing xT from a normal
distribution N (0, I). The algorithm then iterates from the last timestep T down to 1. During each
timestep, the image xt is processed to estimate xt−1. RePaint assumes that in each step we have
a known and an unknown part of the final image, denoted by xknown

t and xunknown
t respectively.

xknown
t−1 is sampled using:

xknown
t−1 ∼ N (

√
αtx0, (1− αt)I)

Here, αt is a factor that controls how much the starting or (known) state of the image, and x0, affects
the process as the algorithm works backward in time.

xunknown
t−1 is computed based on:

xunknown
t−1 =

1
√
αt

(
xt −

βt√
1− αt

ϵθ(xt, t)

)
+ σtz

where ϵθ(xt, t) is the predicted noise for timestep t provided by the neural network, and z is sampled
from N (0, I). The final step for calculating xt−1 combines known and unknown regions:

xt−1 = m⊙ xknown
t−1 + (1−m)⊙ xunknown

t−1

where m is a binary mask that indicates known (unmasked) and unknown (masked) regions. This
iterative nature helps better estimate the unknown regions based on the model’s learning and the
known context.

3 Method

A minimal baseline for inpainting with corrupted data is to pretend that the dataset is not corrupted.
In the following, we introduce progressively more accurate methods that address this problematic
assumption.
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Figure 1: The amplitude and phase of a spectrogram sample. As the input to the diffusion process, we
feed the positional encoding along with the mask amplitude and phase. We have two sets of masks m
(pre-existing mask in black) and m′ (additional masks in yellow). The U-Net diffusion model is then
trained by computing ∇θ(1−m′)αl1 + (1− α)∥xt − x̂∥2 where l1 = ∥(1−m)xt − (1−m)x̂∥2.

Method 1: Training with Masked Data The first step in addressing the corruption in training data
is to train the model only on clean parts of the training data. We then use the RePaint algorithm for
inpainting, using a score that is trained on clean parts of the input image/spectrogram.

Method 2: Better Training with Mixed Masking A major problem with method 1 is that the
denoising network has no incentive to denoise the masked regions of the input; we also observed this
behavior in practice. To encourage the network to denoise masked regions of the input, we introduce
fake random masks. The model is penalized for its mistakes in denoising the regions with a fake
mask, where the ground truth is available. Since the model cannot distinguish between two types
of mask it attemps to denoise all masked regions. Here again, we used the RePaint algorithm for
sampling.

Method 3: Better Alignment of Training and Sampling We noted that during the interactive
sampling process of RePaint, the signal in masked regions is slowly recovered, and therefore in
following iterations the noise is added to this input where the original mask is slowly disappearing.
This is different from training conditions where the Gaussian noise is always added to the masked
regions that basically have a value of zero. That is we noticed a minor discrepancy between the
training and sampling statistics of the input to the denoising network. To mitigate this, we modify the
RePaint algorithm.

The algorithms for training and sampling for all methods are detailed in Algorithms 1 and 2, provided
below.

Algorithm 1 summarizes the training algorithm for Method 2&3, and Algorithm 1 presents the
algorithm for sampling in all Mathods; the change from inpaint in Method 3 is highlighted.
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Algorithm 1 Training

Require: masks m (pre-existing mask) and m′ (addi-
tional mask).

1: repeat
2: x0 ∼ q(x0)

3: t ∼ Uniform({1, . . . , T})

4: ϵ ∼ N (0, I)

5: l1 = ∥(1−m)xt − (1−m)x̂∥2

6: Take gradient descent step on:

7: ∇θ

(
(1−m′)αl1 + (1− α)∥xt − x̂∥2

)
8: until converged

Algorithm 2 Inpainting

Require: masks m and m′.
1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: for u = 1, . . . , U do
4: ϵ ∼ N (0, I) if t > 1, else ϵ = 0
5: xknown

t−1 =
√
ᾱtx0 + (1− ᾱt)ϵ

6: z ∼ N (0, I) if t > 1, else z = 0
7: x′

t = xt ⊙m′ + (1−m′)(1− ᾱt)ϵ

8: xunknown
t−1 = 1√

αt

(
x′
t − βt√

1−ᾱt
ϵθ(x

′
t, t)

)
+ σtz

9: xt−1 = m⊙xknown
t−1 +(1−m)⊙xunknown

t−1

10: if u < U and t > 1 then
11: xt ∼ N (

√
1− βt−1xt−1, βt−1I)

12: end if
13: end for
14: end for
15: return x0

Positional Encoding To incorporate spatial positional information in the model, we leverage
positional encoding [26]. Given a phase or amplitude tensor x ∈ RF×T×C where f ∈ {0, . . . , F−1},
t ∈ {0, . . . , T} and c ∈ {0, . . . , C − 1} are the frequency, time and channels. positional encodings
are independent of time, and are computed as follows:

PE(f, t, c) = sin

(
f × π

2F (c+1)/C

)
(1)

PE allows different channels to encode different frequencies.

4 Experiments

We evaluated our method on three datasets: DermaMNIST, CIFAR10, and a synthetic spectrogram
dataset 1. The results of DermaMNIST can be found in the appendix.

CIFAR 10 We corrupt the CIFAR10 [19] dataset using random masks and evaluate the inpainted
images using the FID score. Table 1 shows that our methods are on par with the clean baseline, in
terms of the FID compared. The clean baseline uses uncorrupted data. We significantly outperform
the naive approach of ignoring the corruption in the data (corrupted baseline); also see Fig. 4 in the
Appendix.

Table 1: Inpainting results for CIFAR10
Method FID score

Baseline (No mask) 3.81
Corrupted Baseline 18.54

Method 1 3.834
Method 2 3.817
Method 3 3.82

Table 2: Results for Synthetic spectrograms.
Method Average PSNR

Baseline (No mask) 56.9176
Method 1 46.9958
Method 2 47.2915
Method 3 47.7325

Method 3 + PE 48.3748

Synthetic Spectrogram The dataset is generated through simulation using the Vispb software [27]
and contains only 191 clean samples of (T = 640, F = 480) complex-valued pixels. More plots of
synthetic data are in the Appendix. We use PSNR (peak signal-to-noise ratio) for the evaluation of the

1All experimentation and processing was conducted by the authors at McGill and MIT Universities on their
servers.
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synthetic data as we have access to the ground truth values for the masked parts of the spectrogram.
As seen in Table 2, using the combination of positional encoding and method three produces the best
results.

Figure 2: Inpainted example from the spectrogram dataset. On the left, the clean sample and the mask
applied to it are plotted. We then show the final inpainted image using different methods. Yellow
parts indicate masks of the image, and what is important astrophysical is actually the prediction for
narrow band masks (the big yellow parts are consistent masks that are completely ignored)

4.1 CIFAR-10

See the visual inpainting samples of the CIFAR-10 dataset in Figure 4.

Figure 3: Inpainted example from the CIFAR-10 dataset. On the left the clean sample and the mask
applied to it are plotted. We then show the final inpainted image using different methods.

Conclusion

We presented simple solutions using a diffusion probabilistic model for replacing RFI-corrupted
regions of data in radio astronomy. Our solutions address the problem of the unavailability of clean
data in this setting and build on an existing method for diffusion-based image inpainting. Moreover,
we identify an important distinction between image and spectrogram data, in terms of their symmetry
assumption and propose a solution, that may be of independent interest in many other domains, such
as speech and audio processing where spectrograms are used. Experiments on toy image datasets
as well as synthetic astronomical data paint a favourable picture for our methods when compared
against simple baselines that provide upper and lower bounds on inpainting performance. In the
future, we plan to extensively compare our method against existing solutions for RFI inpainting in
radio astronomy, and thoroughly validate its performance in this target domain.
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5 Supplementary

5.1 Related Work

Inpainting: Inpainting is the process of filling in missing or damaged parts of images and is one
of the major challenges in computer vision. Initial techniques for image inpainting relied on the
low-level features of corrupted images. These include methods based on partial differential equations
(PDEs) ([4]; [1]; [25]) as well as patch-based methods ([8]; [2]; [6]; [14]; [13]; [12]).

Those techniques derived from PDEs tend to propagate the information from the edges and boundaries
to achieve smooth inpainted images. While these methods handle boundaries well, reconstructing the
image textures is still difficult. On the other hand, patch-based strategies do not solely focus on the
edges and boundaries; they fill the unknown parts by finding and replicating similar patches from the
known areas. Patch-based methods can fill in textures and even whole objects in small gaps if they
find similar ones somewhere else in the image. Despite their strengths, PDE-based methods often
fail to reproduce complex textures, and patch-based methods struggle with larger masks or highly
irregular areas. The introduction of diffusion models, especially highlighted in the "RePaint" paper
[20], represents a major breakthrough in this area. These models employ a pretrained diffusion model
and incorporate a defined mask during the inference time to iteratively denoise images, enabling them
to fill in gaps with remarkable accuracy and detail that align with the surrounding context.

More recently, it has shown that for cases where the training data is corrupted, one can use the
GSURE loss [16]. The method achieves comparable results to supervised models, reducing data
requirements for tasks like such as MRI reconstruction where the acquiring data is expensive.

RFI Inpainting: The CLEAN algorithm [15] iteratively identifies and subtracts the brightest points
(or "clean components") in the observed data, then reconstructs the image by adding these components
back in a more accurate way. So, this can reduce the effect of RFI and other noise sources.

In the HERA data analysis pipeline [21], authors have used a modified version where of CLEAN
tailored to their inpainting requirements; Moreover, they investigated some other techniques including
least square spectral analysis (LSSA), Gaussian process regression (GPR) [10] [17], and discrete
prolate spheroidal sequences (DPSS) [23] [9].

These approaches leverage uncorrupted data to construct a basic model for the corrupted data, which
is then substituted into the RFI-flagged regions; This can help mitigate the impact of RFI on the
spectrum. However, these restored data may cause some problems and introduce possible errors in
the analysis.

In addition to methods for specific RFI inpainting, there are generally three types of inpainting
methods with the diffusion models that we discuss below.

Methods that Modify the sampling: in [11] authors introduce a method called GradPaint, which
uses a custom loss to measure the coherence of the denoised image estimation with the masked input
image at each step in the denoising process. In [30] authors suggest a different approach to sampling.
They fine-tune pretrained diffusion models without any conditioning initially; Then during sampling,
the models can then be conditioned on different modalities, such as text. Moreover, [20] used the
same approach of modifying only sampling.

Denoising Diffusion Probabilistic Models: The concept of DDPMs was first introduced by [24]
and since then it has been used in a lot of applications of computer vision. For a full description of
the DDPM algorithm, see Appendix 5.2.1

Methods that Modify the training: In [22], authors guide the model to fill in masks based on the
context provided by the existing parts of the image. During the training, loss functions are designed to
ensure that the generated images are both high-quality and contextually consistent. Also, in [28] they
modify the latent space using diffusion models, to enhance the efficiency of the inpainting process.

Methods that modify both sampling and training: In [5] authors propose a new approach for
image inpainting using diffusion models that does not require expensive training and is fast at
inference time. This is achieved by performing the forward-backward fusion step in the latent space
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rather than the image space. [18] introduces a multi-modal object inpainting approach that utilizes
text and shape guidance with diffusion models to improve inpainting quality and efficiency.

5.2 Background

5.2.1 Denoising Diffusion Probabilistic Models (DDPM)

We first introduce the mathematical notation used throughout the paper. Let x denote the input data,
y represent the output or target data, and θ denote the parameters of the model. We use D to represent
the dataset consisting of input-output pairs {(xi,yi)}Ni=1, where N is the number of samples in the
dataset.

Denoising Diffusion Probabilistic Models (DDPM) are a class of generative models that learn to
model the conditional distributions of data under sequential levels of diffusion. Given an initial noisy
sample, DDPM iteratively applies denoising steps to reduce the noise level until reaching the desired
distribution. Formally, DDPM models the conditional distribution p(xt|x0), where xt is the data at
time step t and x0 is the initial noisy input.

During training, DDPM methods define a diffusion process that transforms an image x0 to white
Gaussian noise (xT ∼ N(0, 1)) in T time steps.

The forward process of adding Gaussian noise is given by

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (2)

The DDPM is trained to reverse the process in (1). The reverse process is modeled by a neural
network that predicts the parameters µθ(xt, t) and Σθ(xt, t) of a Gaussian distribution; The reverse
process of denoising is modeled by

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (3)

5.3 Experiments

5.3.1 Model Architecture and Hyperparameters

We utilized a U-Net architecture for our model, which is well-suited for image reconstruction tasks.
Our hyperparameter search included varying the learning rate, batch size, and the number of filters in
each convolutional layer. The final chosen hyperparameters were as follows: Learning rate: 0.001,
Batch size: 32, Number of filters: 64, 128, 256, 512, Optimizer: Adam.

5.4 RFI dataset

For better clarification, we depict the plot for the masks that we actually care about being filled with
our methods. The red masks below showcase the differences in gaps between two consecutive nights.
which are being fully recovered in the figure 2.

5.5 Synthetic RFI dataset

See the visual inpainting samples of the synthetic in Figure 5.

5.5.1 DermaMNIST Dataset

DermaMNIST is a collection of medical images similar in structure to the MNIST dataset that
contains Dermatoscope data [29]. We evaluate our method on this dataset. The results can be found
in the appendix.

For the DermaMNIST dataset, the performance metrics are summarized in Table 3 and the visualiza-
tions are depicted in Figure 6.

We used the following range of hyper-paramters to tune the model for the Derma-MNIST dataset:
Learning Rates: {0.0001, 0.00001, 0.000001}, Coefficients: {0.3, 0.6, 0.9}, Batch Sizes: {16, 32, 64,
128}.
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Figure 4: Inpainted example from the real data spectrogram dataset. On the left, the real data sample
is the input and the right figure shows the final inpainted image using different methods. Red parts
indicate the narrow band masks.

Figure 5: Inpainted example from the real data spectrogram dataset. On the left, the clean sample
and the mask applied to it are plotted. We then show the final inpainted image using different
methods. Yellow parts indicate masks of the image, and what is important astrophysical is actually
the prediction for narrow band masks (the big yellow parts are considered as unknown areas)

Method Average PSNR Average MSE Average Std (mask)

Baseline 47.9335 1.9273 -
Step 1 46.7960 3.0519 1.294018
Step 2 47.8519 2.2406 1.275268

Table 3: Performance metrics for DermaMNIST dataset
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Figure 6: Results on the DermaMNIST dataset
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