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Abstract

We present a machine learning approach for Hamiltonian parameter estimation in
quantum systems using weak measurement data. Our model combines an LSTM-
based encoder with a physics-informed decoder, incorporating a trainable correction
term for unmodeled dynamics. Evaluated in both supervised and unsupervised
settings, the method demonstrates high accuracy and robustness against noise.
This approach provides an effective solution for quantum system identification
in our two-qubit demonstration, outperforming traditional methods in parameter
estimation tasks and offering a potentially scalable solution for quantum system
identification.

1 Introduction

The characterization and control of quantum systems is crucial for advancing quantum technologies.
As quantum devices grow more complex, system parameter estimation becomes challenging due
to exponential state space growth, necessitating new, scalable approaches for quantum system
identification. Recently, Machine learning (ML) has been successfully applied to problems in quantum
state tomography [14], Hamiltonian learning [24], and quantum control [22]. However, existing
methods often require strong measurements, which provides complete information but irreversibly
collapses the quantum state, or explicit quantum state representations, limiting scalability. Weak
measurements [31] offer an alternative approach - they extract only partial information, allowing the
quantum state to be minimally disturbed and continuously monitored, though at the cost of increased
noise. We present a novel ML-based approach for estimating Hamiltonian parameters from weak
measurement records, leveraging advances in sequence modeling and neural ordinary differential
equations (ODEs) [19].

Background and Related Work: Hamiltonian parameter estimation in quantum systems faces
challenges due to measurement-induced disturbances. Weak measurements [31] maintain quantum
superposition but introduce noise, complicating estimation without full state access. Recent ML
applications in quantum physics have addressed challenges in state tomography [14, 13, 16, 36,
15, 38], evolution [38, 6], unknown dynamics learning [11, 18, 34], and device characterization
[24, 22, 32, 1, 17]. Our work introduces a novel architecture combining LSTMs [28] with ODE
solvers, inspired by Neural ODEs [19, 27, 6] and physics-informed neural networks [35]. We
consider supervised (known parameters) and unsupervised (unknown parameters) scenarios. The
supervised setting offers fast inference through a neural network forward pass, independent of state
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representation [1]. The unsupervised case combines a physical model with a model-free correction
term to handle unanticipated effects. We contrast our work with recent Hamiltonian learning methods
[1, 26, 3, 2, 29, 33, 20, 4, 5] by using continuous measurements modeled by a stochastic master
equation. Our approach applies without requiring steady state or energy eigenstate preparation, or
adaptive Hamiltonian changes. It only requires parameters to have observable impacts on continuous
measurements. Our unique discrepancy modeling combines physical system knowledge with model-
free machine learning, enhancing accuracy and interpretability. While not currently used, adaptive
techniques could potentially improve our learning process.

Contributions: We present a novel ML approach for Hamiltonian parameter estimation using weak
measurement data, introducing: (1) A denoising autoencoder with an LSTM-based encoder and
physics-informed decoder with trainable correction. (2) Demonstration of efficacy in supervised
and unsupervised settings, showing accuracy and noise robustness. (3) Ability to handle unmodeled
dynamics, demonstrated with unanticipated Lindblad dissipative terms. We demonstrate our approach
on a two-qubit system as a proof of concept, achieving high accuracy in both supervised and
unsupervised settings. While scaling to larger systems will face challenges including increased
parameter space dimensionality and computational requirements, our architecture’s modular nature
allows for potential extensions left as future work.

2 Problem Formulation

Our work addresses the challenge of estimating Hamiltonian parameters in a two-qubit quantum
system using weak continuous measurements. The system is described by the Hamiltonian H =∑2

i=1
Ω
2Xi + ϵZ1Z2 where Xi and Zi are Pauli operators acting on qubit i, Ω is the Rabi drive

frequency, and ϵ is the strength of the two-qubit interaction. Our primary objective is to estimate Ω
and ϵ from measurement records.

Our data consists of noisy voltage trajectories from weak continuous measurements, described by
a stochastic master equation, reflecting partial information about the quantum state evolution. We
provide a full description of the physical system under consideration and the stochastic master
equation in Appendix A.

The dataset comprises of N = 32,000 trajectories for each distinct parameter set (Ω, ϵ) out of a
total of K = 80 such tuples. We generate these trajectories using an Euler-Maruyama integrator to
solve the stochastic differential equations governing the measurement records. To ensure our models
generalize to unseen parameter values, the training set does not contain any trajectories corresponding
to parameter values in the test and validation sets.

The training process utilizes averaged trajectories from groups of size d as input to the model to reduce
diffusive noise. These groups are randomly selected from the set of N trajectories for each parameter
tuple θk = (Ωk, ϵk). Each mini-batch comprises M = N/d averaged trajectories {x̃j,k(t)}Mj=1,
where x̃j,k(t) =

1
d

∑
i∈I ri,k(t). Here, ri,k(t) represents the i-th measurement record for parameter

set k, and I is a randomly selected subset of trajectory indices. For unsupervised learning, we use
xk(t) =

1
N

∑N
i=1 ri,k(t) in the loss function, representing the average over all trajectories for a given

parameter set. This approach can be interpreted as a denoising process, where xk(t) approximates
the uncorrupted data, and the smaller trajectory groups represent corrupted inputs.

We consider a range of group sizes d in our experiments. We use d = ∞ to denote the case where all
N trajectories are averaged into a single group, which approaches the noiseless measurement limit as
N becomes large. Henceforth, this is called the “noise-free” setting in this paper. We describe the
dataset generation and setup process in detail in Appendix B.

3 Methods and Results

Our approach includes: a supervised learning model for direct parameter estimation, and an unsuper-
vised learning model with a physics-informed decoder when ground truth values are unknown. All
results are reported averaged over 100 runs with details of training discussed in Appendix B and C.
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Figure 1: Estimations of the parameter
pair θk = (Ωk, ϵk) averaged over four
noisy trajectory groups of d = 4,000 mea-
surement records for a model trained on
clean data and noisy data, then evaluated
on noisy data. Test set MSEs of the models
are (8.67e-3, 5.83e-4) and (4.94e-3, 4.87e-
4) respectively.

d Best MSE Median MSE Mean MSE
2,000 9.87e-3, 8.76e-4 9.72e-3, 8.71e-4 9.75e-3, 9.79e-4
4,000 4.94e-3, 4.87e-4 5.23e-3, 5.44e-4 5.62e-3, 5.75e-4
8,000 4.17e-3, 2.74e-4 2.94e-3, 2.74e-4 3.38e-3, 4.13e-4
16,000 2.19e-3, 2.06e-4 1.40e-3, 1.92e-4 1.80e-3, 2.94e-4
∞ 1.01e-5, 2.04e-5 4.51e-6, 4.82e-5 1.32e-5, 5.68e-5

Table 1: Each cell shows the MSE pair for (Ω, ϵ)
estimates on supervised training set using the encoder
only.

d ∆t = 2−8 µs 2−6 2−4

2,000 1.12e-2, 8.01e-4 1.10e-2, 8.42e-4 1.23e-2, 2.12e-3
4,000 5.87e-3, 4.56e-4 6.46e-3, 5.07e-4 6.39e-3, 1.68e-3
8,000 3.08e-3, 2.32e-4 2.98e-3, 2.87e-4 3.34e-3, 1.46e-3
16,000 1.68e-3, 1.19e-4 1.11e-3, 1.63e-4 1.58e-3, 1.39e-3
∞ 1.25e-5, 7.75e-6 1.76e-5, 7.07e-5 1.14e-4, 1.23e-3

Table 2: MSE of (Ω, ϵ) estimates on unsupervised
training set with varying Ω and ϵ and N = 32, 000.
The values of κ and η are assumed to be known ex-
actly.

3.1 Supervised Learning

We begin with a supervised learning approach, designed to estimate Hamiltonian parameters directly
from weak measurement records. This is in contrast to prior work where parameters are estimated
through a post-processing step [24]. By bypassing the need for explicit quantum state representations
during inference, this approach reduces memory requirements compared to full state tomography
methods, though scaling to larger systems will require addressing challenges in parameter space
dimensionality and measurement complexity.

Our model consists of an encoder E : x̃(t) → θ̂ that maps noisy measurement trajectories to estimated
parameter values. It is composed of an average pooling operation to smooth voltage trends, followed
by a long short-term memory (LSTM) layer, and finally a feed-forward neural network (see Fig.
2(ii)).

The supervised model is trained by minimizing the mean squared error (MSE) between predicted
and true parameters Lsupervised = 1

pK

∑
k |θ̂k − θk|22 where p is the dimensionality of θk, and K is

the number of training examples. We show that parameters can be estimated with low error (Fig. 1).

We first study the impact of noise in the training set when evaluated on noisy test data. We consider
models trained with group sizes d = 4, 000 and d = ∞ (noise-free) evaluated on a test set of noisy,
averaged measurement records with the same group size d as the noisy training set. We can see
in Fig. 1 that for many specific pairs and for the overall MSE, the model trained on the noise-free
measurements is producing less accurate estimates. This is consistent in both the Ω and ϵ errors. This
suggests that the model learns to account for noise, as expected, and training with noise on the level
of measurements used for prediction is beneficial. We provide a plot of MSE values in Appendix D.1.

Next, Table 1 shows effect of group sizes d on the MSE for (Ω, ϵ) estimates. We observe that accuracy
improves with larger group sizes, with the best performance achieved using noise-free data (d = ∞).
We provide a comparison with non-neural network approaches in Appendix E.

3.2 Unsupervised Learning

Labeled training data may not always be available in experimental settings so we introduce an
autoencoder-based unsupervised learning approach that combines a physics-informed decoder with a
model-free correction term. This hybrid approach can operate without known parameter values while
maintaining physical interpretability.

Our unsupervised model extends the previous architecture by adding a decoder D : θ̂ → x̂(t). This
decoder reconstructs the measurement record by solving the unconditioned master equation using an
enhanced numerical ODE integrator. The integrator is implemented as a RNN with a custom cell that
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Figure 2: Diagram of the full ML model. Volt-
age records are measured from the cavity sys-
tem producing noisy averaged voltage records
(i), these are sent through a neural network
encoder (ii) producing system parameters as
output (iii). These parameters are used by the
integrator decoder (iv) to produce noise-free
voltage estimates (v).

Figure 3: Details of the decoder RNN cell com-
bining a standard ODE integrator with an LSTM
update.

Figure 4: Estimate of ϵ for training data simulated
with single particle relaxation rate γs = 0.1 but a
model that does not explicitly account for γs. Here,
k indexes different parameter sets tested. Results
are shown for the physical model alone and with a
correction learned by the decoder LSTM.

combines a single step of Euler’s method with a correction produced by a standard LSTM cell. This
is shown in Fig. 3. The correction term is designed to compensate for unanticipated dynamics in the
physical model used by the numerical integrator. The design leverages the concept of ODE-RNN [27,
37], as it uses a neural network to approximate corrections to the unconditioned master equation as
dρ
dt = fmodel(t, ρ; θ̂) + fLSTM(t, ρ; θ̂). Here, ρ is the density matrix, fmodel represents the drift term
derived from the master equation, and fLSTM is a trainable correction term produced by an LSTM
cell which is a non-linear function of the state, time and parameters. Fig. 2 shows an end-to-end
illustration of our model. This architecture can be viewed as a denoising autoencoder, where the
latent space corresponds to the physical parameters being estimated.

The loss function for unsupervised learning is the MSE between the decoder’s output x̂(t) and
the provided approximations of clean measurements x(t) is Lunsupervised = 1

MKNt

∑
j,k,t |xk(t) −

D(E(x̃j,k))(t)|2 where M is the number of trajectory groups per parameter set, K is the number of
parameter sets, and Nt is the number of time points.

We evaluate the unsupervised model in three scenarios: varying both Ω and ϵ, fixed Ω with varying ϵ,
and vice-versa. For now, we assume that the physical model in the decoder is correct, i.e. we are
not learning parameters for the drift function correction fLSTM. Table 2 shows results when both
parameters vary. This is a fairly difficult setting as training data for each unique pair (Ω, ϵ) is small.
We present ablation results on dataset size, group size, parameter and time-step in Appendix D.2.

We find that accuracy in Table 2 improves linearly with larger group sizes (doubling group size,
halves MSE) and smaller time steps, with a threshold around ∆t = 2−6µs above which this trends
seems to break down suggesting the need for frequent measurements in the unsupervised case.

Model Correction for Unmodeled Dynamics: A key advantage of our unsupervised approach is
its ability to correct for unmodeled dynamics. To demonstrate this, we introduce a single-particle
relaxation term in the data generation ((Eq. (1a))), but not in the decoder’s physical model. We
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account for this by enabling training in the decoder LSTM parameters. We provide details of our
experimental setup in Appendix D.3.

Fig. 4 shows the estimation of ϵ for a ground truth value ϵ = 1.7, comparing results with and
without the learned correction. We observe that the learned correction significantly reduces the bias
in ϵ estimation introduced by the unmodeled relaxation, demonstrating the model’s robustness to
unanticipated dynamics. This capability is crucial for real-world applications where the full dynamics
of the system may not be known a priori. We provide additional results estimating probabilities and
MSEs in Appendix D.3.

4 Conclusion

We have proposed a machine learning model based on a denoising autoencoder capable of direct
estimation of physical parameters in a two-qubit system modeled by a stochastic master equation from
weak measurement records. The model is capable of learning in a supervised and an unsupervised
context, and it can accurately predict parameters for systems not seen in the training data. By
leveraging a master equation integrator for unsupervised learning, the autoencoder demonstrates
robustness to unanticipated dynamics not included in its physical model, as shown in the case
of unexpected Lindblad dissipative terms. Looking ahead, promising avenues for future research
include investigating the model’s resilience to non-Markovian and nonlinear dynamics, and exploring
extensions to larger quantum systems with more complex Hamiltonians - though this would require
addressing challenges in parameter space dimensionality and measurement complexity.
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A Physical System

Our physical system of interest is that of two qubits with fixed position in a microwave cavity as
illustrated in Fig. 5. A single common mode of the cavity is coupled to the computational degree of
freedom of the qubits, and they are coherently driven on resonance with a Rabi drive of frequency
Ω. A two-qubit interaction term is present with magnitude ϵ. A weak measurement tone [30, 10] is
applied to the cavity to probe the qubit state in one of the {X,Y, Z} directions for each qubit, with a
measurement back-action dephasing rate of κ. Upon adiabatic elimination of the cavity mode [8],
which we assume has dynamics evolving at a rate much faster than time scales relevant to the qubits,
we can describe the system with the stochastic master equation (SME) [7, 23].

dρ = −i[H, ρ]dt

+

2∑
i=1

D[Li](ρ)dt+

2∑
i=1

√
η

2
H[Li](ρ)dW

(i)
t , (1a)

H =

2∑
i=1

Ω

2
Xi + ϵZ1Z2, (1b)

where {Xi, Yi, Zi} is the set of Pauli operators for qubit i ∈ {1, 2}, D[L](ρ) = LρL† −
1
2

{
L†Lρ+ ρL†L

}
is the Lindblad super-operator, H[L](ρ) = Lρ + ρL† − ρTr

[
ρ
(
L+ L†)] is

the measurement super-operator, η is the efficiency of the measurement, and Li =
√
κCi, where

Ci ∈ {Xi, Yi, Zi} is the weak measurement operator. Here we have suppressed the dependence on t
for ρ, and we have adopted the normalization convention ℏ = 1.

The stochastic differential equations for the measurement records are given by

dri =

√
η

2
Tr

[
ρ
(
Li + L†

i

)]
dt+ dW

(i)
t (2)

where ri is the weak measurement record for qubit i ∈ {1, 2} and the independent Wiener increments
dW

(i)
t are the same as those appearing in Eq. (1a). This is comparable to the system studied in

Ref. [24], except generalized to two qubits and with the addition of the two-qubit interaction term in
Eq. (1b). We also consider cases where the weak measurement operator Li is different for each qubit.

The unconditioned master equation is given by averaging over all possible trajectories of the Wiener
processes and is given by:

dρ = −i[H, ρ]dt+

2∑
i=1

D[Li](ρ)dt (3a)

dri =

√
η

2
Tr

[
ρ
(
Li + L†

i

)]
dt (3b)

Figure 5: The physical system of two qubits in a microwave cavity subject to a Rabi drive Ω, single
particle relaxation with rate γs, and dephasing due to weak measurement back-action with rate κ.

B Dataset and Training Details

In order to generate the data for training, validation, and testing, we use an Euler-Maruyama integrator
to solve Eq. (2) for both qubits for each of 40 values of ϵ evenly spaced on [0, 2) with fixed Ω = 1.395
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radians/µs, and the same number of Ω values evenly spaced on [1, 5) with fixed ϵ = 1.0 radians/µs for
a total of K = 80 (Ω, ϵ) pairs. For each pair of values (Ωk, ϵk), N = 32,000 measurement trajectories
are simulated for T = 4µs. Half of the collection of pair of values (Ωk, ϵk), corresponding to every
other parameter pair, is used for training. The other half, corresponding to parameters midway
between training values, is split evenly to be used for validation and testing. This ensures the training
set contains a disjoint set of parameter pairs from the validation/test set. The two endpoints of the
validation/test set are excluded from each end to ensure that the training data extends slightly beyond
the domain of validation/test values. Only weak measurement records are being used, and no strong
measurements are being performed.

Values of κ = 3.326 radians/µs and η = 0.1469 are selected to be consistent with the example of
superconducting qubits as found, for example, in Ref. [24], though with a stronger measurement
back-action κ after simulations showed a larger value to offer a good balance between dephasing rate
and measurement noise. While either Ω, ϵ, or both are treated as unknown parameters and comprise
the latent space of our model, it is assumed in our simulations that κ and η are known with high
precision as they have already been calibrated. Our approach can be used to perform this calibration
step, since the latent space of the model is not limited to Hamiltonian parameters and could support
any combination of Hamiltonian and Lindblad parameters as unknown variables. Alternatively, other
calibration methods found in the literature can be used to estimate them, such as in [12]. It should be
noted, however, that in practice if calibration errors are present in the model values, the degrees of
freedom in the decoder should make parameter estimation robust to these errors as demonstrated in
what is likely the more challenging case of unanticipated single particle relaxation examined in Sec.
3.2. The impact on parameter estimation accuracy is expected to be small for small calibration errors.
A study quantifying this dependency is an interesting area for future work.

During training, for each true parameter set θk = (Ωk, ϵk), trajectory groups of a preset size d are
randomly selected from the full training set and their averages are provided as input values to the
model, such that each mini-batch is comprised of M = N/d averaged trajectories {x̃j,k(t)}Mj=1

where x̃j,k(t) =
1
d

∑
i∈I ri,k(t), ri,k(t) is measurement record i for parameter set k, and I is a set

of trajectory indices of size d randomly selected from 1, 2, ..., N without replacement until all N
trajectories are used, which defines one epoch of training. In this way, each mini-batch consists
of a different set of noisy trajectories as input to maximize the diversity of training examples. In
the unsupervised case, for all j = 1, ...,M , the value xk(t) to be used in the loss function is the
average over the full training set of trajectories associated with the true parameter set θk, such that
xk(t) =

1
N

∑N
i=1 ri,k(t).

To make the interpretation of our model as a denoising autoencoder more concrete, we note that
DNAs are characterized by a corruption process C(ỹ|y) whereby noisy inputs ỹ are generated for
each uncorrupted training example y [25]. In our case, the full trajectory means xk(t) take on the
role of y, approximating the solution to the unconditioned SME, while the random selection of much
smaller trajectory groups is the process by which the corrupted data elements ỹ are generated.

C Evaluation Details

During evaluation, validation and test error is evaluated in a similar manner to how training mini-
batches are selected, with groups of size d randomly chosen from the full validation and test sets,
followed by the calculation of the MSE. This process is repeated 100 times and the average is taken
as the calculated MSE for each set.

Training is performed for multiple runs of 100 epochs, with a learning rate of 3× 10−3 and a decay
rate of 0.99 per epoch, resetting the learning rate after each run, continuing until the validation
loss drops by less than five percent run-to-run, and for the last 20 epochs of the final run. Once
converged, parameter MSE is computed for the validation and test sets. This entire process is
performed 100 times, each with a different random initialization of the model parameters. The best
model is considered to be the one with the smallest validation loss after the final epoch, and this
model is used to evaluate the MSE for the test set. Hyperparameter tuning for the model layer sizes
was performed using a grid search for a physical system with parameters distinct from those in Sec. 3.

During evaluation, we consider a range of trajectory group sizes d as well as noise-free data derived
from an Euler integration of the unconditioned master equation. The noise-free case is denoted by ∞
as the number of trajectories in all tables.
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To minimize the impact of the weak measurement back-action via the parameter κ, when evaluating
in the supervised and unsupervised settings, the initial state is chosen to be spin-up in the directions
of measurement, and the directions of X and Y were used for the first and second qubit, respectively.
A different configuration is used when we are testing the model correction, where more diverse
measurements are needed to correct for unanticipated single particle relaxation not explicitly present
in the decoder’s physical model.

D Additional Results

In this section, we report additional results from our experiments not included in the main text due to
space constraints.

D.1 Supervised Setting

We provide a plot to visualize error values for the experiment on clean vs noisy training data performed
in Sec. 3.1. It can clearly be seen that the model trained on noisy data (orange) achieves lower error
compared to the one trained on noise-free data.

Figure 6: Estimations of the squared error averaged over four noisy trajectory groups of d = 4,000
measurement records for a model trained on clean data and noisy data, then evaluated on noisy data.
Shuffle evaluated test set MSEs are (8.67e-3, 5.83e-4) and (4.94e-3, 4.87e-4) respectively. Here, k
indexes different parameter sets tested

We further compare our supervised approach to a non-neural network baseline in Appendix E.

D.2 Unsupervised Setting

We now present ablation studies over specific choices made for the experiments and results presented
in Sec. 3.2.

First we examine how parameter estimatation accuracy for a fixed group size d = 4,000 varies
with the total training set size N . Table 3 shows (Ω, ϵ) test set MSEs for the case where Ω is
unknown but fixed at a true value of 1.395 radians/µs and ϵ is allowed to vary, for various training set
sizes N . The same test set containing 16,000 trajectories is used for each row. From the table, we
see that accuracy improves significantly as the amount of training data increases, even though the
groups being presented to the model for parameter estimation remain the same. This indicates that
a greater diversity of noisy measurement records when training results in models that can produce
more accurate parameter estimates when presented with the same number of measurements when
performing prediction. This motivates using N = 32,000 in all our experiments.

Next, we consider the impact of group size d and measurement record time spacing ∆t on accuracy.
Table 4 again shows (Ω, ϵ) test set MSEs for the case where Ω is unknown but fixed at a true value
of 1.395 radians/µs and ϵ is allowed to vary. It illustrates how extremely low test set MSEs are
achievable for Ω in this case, which is expected given the high volume of training data available
for a single value. The accuracy of ϵ estimates depends on both the number of trajectories used to
create each input sequence, as well as the time spacing at which measurements are recorded. To
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N Best MSE Median MSE Mean MSE
4,000 1.51e-3, 1.12e-3 6.58e-4, 9.86e-4 8.33e-4, 1.08e-3
8,000 3.27e-4, 7.71e-4 5.20e-4, 7.94e-4 5.38e-4, 8.81e-4

16,000 1.83e-4, 7.49e-4 3.20e-4, 8.41e-4 3.07e-4, 8.38e-4
32,000 8.14e-5, 7.16e-4 9.82e-5, 8.15e-4 1.45e-4, 8.12e-4

Table 3: MSE of (Ω, ϵ) when using d = 4,000 trajectories to estimate parameters for varying training
set sizes N for an unsupervised training set with fixed Ω and varying ϵ. The values of κ and η are
assumed to be known exactly.

d ∆t = 2−8 µs 2−6 2−4

2,000 5.78e-5, 1.40e-3 1.20e-4, 1.40e-3 1.22e-4, 2.83e-3
4,000 8.14e-5, 7.16e-4 1.66e-4, 7.90e-4 1.19e-4, 2.09e-3
8,000 8.51e-5, 3.42e-4 7.16e-5, 3.63e-4 8.02e-5, 1.82e-3

16,000 8.31e-5, 1.57e-4 1.66e-4, 1.57e-4 1.19e-4, 1.89e-3
∞ 1.66e-6, 6.08e-6 7.21e-6, 1.04e-4 1.52e-5, 1.71e-3

Table 4: MSE of (Ω, ϵ) estimates on unsupervised training set with fixed Ω and varying ϵ and
N = 32, 000. The values of κ and η are assumed to be known exactly.

Figure 7: Estimate of P (Yi = 0) when ϵ = 1.7 and measuring X with spin-up in Z as the initial
state for both qubits for training data simulated with single particle relaxation rate γs = 0.1 but a
model that does not explicitly account for γs. Results are shown for the physical model alone and
with a correction learned by the decoder LSTM.

evaluate measurement records with varying time spacing, trajectories simulated with ∆t = 2−8µs
are sub-sampled to avoid introducing numerical integration error associated with simulations with a
larger time step.

D.3 Model Correction

In this section, we provide experimental details and additional evidence for the ability of the decoder
to correct for dynamics not explicitly considered in the physical model (Eq. (1a)).

We begin by providing details of our experimental setup. Unlike the vanilla parameter estimation
setup, we now enable training for the decoder LSTM parameters as well. For the datasets, we
simulate 30,000 trajectories with fixed Ω = 1.395 radians/µs that is known to the model, but
with varying unknown ϵ which is the parameter to be estimated. We add a dissipative term for
each qubit corresponding to the Lindblad operator D[

√
γsσ

−
i ](ρ) in Eq. (1a), where γs = 0.1 and

σ−
i = 1

2 (Xi − iYi) is the single particle relaxation operator mapping the excited state to the ground
state. Note that while the choice of a single unknown parameter is made in this section to provide a
clear and straightforward demonstration, the model still supports multiple possible parameters to be
estimated in addition to the decoder degrees of freedom.
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d γs = 0.1 γs = 0.0 γs = 0.0 + correction
5,000 2.84e-3 0.142 3.82e-3
∞ 2.12e-6 0.145 2.71e-4

Table 5: MSE of ϵ estimates using different γs values in the model. The final column shows results
when learning is enabled for the free parameters in the decoder to account for the unanticipated term
γs. Measurement time spacing is ∆t = 2−8µs.

In this case, we take a more diverse set of measurements, simulating 10,000 trajectories measuring in
each of the X , Y , and Z directions for both qubits, and relaxing κ to one-fourth the value used in
previous setups to reduce measurement back-action. Spin-up in the Z direction is the initial state for
each qubit. This more cautious approach to measurement is warranted if completely unknown effects
are expected to be present. More information about the type of phenomenon, but not necessarily
the magnitude, could allow for a more targeted measurement scheme, but here we keep it general.
The trajectory group size used for each input was d = 5,000, and the best of 20 randomly initialized
models was selected for the results in this section.

The results of the parameter estimation with and without the correction are shown in Fig. 7 and
Table 5. Similar to the results introduced earlier in Fig. 4, we can see in Fig. 7 that single particle
relaxation has introduced a significant bias to the estimated ϵ parameters when unaccounted for
in the model. However, the decoder LSTM has successfully corrected for the effect, returning the
MSE (Table 5) to a value much closer to where it would have been had the physical model explicitly
accounted for it.

E Baseline: Random Forests

To justify our choice of employing LSTMs as the backbone of our proposed architecture, we provide
a comparison using Random Forests [9] for the encoder-only experiments described in Section 3.1
with. We choose to compare against Random Forests because they have been shown to have robust
off-the-shelf performance across a wide variety of tasks [21]. In this section, we give an overview of
our setup and a comparison with results in Table 1, which justify the use of Neural Network based
architectures in our subsequent experiments.

E.1 Training Setup

Our aim is to compare the prediction accuracy for the parameter ϵ for a fixed Ω in the case of
supervised learning between the Random Forest model and the model described in the main text.
To do so, we use the same procedure as described in Section 3.1 of the main text. The training set
contains averaged trajectories sampled randomly in groups of varying size d, and the trajectories in
the dataset correspond to 40 values of ϵ evenly spaced on [0, 2) for a fixed Ω = 1.395 radians/µs.
The crucial hyperparameters for our method are the number of trees in the ensemble (set to 100) and
the maximum depth of each tree (set to 25). These were found via 5-fold cross validation over the
dataset.

A clear point of difference compared to the LSTM-based model is the form of the input given to
the Random Forest model. Unlike the LSTM model, input to the Random Forest model must be
1-dimensional. We use the concept of ‘dimensionality’ to refer to the number of weak measurement
values at each timestep. Our input is 2-dimensional since we have a weak measurement value for
each qubit. This dichotomy requires us to ‘flatten’ the input values into a single dimension. This can
be done in two ways: either by keeping measurement values corresponding to a particular time step
close together (column-major order) or by concatenating the values of the second qubit after all the
values of the first qubit (row-major order). We find that the choice of ordering makes little difference
in our results as we demonstrate next.

E.2 Results

We present the impact of the choice of input order in our Random Forest model in Table 6. We find
the difference in MSE values to be minimal.
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d Best MSE Median MSE Mean MSE
2,000 2.35e-3, 2.63e-3 4.13e-3, 4.08e-3 4.41e-3, 4.52e-3
4,000 1.23e-3, 1.31e-3 3.44e-3, 3.52e-3 3.69e-3, 3.70e-3
8,000 7.49e-4, 7.34e-4 1.61e-3, 1.68e-3 1.86e-3, 1.86e-3

16,000 3.36e-4, 3.26e-4 1.47e-3, 1.50e-3 1.65e-3, 1.71e-3
∞ 2.34e-4, 3.48e-5 1.54e-3, 1.37e-3 1.75e-3, 1.79e-3

Table 6: Each cell shows MSEs for Random Forest models with row-major input flattening and
column-major input flattening respectively.

We now compare the results of the Random Forests model in column-major order to the LSTM model
in Table 7. We find about an order of magnitude difference in the MSEs achieved by the Random
Forest model compared to the LSTM model. The trend of improved accuracy with increasing sizes
of d, also observed in the LSTM results, continues to hold in this case. To get a better sense of the
uncertainty, we also present the mean MSEs and their one standard deviation error bars for both
our models in Fig. 8. The fact that our choice of ‘flattening’ does not affect overall performance of
the Random Forest model suggests that the difference in performance between the Random Forest
model and the LSTM model could be attributed to the LSTM-based model taking the sequential
nature of the data into account versus the Random Forest model treating each trajectory as just a
high-dimensional vector. We leave a thorough investigation of these issue to future work.

Figure 8: Mean MSEs and their 1 standard deviation error bars for the Random Forests model with
different input orderings and the LSTM model.

d Best MSE Median MSE Mean MSE
2,000 2.63e-3, 1.47e-3 4.08e-3, 1.51e-3 4.52e-3, 1.63e-3
4,000 1.31e-3, 7.37e-4 3.52e-3, 7.16e-4 3.70e-3, 8.56e-4
8,000 7.34e-4, 4.39e-4 1.68e-3, 6.00e-4 1.86e-3, 4.67e-4

16,000 3.26e-4, 1.83e-4 1.50e-3, 2.13e-4 1.71e-3, 2.68e-4
∞ 3.48e-5, 8.11e-6 1.37e-3, 5.59e-5 1.79e-3, 7.41e-5

Table 7: Each cell shows the MSE pair for ϵ estimates on supervised training set using the encoder
only. The first value is the MSE of the Random Forest model using column-major ordering, and
second value corresponds to the MSE of the LSTM-based model.
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