
Data-Driven Reweighting for Monte Carlo Simulations

Christian Bierlich 1♠ Phil Ilten 2† Tony Menzo 2,⋆ Stephen Mrenna 2,3✠

Manuel Szewc 2,4∥ Michael K. Wilkinson 2⊥ Ahmed Youssef 2‡ Jure Zupan 2,§

1 Department of Physics, Lund University, Box 118, SE-221 00 Lund, Sweden
2 Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA

3 Scientific Computing Division, Fermilab, Batavia, Illinois 60510, USA
4 ICAS, ICIFI and ECyT-UNSAM, San Martín, Buenos Aires, 1650, Argentina

♠christian.bierlich@hep.lu.se, †philten@cern.ch, ⋆menzoad@mail.uc.edu, ✠mrenna@fnal.gov,
∥szewcml@ucmail.uc.edu, ⊥michael.wilkinson@uc.edu, ‡youssead@ucmail.uc.edu,

§zupanje@ucmail.uc.edu,

Abstract

This paper introduces a novel method, termed Histories and Observables for Monte-
Carlo Event Reweighting (HOMER), that can be used for extracting a fragmentation
model probability function directly from experimental data without requiring an
explicit parametric form. The method consists of three steps: the training of
a classifier between simulation and data, the inference of single fragmentation
weights, and the calculation of weights for full hadronization chains. We illustrate
the use of HOMER on a simplified hadronization problem, a qq̄ string fragmenting
into pions, and extract a modified Lund string fragmentation function f(z) from
binned experimental data.

1 Introduction

Monte Carlo Event Generators (MCEGs), including PYTHIA [1], are fundamental in high-energy
particle physics research, supporting both theoretical and experimental efforts. These tools are crucial
in collider experiments for generating theoretical predictions that can be tested against observed data.
One of the more complex tasks in MCEGs is the simulation of the process by which quarks and
gluons combine to form hadrons (e.g., protons), which are the particles that are recorded by detectors
in the actual experiments. This process, known as hadronization, cannot be calculated from first
principles. As a result, MCEGs utilize phenomenologically driven approaches such as the Lund string
model [2, 3] or the cluster model [4–6]. Despite the overall success of these models in describing a
wide range of experimental data, the models do face limitations when it comes to certain data subsets,
motivating a search for alternative, data-driven solutions or augmentations.

Machine Learning (ML) methods provide a new set of tools that may be able to improve current
description of the nonpertubative process of hadronization, see, e.g., [7–11] for recent approaches.
The fundamental challenge is that the process of hadronization is not directly observable; experiments
record event-level information that is then related on a statistical basis to the individual hadron
emissions, since the mapping from single emissions to event-level information is non-invertible.

In this paper, we present a new method, the Histories and Observables for Monte-Carlo Event
Reweighting (HOMER) method [12], to extract single emission information from event-level observ-
ables. HOMER uses phenomenologically motivated hadronization models (e.g., the Lund string model

Machine Learning and the Physical Sciences Workshop, NeurIPS 2024.

from PYTHIA) as a base starting point, and the augments them appropriately. That is, HOMER first
learns the event-level likelihood ratios between the distributions from data and the base hadronization
model by training a classifier, a well-established technique in particle physics [13–16]. The main
novelty of HOMER lies in using these event-level likelihood ratios to build a modified hadronization
model by assigning likelihood ratios for each individual hadron emission. The output of the HOMER
method is a data-driven reweighting of the baseline PYTHIA event generator, such that the resulting
distributions match the observed training data.

2 Background and Method

HOMER is a framework designed to learn a hadronization model directly from data, without needing a
predefined functional form. For the benchmark considered in this work, we take as a starting point the
Lund string fragmentation function f(z), which governs hadron formation in PYTHIA. The method
is tested on synthetic data generated by PYTHIA as a closure test to evaluate how well the extracted
function fHOMER(z) can approximate the true function, fdata(z).

HOMER starts with a parametric hadronization model that approximates the data and then adjusts
it using a two-step process to improve the fit. Here, PYTHIA acts as the baseline simulator with an
initial string fragmentation function fsim(z), using different parameters than those used to generate
the synthetic data, fdata(z). The simulator produces events, which are compared to data. In our
terminology, an event e is a list of observables, x⃗e, which describe a single collision. A collection
of events {x⃗e1 , . . . , x⃗en} is called a run. For x⃗e we consider 13 high-level observables whose
distributions have already been measured by experimental collaborations. We first give a short
overview of the Lund string fragmentation model used in PYTHIA, before detailing HOMER and its
implementation.

2.1 Lund String Model

The default hadronization model in PYTHIA is the Lund string fragmentation model [2, 17]. In this
work we focus on the simple system of a quark-antiquark pair, qiq̄i, with no attached gluons. The
hadronization of this system in the PYTHIA Lund string fragmentation model of hadronization is
based on the observation that as the quarks move apart along the z-axis, a flux tube of color field
(a string) forms between the qiq̄i. As the string stretches, the energy stored in it increases until it
becomes energetically favorable to produce new quark-antiquark pairs from the vacuum. This causes
the string to break into fragments, creating hadrons composed of qiq̄j pairs. Each string break is
treated probabilistically, and multiple hadrons are produced sequentially, forming a fragmentation
chain.

The probability of producing a hadron with a longitudinal momentum fraction z is governed by the
Lund string fragmentation function:

f(z) ∝ (1− z)
a

z
exp

(
−bm2

T

z

)
, (1)

where m2
T = m2

ij + p2T is the transverse mass, a and b are parameters, and mij is the hadron mass.
The transverse momentum p⃗T of the emitted hadron is determined from the transverse momentum of
the string, p⃗ string

T . Each string break is described by a seven-dimensional vector:

s⃗hcb = {z,∆p⃗T ,m, fromPos, p⃗ string
T }h,c,b, (2)

where z is the fraction of the remaining string’s lightcone momentum taken by the emitted hadron;
∆p⃗T = (∆px,∆py) is the two-dimensional momentum kick of the emitted hadron; m is the hadron
mass; fromPos is a boolean, stored within PYTHIA, that encodes whether the string break occurred at
the positive or the negative end of the string; and p⃗ string

T = (p string
x , p string

y) is the transverse momentum
of the string before the breaking. Here, h, c, and b are the indices labeling the history within even
sample, the fragmentation chain within the history h, and the string break within that fragmentation
chain, respectively.

Each iteration of causally disconnected string fragmentations consists of: randomly selecting one
of the two string ends; assigning probabilistically a quark flavor to be pair produced during the

2

string break; generating the transverse momentum of this pair; generating the lightcone momentum
fraction of the new hadron; and finally computing the longitudinal momentum of the new hadron, by
conserving the total energy and momentum of the system. Iterative fragmentations continue until the
energy of the string system crosses a chosen low-energy threshold. The remaining string piece is then
combined into a final pair of hadrons. Within the PYTHIA event generator code, this final combination
is performed by an algorithm called finalTwo. The finalTwo method effectively works as a filter
by checking whether the final hadrons can be produced on-shell.1 If this is not the case, the generated
fragmentation chain is rejected, and the simulation of hadronization starts anew, taking again the
original string as the starting point. This process can be repeated several times, until the finalTwo
step is successful.

The fragmentation chain of a given string is denoted as S⃗hc = {s⃗hc1, . . . , s⃗hcNh,c
}, and the history

of the simulation, including accepted and rejected chains, is represented as S⃗h = {S⃗h1, . . . , S⃗hNh
},

where h = 1, . . . , Ndata, is the simulation history index, with Ndata the total number of particle
physics events in a run; c = 1, . . . , Nh is the fragmentation chain index for a particular h−th
simulation history, which has Nh − 1 rejected fragmentation chains and one accepted fragmentation
chain; while b = 1, . . . , Nh,c is the string break index, that runs over the c-th fragmentation chain
that has a total of Nh,c string breaks.

2.2 HOMER Method

The HOMER method aims to correct the Lund string model in PYTHIA to match experimental data
via reweighting individual emissions. The fragmentation probability for a string break, s⃗hcb, depends
on the transverse momentum p⃗T

string of the string. HOMER learns a weight wdata
s (s⃗hcb) that modifies

the baseline fragmentation function from PYTHIA:

psim(s⃗hcb) → winfer
s (s⃗hcb)psim(s⃗hcb).

These weights are learned by matching the reweighted samples to experimental data. The method is
carried out in three steps:

1) Event Classifier: A classifier is trained to distinguish between events generated by the base-
line model and experimental data. The classifier assigns an event-level weight, wclass(eh), which
approximates the true event weight wexact(eh):

wclass(eh) ≈ wexact(eh) =
pdata(eh)

psim(eh)
,

where wclass(eh) = y(x⃗h)
1−y(x⃗h)

, with y(x⃗h) the classifier output that takes the observables x⃗h as the
input. In this paper, we present results for binned data, using only information already available from
LEP measurements in HEPDATA, as used in the Monash tune [18]. The classifier is a feed-forward
NN implemented with the PYTORCH library[19]. To avoid over-fitting, we consider a small NN
composed of two inner layers with 13 and 26 neurons each, and with ReLU activation functions. The
final layer has a Sigmoid activation function to ensure y(x⃗h) ∈ [0, 1]. The loss function itself is

L =
∑
x⃗i

Ndata

ni

ni∑
k=1

(
px⃗i

k − p̄x⃗i

k (y)
)2

px⃗i

k

, (3)

where the summation is over all the observables and px⃗i

k (p̄x⃗i

k) are the measured (expected) fractions
of events per bin. In particular, the expected fractions are estimated from events simulated with
the baseline simulation model and weighted with wclass(eh) = y(x⃗h)/

(
1 − y(x⃗h)

)
, so that L is

minimized for wclass(eh) ≈ wexact(eh).

2) Fragmentation Weights: In this step, the event-level weights wclass(eh) from Step 1 are translated
into emission-level weights winfer

s (s⃗hcb) for each string break, which adjust the baseline fragmentation
probability to match experimental data. In order to do so, we need to account for the fact that PYTHIA
simulates both accepted and rejected fragmentation chains, while only the final hadron momenta

1An on-shell particle satisfies the relation E2 = p2 +m2, i.e., it can exist as a real particle.

3

are experimentally measurable. The event weight wexact(eh) is thus an average over all possible
fragmentation chains leading to the same event:

wexact(eh) =
paccsim

paccdata

〈
wexact(S⃗hNh

)
〉
,

where wexact(S⃗hNh
) is the product of the weights for individual string breaks, and paccsim (paccdata) is the

fraction of total simulated (reweighted) chains that are accepted by finalTwo. A neural network gθ
is used to parameterize winfer

s (s⃗hcb, θ) for each string break. It takes the string break vector s⃗hcb as
input and outputs the weight winfer

s for this break. To achieve this, we use a Message-Passing Graph
Neural Network (MPGNN) implemented in the PYTORCH GEOMETRIC library [20] and represent
each fragmentation chain as a particle cloud with no edges between the nodes. The nodes carry string
break vectors s⃗hcb, where b = 1, . . . , Nh,c. We identify an edge function that is evaluated on each
node and produces updated features for that node with ln gθ, so that the updated weight for the whole
fragmentation chain is obtained by summing ln gθ over all the nodes and exponentiating the sum.

We further parameterize the edge function ln gθ as the sum of two different functions, ln gθ = g1−g2,
to better encode the conditional structure of the problem. These two functions are fully connected
neural networks with 3 layers of 64 neurons each and rectified-linear-unit, ReLU, activation functions.
The inputs are either string break vectors s⃗hcb for g1, or the string variables {p⃗ string

T }h,c,b for g2. The
output of each neural network is a real number with no activation function applied.

The network is trained using a loss function with two components: a cross-entropy loss, which
matches the learned event weights winfer(eh, θ) to the event weights from Step 1, wclass(eh); and
a regularization term, which ensures that the learned weights respect the conditional structure of
the fragmentation model. We used the Adam optimizer with an initial learning rate of 10−3, which
decreases by a factor of 10, if no improvement is found after 10 steps. We train for 100 epochs with
batch sizes of 104. To avoid over-fitting, we apply an early-stopping strategy with 20 step patience.
Minimizing this loss enables the network to reweight fragmentation chains, aligning the simulations
with experimental data at the hadron level.

3) HOMER Output: Once the fragmentation weights, winfer
s (s⃗hcb, θ), are learned, the final step of

the HOMER method is to compute the total weight for each simulated event. The total weight for a
single event history is the product of the weights for all string breaks in that event’s fragmentation
chain, including both accepted and rejected fragmentations:

wHOMER(S⃗h) =

Nh∏
c=1

Nhc∏
b=1

winfer
s (s⃗hcb, θ),

where Nhc is the number of string breaks in each chain c. Unlike the event-level weights wexact(eh),
which average over all possible histories leading to the same event, wHOMER(S⃗h) assigns a weight to
each individual simulation history. This allows us to efficiently reweight the simulated events using
Monte Carlo samples, updating the fragmentation model to better match the measured experimental
data.

3 Results

The learned model and its fit to data are shown in Fig 1, where in the right panel we display the fit for
the total multiplicity (i.e., the number of hadrons per event). The results for the other observables
can be found in App. A. The fit to data in Step 1 is performed using the binned distributions of 13
high-level observables. These observables, already considered in the standard Monash tune, indirectly
constrain the hadronization model. In these plots, we compare different distributions that benchmark
the performance of the model:

• Simulation: Simulated distributions from the baseline model (Pythia).
• Data: Experimentally measured distributions, using synthetic data from Pythia with different

values of the Lund parameter.
• Homer: Distributions reweighted from Simulation using Homer method weights
wHomer(eh).

4

0.0

0.5

1.0

1.5

〈f
(z

)〉

Data

Simulation

HOMER

Best NN

0.0 0.2 0.4 0.6 0.8 1.0
z

0.8

1.0

1.2

R
at

io χ2 / Nbins = 5706

χ2 / Nbins = 49

χ2 / Nbins = 9

0.00

0.05

0.10

D
en

si
ty

Simulation

Data

Classifier

Inference

HOMER

Best NN

Exact w.

10 15 20
nf

0.8

1.0

1.2

R
at

io χ2 / Nbins = 11679

χ2 / Nbins = 8.25

χ2 / Nbins = 74.03

χ2 / Nbins = 65.52

χ2 / Nbins = 3.37

χ2 / Nbins = 1.25

Figure 1: The learned fragmentation function (left panel) and the resulting hadron multiplicity nf

(right panel).

• Classifier: Distributions reweighted with Step 1 classifier weights wclass(eh).
• Inference: Distributions reweighted with Step 2 inference weights winfer(eh, θ).
• Exact Weights: Simulation distributions reweighted using exact weights, including rejected

chains. This represents an upper limit on HOMER’s fidelity.
• Best NN: The neural networks g1 and g2 are directly trained on a dataset composed of

individual emissions to learn the true single emission weights. This represents a more
realistic upper limit for HOMER, which incorporates biases from architectural choices in g1
and g2.

We explicitly quantify the agreement between Data and all the other distributions per observable x⃗,
both by plotting the ratio between distributions and computing a goodness-of-fit metric χ2/Nbins

similar to 3.

The results collected in Figs. 1,2,3 demonstrate that the HOMER method is able to reweigh base
distributions to provide a good approximations to the Data distributions, although not quite at
the level of the optimal Exact Weights. This difference is also present for the results of the two
intermediate steps, the Classifier and Inference distributions. The Classifier distributions (Step 1
weights) demonstrate the highest fidelity, while there is a slight decrease in performance when
progressing to Step 2. This reduction arises from imperfections in the fragmentation function learned
in Step 2, which then translates to a modest loss of the reweighing performance. Note, however, that
the differences between the reweighted distributions and data are at a level that is expected to be
below other sources of uncertainties in any realistic experimental analysis.

The resulting HOMER average fragmentation function is shown in the left panel of Fig. 1, where
we compare it to the “Data” and “Best NN” average fragmentation functions. We observe how
the functions agree at the percent-level, indicating how the inverse problem of hadronization is in
principle solvable. Even better results can be obtained using event-by-event information, as shown in
[12].

4 Conclusions and outlook

In this paper, we presented the HOMER method for learning the fragmentation function f(z) directly
from data by reweighting hadron emissions generated with a baseline PYTHIA simulation. The method
successfully reproduced the true fragmentation function with high accuracy, achieving percent-level
agreement. The accuracy with binned observables is well within expected experimental systematic
errors, making this approach suitable for real-world applications. More details about the method can
be found in [12], while the public code for this work can be found at https://gitlab.com/uchep/mlhad
in the HOMER/ subdirectory.

Looking ahead, we envision extensions of the HOMER method such that it can be used also for more
complex fragmentation processes, such as qq̄ strings with gluons, the full flavor structure of PYTHIA,
and hadron decays.

5

Acknowledgments. AY, JZ, MS, MW, PI, SM, and TM acknowledge support in part by NSF grants
OAC-2103889, OAC-2411215 and OAC-2417682. AY, JZ, MS, and TM are also in part funded by
DOE grant DE-SC101977. JZ acknowledges support in part by the Miller Institute for Basic Research
in Science, University of California Berkeley. AY acknowledges support in part by The University
of Cincinnati URC Graduate Support Program. SM is supported by the Fermi Research Alliance,
LLC under Contract No. DE-AC02- 07CH11359 with the U.S. Department of Energy, Office of
Science, Office of High Energy Physics. CB acknowledges support from Vetenskapsrådet contracts
2016-05996 and 2023-04316. MW and PI are also supported by NSF grant NSF-PHY-2209769. This
work is supported by the Visiting Scholars Award Program of the Universities Research Association.
This work was performed in part at Aspen Center for Physics, which is supported by NSF grant
NSF-PHY-2210452.

Broader Impact

A data-driven hadronization model is expected to have a significant impact on a large range of
collider experiments, allowing for more accurate theoretical predictions while also providing checks
on theoretical assumptions such as factorization and universality. Moreover, resolving a non-trivial
inverse problem with the help of empirical forward simulations is a general problem beyond the
specifics of particle physics and we expect HOMER to be impactful in other areas where a compromise
between model bias and fit quality is needed.

References
[1] Torbjörn Sjöstrand, Stefan Ask, Jesper R. Christiansen, Richard Corke, Nishita Desai, Philip

Ilten, Stephen Mrenna, Stefan Prestel, Christine O. Rasmussen, and Peter Z. Skands. An
introduction to PYTHIA 8.2. Comput. Phys. Commun., 191:159–177, 2015. doi: 10.1016/j.cpc.
2015.01.024.

[2] Bo Andersson, G. Gustafson, G. Ingelman, and T. Sjostrand. Parton Fragmentation and String
Dynamics. Phys. Rept., 97:31–145, 1983. doi: 10.1016/0370-1573(83)90080-7.

[3] Bo Andersson. The Lund model. Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol., 7:1–471,
1997.

[4] Richard D. Field and Stephen Wolfram. A QCD Model for e+ e- Annihilation. Nucl. Phys. B,
213:65–84, 1983. doi: 10.1016/0550-3213(83)90175-X.

[5] Thomas D. Gottschalk. An Improved Description of Hadronization in the {QCD} Cluster
Model for e+e− Annihilation. Nucl. Phys. B, 239:349–381, 1984. doi: 10.1016/0550-3213(84)
90253-0.

[6] B.R. Webber. A QCD Model for Jet Fragmentation Including Soft Gluon Interference. Nucl.
Phys. B, 238:492–528, 1984. doi: 10.1016/0550-3213(84)90333-X.

[7] Phil Ilten, Tony Menzo, Ahmed Youssef, and Jure Zupan. Modeling hadronization using
machine learning. 3 2022.

[8] Aishik Ghosh, Xiangyang Ju, Benjamin Nachman, and Andrzej Siodmok. Towards a deep
learning model for hadronization. Phys. Rev. D, 106(9):096020, 2022. doi: 10.1103/PhysRevD.
106.096020.

[9] Jay Chan, Xiangyang Ju, Adam Kania, Benjamin Nachman, Vishnu Sangli, and Andrzej
Siodmok. Fitting a Deep Generative Hadronization Model. 5 2023.

[10] Christian Bierlich, Phil Ilten, Tony Menzo, Stephen Mrenna, Manuel Szewc, Michael K.
Wilkinson, Ahmed Youssef, and Jure Zupan. Towards a data-driven model of hadronization
using normalizing flows. 11 2023.

[11] Jay Chan, Xiangyang Ju, Adam Kania, Benjamin Nachman, Vishnu Sangli, and Andrzej
Siodmok. Integrating Particle Flavor into Deep Learning Models for Hadronization. 12 2023.

6

[12] Christian Bierlich, Phil Ilten, Tony Menzo, Stephen Mrenna, Manuel Szewc, Michael K.
Wilkinson, Ahmed Youssef, and Jure Zupan. Describing hadronization via histories and
observables for monte-carlo event reweighting, 2024. URL https://arxiv.org/abs/2410.
06342.

[13] A. Rogozhnikov. Reweighting with Boosted Decision Trees. J. Phys. Conf. Ser., 762(1):012036,
2016. doi: 10.1088/1742-6596/762/1/012036.

[14] Anders Andreassen and Benjamin Nachman. Neural Networks for Full Phase-space Reweighting
and Parameter Tuning. Phys. Rev. D, 101(9):091901, 2020. doi: 10.1103/PhysRevD.101.
091901.

[15] Sascha Diefenbacher, Engin Eren, Gregor Kasieczka, Anatolii Korol, Benjamin Nachman, and
David Shih. DCTRGAN: Improving the Precision of Generative Models with Reweighting.
JINST, 15(11):P11004, 2020. doi: 10.1088/1748-0221/15/11/P11004.

[16] Krish Desai, Benjamin Nachman, and Jesse Thaler. Moment Unfolding. 7 2024.

[17] Bo Andersson. The Lund Model, volume 7 of Cambridge Monographs on Particle Physics,
Nuclear Physics and Cosmology. Cambridge University Press, 7 2023. ISBN 978-1-00-
940129-6, 978-1-00-940125-8, 978-1-00-940128-9, 978-0-521-01734-3, 978-0-521-42094-5,
978-0-511-88149-7. doi: 10.1017/9781009401296.

[18] Peter Skands, Stefano Carrazza, and Juan Rojo. Tuning PYTHIA 8.1: the Monash 2013 Tune.
Eur. Phys. J. C, 74(8):3024, 2014. doi: 10.1140/epjc/s10052-014-3024-y.

[19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

[20] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric,
2019.

7

https://arxiv.org/abs/2410.06342
https://arxiv.org/abs/2410.06342
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

A Results for All Observables

In this appendix, we present the results for all 13 high-level observables used in the analysis. These
results provide a comprehensive comparison of the distributions obtained from the baseline PYTHIA
simulation, the "data" (derived from PYTHIA using a different parameter set), and the output of the
HOMER method. Intermediate results from Step 1 (classifier reweighting) and Step 2 (inference) are
also included for comparison.

0

25

50

75

D
en

si
ty

Simulation

Data

Classifier

Inference

HOMER

Best NN

Exact w.

0.005 0.010 0.015 0.020 0.025
1-T

0.8

1.0

1.2

R
at

io χ2 / Nbins = 3074

χ2 / Nbins = 3.96

χ2 / Nbins = 30.02

χ2 / Nbins = 26.75

χ2 / Nbins = 1.38

χ2 / Nbins = 1.15

0

10

20

D
en

si
ty

Simulation

Data

Classifier

Inference

HOMER

Best NN

Exact w.

0.02 0.04 0.06 0.08 0.10
C

0.8

1.0

1.2

R
at

io χ2 / Nbins = 3884

χ2 / Nbins = 1.87

χ2 / Nbins = 41.64

χ2 / Nbins = 37.55

χ2 / Nbins = 1.43

χ2 / Nbins = 1.04

0

200

400

D
en

si
ty

Simulation

Data

Classifier

Inference

HOMER

Best NN

Exact w.

0.000 0.002 0.004 0.006
D

0.8

1.0

1.2

R
at

io χ2 / Nbins = 4030

χ2 / Nbins = 1.68

χ2 / Nbins = 42.54

χ2 / Nbins = 38.47

χ2 / Nbins = 1.63

χ2 / Nbins = 0.98

0

50

100

D
en

si
ty

Simulation

Data

Classifier

Inference

HOMER

Best NN

Exact w.

0.010 0.015 0.020 0.025 0.030
BW

0.8

1.0

1.2

R
at

io χ2 / Nbins = 5249

χ2 / Nbins = 13.77

χ2 / Nbins = 67.69

χ2 / Nbins = 60.17

χ2 / Nbins = 1.49

χ2 / Nbins = 1.14

0

20

40

D
en

si
ty

Simulation

Data

Classifier

Inference

HOMER

Best NN

Exact w.

0.02 0.03 0.04 0.05
BT

0.8

1.0

1.2

R
at

io χ2 / Nbins = 6491

χ2 / Nbins = 11.06

χ2 / Nbins = 92.74

χ2 / Nbins = 83.86

χ2 / Nbins = 2.01

χ2 / Nbins = 0.72

0.00

0.05

0.10

0.15

D
en

si
ty

Simulation

Data

Classifier

Inference

HOMER

Best NN

Exact w.

5 10 15
nch

0.8

1.0

1.2

R
at

io χ2 / Nbins = 14652

χ2 / Nbins = 8.35

χ2 / Nbins = 14.14

χ2 / Nbins = 13.65

χ2 / Nbins = 4.33

χ2 / Nbins = 1.44

Figure 2: Distributions of high-level observables 1− T , C, D, BW , BT and nch.for the case where
Step 1 of the HOMER method is performed on binned high-level observables.

8

0

1

2

3

D
en

si
ty

Simulation

Data

Classifier

Inference

HOMER

Best NN

Exact w.

0.2 0.3 0.4 0.5 0.6
〈| ln xf |〉

0.8

1.0

1.2

R
at

io χ2 / Nbins = 5921

χ2 / Nbins = 4.25

χ2 / Nbins = 32.2

χ2 / Nbins = 28.74

χ2 / Nbins = 2.14

χ2 / Nbins = 0.6

0.0

0.5

1.0

D
en

si
ty

Simulation

Data

Classifier

Inference

HOMER

Best NN

Exact w.

0.5 1.0 1.5 2.0
〈(| ln xf | − 〈| ln xf |〉)2〉

0.8

1.0

1.2

R
at

io χ2 / Nbins = 4493

χ2 / Nbins = 2.41

χ2 / Nbins = 19.74

χ2 / Nbins = 16.98

χ2 / Nbins = 2.42

χ2 / Nbins = 1.26

0.0

0.1

0.2

0.3

D
en

si
ty

Simulation

Data

Classifier

Inference

HOMER

Best NN

Exact w.

2 3 4 5 6 7
〈(| ln xf | − 〈| ln xf |〉)3〉

0.8

1.0

1.2

R
at

io χ2 / Nbins = 2435

χ2 / Nbins = 1.43

χ2 / Nbins = 9.16

χ2 / Nbins = 7.83

χ2 / Nbins = 1.36

χ2 / Nbins = 0.67

0

2

4

D
en

si
ty

Simulation

Data

Classifier

Inference

HOMER

Best NN

Exact w.

0.1 0.2 0.3 0.4 0.5
〈| ln xch|〉

0.8

1.0

1.2

R
at

io χ2 / Nbins = 4146

χ2 / Nbins = 1.94

χ2 / Nbins = 2.24

χ2 / Nbins = 2.11

χ2 / Nbins = 1.94

χ2 / Nbins = 0.95

0.0

0.5

1.0

D
en

si
ty

Simulation

Data

Classifier

Inference

HOMER

Best NN

Exact w.

0.5 1.0 1.5
〈(| ln xch| − 〈| ln xch|〉)2〉

0.8

1.0

1.2

R
at

io χ2 / Nbins = 3251

χ2 / Nbins = 1.35

χ2 / Nbins = 2.06

χ2 / Nbins = 1.9

χ2 / Nbins = 2.09

χ2 / Nbins = 1.7

0.0

0.1

0.2

0.3

D
en

si
ty

Simulation

Data

Classifier

Inference

HOMER

Best NN

Exact w.

1 2 3 4 5 6
〈(| ln xch| − 〈| ln xch|〉)3〉

0.8

1.0

1.2

R
at

io χ2 / Nbins = 2116

χ2 / Nbins = 0.78

χ2 / Nbins = 1.38

χ2 / Nbins = 1.06

χ2 / Nbins = 1.14

χ2 / Nbins = 0.86

Figure 3: The distributions of the first three moments of lnx, where x = 2|p⃗|/√s, for both hadron
and charged hadron distributions for each event.

9

	Introduction
	Background and Method
	Lund String Model
	Homer Method

	Results
	Conclusions and outlook
	Results for All Observables

