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Abstract

We present a generative agent for stoichiometry-constrained isomer search. Our
approach trains entirely in 3D using a purely online Reinforcement Learning (RL)
framework. Unlike prior approaches, which overfit to specific chemical formulas,
we introduce a multi-composition training framework that enables the agent to
generalize across a wide range of formulas. This is achieved by leveraging a
reference dataset to procedurally define new generation tasks, simultaneously facil-
itating a more formal evaluation of the agent’s discovery capabilities. Combined
with new energy- and validity-based rewards, we demonstrate that our approach
significantly outperforms previous work, discovering an order of magnitude more
valid isomers for unseen test formulas. By addressing these challenges, we aim
to reinvigorate progress in self-guided 3D molecular discovery, providing a more
robust framework for future innovations in the field.

1 Introduction

The discovery of novel molecules with desired properties is a grand challenge. Effectively exploring
the immense chemical space is however a notoriously difficult endeavor that requires innovative search
methods. Recently, generative models have emerged as a promising avenue for such task (Anstine
and Isayev, 2023). Yet, their training often hinges on the availability of suitable data. Public datasets
are usually not curated with the optimization of specific properties in mind, and the property ranges
critical for the problem at hand may lie at the extremes or beyond what existing datasets span. This
poses a challenge, as generative models must not only interpolate within the provided data but also
be capable of extrapolating beyond it. Similarly, constructing an adequate training dataset may prove
difficult in some cases, and even when such dataset exists, it inevitably carries inherent chemical and
structural biases that can potentially hinder generalization to novel molecular spaces.

A compelling approach to overcoming these limitations is to adopt online (de-novo) learning tech-
niques, such as Reinforcement Learning (RL) (Sutton and Barto, 2018), where an agent learns to
explore the chemical space through trial and error (Sridharan et al., 2024). This has proved very
successful at 2D molecular generation (Olivecrona et al., 2017; Bou et al., 2024). However, when 3D
geometry is relevant, an additional post-processing step is required to obtain conformations, e.g. via
an external software (Riniker and Landrum, 2015). Instead, direct generation in 3D enables molecular
structures to be generated and optimized in a fully integrated, end-to-end framework.

Contributions In this paper, we build upon MOLGYM (Simm et al., 2020; 2021) and target de-novo
isomer discovery, where the agent is tasked to generate 3D conformations given a pre-specified
chemical composition. We innovate with a novel multi-composition training scheme and new rewards,
and demonstrate that RL can be effectively applied to isomer discovery, without overfitting to a fixed
set of atoms as in prior work (Simm et al., 2020; 2021). A visual abstract of our setup is provided in
Fig. 1, and we summarize our main contributions as follows:
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Figure 1: Multi-composition training and evaluation workflow. Our framework constructs isomer
generation tasks by extracting chemical formulas from a reference dataset and introduces new terminal
rewards based on validity and total energy. We evaluate the RL agents’ isomer discovery capabilities
at just a single checkpoint as well as cumulatively across the entire discovery campaign.

• We introduce new terminal rewards based on energy and chemical valency, thereby teaching
the agent to build stable and valid molecules.

• We propose a multi-bag training setup based on a reference dataset to facilitate generalization
across stoichiometries.

• We design a broader multi-bag evaluation scheme to facilitate benchmarking of online
isomer discovery and evaluate various combinations of the presented reward terms.

Related Work In the supervised setting, the most promising directions for molecule generation
in 3D are currently either based on diffusion models (Hoogeboom et al., 2022), or auto-regressive
models that build molecules in an atom-by-atom fashion (Gebauer et al., 2019; 2022; Roney et al.,
2022; Daigavane et al., 2023). While these models could potentially be integrated into a pretraining-
finetuning framework (Black et al., 2024), it remains unclear whether they can effectively be used
for de-novo learning. In the purely online setup, RL has been used for conformer (Jiang et al., 2022;
Volokhova et al., 2024) and isomer (Simm et al., 2020; 2021) generation. Flam-Shepherd et al. (2022)
extended MOLGYM to place fragments instead of individual atoms, improving scalability and the
size of the generated molecules. Meldgaard et al. (2021) used online RL but only after an offline
pretraining phase. Whereas their pretraining was multi-composition, their online finetuning was
for single compositions only and further relied on result aggregation from 64 parallel finetunings
spawned after pretraining. In contrast, we aim to train stoichiometry-agnostic RL agents.

2 Methods

We train an RL agent to build stable and valid molecules autoregressively in an atom-by-atom fashion,
using a linear combination of reward terms based on quantum chemical energy evaluations and
validity checks. Our training framework is illustrated in Fig. 1 along with the two different evaluation
schemes used in Section 3.

Episode and terminal scoring We generate molecules similarly to MOLGYM, where at each step,
our agent observes a state st = (Ct,Bt) consisting of the current canvas Ct (i.e. molecule built so far)
and the current atom bag Bt (i.e. remaining atoms to be placed). The agent’s action at = (et, xt)
involves choosing an atom et ∈ Bt and assigning its 3D position xt ∈ R3, leading to a deterministic
transition to the next state st+1 = (Ct+1,Bt+1), where Ct+1 = Ct∪{(et, xt)} and Bt+1 = Bt \{et}.
This process continues until the bag is empty and a complete molecule CT has been formed.

The agent optimizes its stochastic policy πθ(at|st) in search of the optimal parameters θ that
maximize the expected discounted sum of future rewards (known as return) from any given state,
V π(st) = Eπθ

[∑T
t′=t γ

t′r(st′ , at′)
]
, where γ ∈ (0, 1] is the discount factor and r(st, at) is the

reward received at time step t for taking action at in state st. So starting with an empty canvas at
t = 0, the agent must learn to maximize J(θ) = Es0∼µ0

[V π(s0)] with µ0 specifying the distribution
over bags (see Multibag setup below). Unlike MOLGYM however, our agent only receives a reward at
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the terminal state. This reward is determined based on quantum mechanical energy using GFN2-xTB
(Bannwarth et al., 2019) and chemical valency rules via xyz2mol (Kim and Kim, 2015). See
Appendix A.1 for more details on the autoregressive sampling scheme and the reward functions.

Agent policy and optimization We parametrize our neural network policy as the original MOLGYM
internal agent, but we replace the invariant backbone based on SCHNET (Schütt et al., 2017) with
its equivariant counterpart PAINN (Schütt et al., 2021). Similarly to MOLGYM, we optimize the
agent’s policy with PPO (Schulman et al., 2017).

Multibag setup We leverage a reference dataset from which we solely extract formulas to construct
a bag set, B, used for multi-composition training. In practice, training rollouts are performed
synchronously by a collection of Nw workers, each endowed with a uniquely randomized iterable of
the bag set Bw = permutationw(B). When worker w has generated a molecule for a particular bag
(or failed to do so), it simply proceeds to the next bag in its bag set.

3 Experiments

In this section, we present three distinct evaluation scenarios to assess our agent’s performance. First,
in Section 3.1, we evaluate our agent’s discovery capabilities in the single-bag generation paradigm,
directly comparing it to previous online RL methods. Next, in Section 3.2, we broaden the scope by
aggregating results across a random split of chemical formulas from the QM7 dataset, enabling a
comprehensive comparison of reward signals. Finally, in Section 3.3, we examine the complete pool
of molecules generated during training, with a particular focus on the breadth of discovery achieved.

While Section 3.1 and Section 3.2 focus on evaluating a single final checkpoint, Section 3.3 examines
the agent’s performance throughout the entire training process. Despite these differences in evaluation
scope, all three cases are based on the same training runs illustrated in Fig. 2. Notably, our newly
introduced terminal reward terms, A and V, enable significantly more stable training dynamics.

Figure 2: Learning Curves. (a) Validity and (b) Relative Atomic Energy (RAE) plotted as a function
of the number of single-atom placements on the canvas. The RAE metric quantifies the excess energy
relative to the average energies of QM7 molecules with the same chemical formula (see Appendix C
for detailed metric definitions). Results are aggregated across three independent training runs with
different random seeds, with shading representing ±2 standard deviations.

3.1 Single-bag discovery

We adopt the setup from Simm et al. (2021), counting the number of valid constitutional isomers1

discovered by our agent when deployed on a single bag. Table 1 compares our results with those of
previous work, highlighting the effectiveness of our new training setup, reward scheme, and data
collection procedure. Remarkably, despite not being explicitly trained on certain formulas2, our agent
frequently discovers up to an order of magnitude more constitutional isomers than baseline agents.
However, it is important to note several key differences between our approach and prior work, which
we discuss in detail in Appendix B.

1Isomer counts are determined following the standard convention: unique SMILES strings are generated
using RDKit (Landrum, 2024), expressed in canonical form, and exclude isomeric information.

2The smaller bags {C4H7N,C3H8O} were part of the training set while the bigger bags {C3H5NO3,
C7H10O2, C7H8N2O2} were not.
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Table 1: Single-bag discovery. Comparison of our atomisation and validity guided multi-bag agent
(MB-AV) against prior work, taken directly from Simm et al. (2021). Our agent outperforms previous
work, discovering an order of magnitude more valid isomers, even for unseen formulas.

Training type: Single-bag training (on eval bag) QM7 multibag

Collection type: Cumulative argmax × 10 seeds Single CP stochastic

Agent: INTERNAL COVARIANT MB-AV (ours)
C3H5NO3 35 65 246 ± 40
C4H7N 18 25 30 ± 4
C3H8O 4† 8† 3 ± 0
C7H10O2 21 85 716 ± 281
C7H8N2O2 58 118 2662 ± 1583

†C3H8O is a small and fully saturated chemical formula and we only see 3 feasible positions
for an oxygen atom on a 3-membered carbon chain: an OH− on the first carbon atom, an OH−

on the central carbon atom, or an O between carbon atoms 1 and 2. Since both baseline agents
reportedly discovered strictly more than 3 isomers without providing code for their uniqueness
check, we suspect their numbers are mistakenly reported in all 5 cases which would only
emphasize our improved discovery capabilities.

3.2 Multi-bag aggregated evaluation

A broader evaluation scheme is crucial for benchmarking future innovations in self-guided 3D
molecular discovery. To achieve this, we aggregate results from a random split of 20 holdout formulas
in the QM7 dataset, offering a more comprehensive assessment compared to single-bag evaluation.

Setup: For this experiment, we evaluate the final model checkpoints at 15 million steps. For each
test bag Bi, we sample Ni = P · N ref

i molecules, where N ref
i is the number of isomers in the

reference dataset for Bi, and P = 100 is a proportionality factor. This scaling ensures that the number
of sampled molecules reflects the expected isomer diversity for each bag. Metrics are calculated
individually for each bag and then aggregated using a weighted average based on Ni. The results,
including standard deviations across three seeds, are presented in Table 2 (see Appendix C for metric
details). Note that for the rRAE energy measure, we first performed structural relaxation of the
sampled molecules using the same GFN2-xTB calculator.

For all agents, except for the agent which is rewarded per-step as in MOLGYM, we observe a very
high rate of validity of 94% and higher. Although high validity is preferred, we want our RL agents
to take risks in order to discover new chemistries. The atomization agent MB-A is purely guided
by terminal energy and is thus able to sample molecule that are lower in energy compared to the
molecules from QM7. However, this agent is also the one most probe to exploration collapse.

Table 2: Multi-bag evaluation. Discovery and geometry metrics in the multi-bag evaluation case.
Discovery metrics [↑] Energy metric [eV/atom] [↓]

Validity Rediscovery- Expansion- ∆ErRAE
Agents: ratio ratio

MB-A 0.94 ± 0.05 0.12 ± 0.02 0.36 ± 0.07 -0.03 ± 0.00
MB-AV 0.96 ± 0.00 0.14 ± 0.02 1.73 ± 0.32 0.04 ± 0.01
MB-F (MOLGYM rew) 0.30 ± 0.28 0.19 ± 0.06 1.59 ± 0.66 0.02 ± 0.02
MB-FV 0.94 ± 0.01 0.15 ± 0.02 2.12 ± 0.10 0.09 ± 0.00
MB-AFV 0.98 ± 0.00 0.13 ± 0.03 1.37 ± 0.31 0.01 ± 0.02

3.3 Cumulative discovery

In the previous experiments, we evaluated the agent’s performance based on the quality of stochastic
rollouts at a single checkpoint, a method commonly used in generative modeling (e.g., supervised
distribution learning). However, this approach introduces the arbitrariness of checkpoint selection, as
performance can vary significantly across different stages of training (see training progression plots
in Fig. 2). While the single-checkpoint evaluation scheme is simple and general, it overlooks the
evolving nature of an RL agent’s policy, which explores different strategies at various training stages.
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To fully leverage this behavioral "drift," we store every molecule generated throughout training in a
cumulative storage buffer, as illustrated in Fig. 1. In Fig. 3(a), we analyze a single training run of the
MB-AV agent, visualizing the space of rediscovered molecules using a t-SNE projection (Van der
Maaten and Hinton, 2008) of SOAP representations (Bartók et al., 2013). These are extracted from
the QM7 geometries of the rediscovered SMILES. While exploration doesn’t entirely collapse, the
MB-AV agent fails to discover new molecules after a few million steps. In fact, we observe the same
tendency among all agents with the atomization reward component (Fig. 3(d)-(f)).

Figure 3: Cumulative (re)discovery (in-sample). (a)-(c): Rediscovery abilities of MB-AV agent.
(a) SOAP space with "time of discovery" colored according to the batched time axis of the adjacent
subfigures. (b) Rediscovery per batch. (c) Marginal rediscovery gain per batch. (d)-(e) Cumulative
discovery and rediscovery in absolute terms (note the difference in magnitude). (f) Rediscover and
Expansion ratios.

4 Conclusion and Discussion

We presented an autoregressive multi-composition RL agent for 3D isomer discovery, trained purely
online on a large set of bags derived from the QM7 reference dataset. Compared to previous
approaches, we employed smaller learning rates, higher exploration factors (entropy coefficients),
and achieved greater training diversity through our multi-bag framework. This approach helped
prevent the agent from "memorizing" rewarding actions or getting trapped in local minima. As a
result, our generalist agent successfully learned to sample a wide range of valid molecules, even
for unseen chemical formulas. It significantly outperformed single-bag agents in isomer discovery,
which we hypothesize struggle due to limited exploration and insufficient geometric diversity to learn
meaningful molecular representations. Furthermore, we found that, contrary to common assumptions
about credit assignment, terminal rewards led to much more stable learning compared to per-step
rewards. This is likely because partially constructed molecules in the atom-by-atom case are often
chemically and energetically unrealistic. However, a significant drawback of terminal rewards—and
RL in general—is the limited reward signal per episode, which results in inefficient training. We also
observed diminishing marginal gains with extended training, indicating that the current setup does
not scale effectively with increased computational resources. For purely online discovery, future work
should address exploration collapse by introducing mechanisms to measure and penalize structural
similarity to past rollouts. It will also be crucial to mitigate spatial noise arising from the stochastic
agent policy, as this interferes with the evaluation of energy-based reward terms. Depending on
the target application and data availability, reframing the learning task as online finetuning of a
pretrained model could provide a more efficient approach, significantly accelerating experimentation
and enhancing the applicability of RL in molecular and material discovery.
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A Training details

A.1 Reinforcement learning environment

Autoregressive molecule sampling The molecule construction process is modeled as a sequential
decision-making task, where, after sampling a bag of atoms B0, an agent iteratively selects and places
atoms in 3D space to incrementally build the molecule. In reinforcement learning (RL) terms, the
agent observes the state st = (Ct,Bt) consisting of the current molecular canvas Ct and the remaining
atom bag Bt. The agent’s action at = (et, xt) involves choosing an atom et ∈ Bt and assigning its 3d
position xt ∈ R3 leading to the deterministic transition to the next state st+1 = (Ct+1,Bt+1), where

Ct+1 = Ct ∪ {(et, xt)}, Bt+1 = Bt \ {et}.

This process continues until all atoms from the bag are placed, forming a complete molecule. The
distribution over molecules constructed in this autoregressive process is given by

p(CT |B0) =

T−1∏
t=0

πθ(at|st), (1)

where πθ(at|st) is the agent’s probabilistic policy governing the placement of atom et at position xt,
given the current molecular state st. This formulation captures the conditional nature of molecule
construction starting from the inital bag B0.

Notably, in this environment the agent must implicitly learn to construct valid molecules, as no explicit
validity constraints are imposed during generation (see Section A.1). Also, atoms are sampled without
replacement, and their positions remain fixed after placement. The randomness in the generation
process comes solely from the agent’s policy, as the environment transitions are fully deterministic.
As such, the molecule-building task can be formulated as a fully observable, finite-horizon Markov
Decision Process (MDP) with a hybrid discrete-continuous action space, where the episode length is
determined by the bag size.

Penalization of unrealistic molecules Whenever an atom is positioned dangerously close to any of
the existing canvas atoms the episode is terminated and the agent is given a fixed failure penalty Rkill.
As a consequence of the terminal reward scheme and the early termination of unpromising rollouts,
an untrained agent will most likely not obtain any reward whatsoever. We therefore decided to give
the agent a small constant and positive per-step reward to incentivize it to reach the end of the episode
at which point the energy and validity dependent terminal reward is given. Theoretically however,
this should be unnecessary whenever the death penalty is Rkill < 0 and the RL discount factor γ < 1.

Reward structure The temporal dimension in our RL episode is an artificial construction intended
solely to facilitate the factorization of the agent’s molecular sampling policy. As such, the partially
completed molecules {Ct}t<T are not guaranteed to make much sense from a chemical/energetic
point of view. As a consequence, we only reward the agent once it has placed all atoms from the bag3.
Specifically, we implement the following two terminal rewards:

• Atomisation energy (A): The negative difference between potential energy of the final
molecule and the sum of potential energies of each of its constituent atoms in isolation

rA(sT ) = −∆E =

T∑
t=1

E(et)− E(CT ) (2)

To evaluate energies we make use of the GFN2-xTB calculator.
• Validity (V): A boolean validity check based on the requirement that generated molecules

can be successfully parsed by the xyz2mol function which attempts to read an arbitrary 3D
point cloud into an rdkit mol object (Landrum et al., 2013):

rV (sT ) =

{
1 if CT is a valid molecule,
0 else.

(3)

3See supplementary material for penalization of unrealistic molecules.
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In particular, we verify that the molecule is not fragmented (consisting of smaller isolated
molecules) and that no atom is charged. This reward term was introduced since we found
evidence that atomisation energy alone simply isn’t a good predictor for validity when the
agent generates molecules containing spatial noise.

For comparison, the original MolGym frameworks used the following reward term only:

• Per-step formation energy (F): In contrast to the terminal rewards above, this reward
is assigned at every step throughout the episode and is given by the negative difference
in energy between the resulting molecule Ct+1 and the sum of energies of the previous
molecule Ct and a new atom of element et

rF (st, at) = (E(Ct) + E(et))− E(Ct+1), t = 0, ..., T − 1. (4)

B Details on Single-bag discovery experiment

Baseline The INTERNAL and COVARIANT agents from MOLGYM use a single-bag training paradigm.
This is a costly approach that requires a separate training run for each conceivable bag. Additionally,
the discovered isomer count is aggregated over 10 independent runs using different seeds. The
molecules used for isomer counting are collected throughout the training (referred to here as cumu-
lative data collection), and the molecules are always generated by selecting the most likely action
(i.e. argmax), resulting in just a single molecule at every checkpoint during training, thus relying
solely on the gradual drift of the agent policy to achieve diverse sampling.

Proposed scheme We instead use a multi-bag training scheme with QM7 as a reference dataset and
report discovery results on the same bags as the compared baselines, but based on molecules sampled
stochastically according to the learned agent policy at just a single checkpoint (CP) (see the orange
box in Fig. 1). We sample 10,000 molecules for each test formula in Table 1.

C Evaluation metrics

All of the metrics reported in Table 2 and explained below are first calculated per formula and are
then aggregated using a weighted average, with weight coefficients proportional to the number of
isomers (SMILES) in the reference dataset.

Validity (& Uniqueness) Validity is not directly built into the molecular generation procedure
used in our framework. Instead we incentivize the agent to create valid molecules based on a simple
discrete reward term rvalid = 1 if valid, rvalid = 0 if invalid, and the validity is straightforwardly
defined as

validity =
#valid molecules

#sampled molecules
. (5)

A word on uniqueness: Notice that the typically reported uniqueness measure

uniqueness =
#unique molecules
#sampled molecules

would be a misleading metric to use in our case, since we are generating molecules conditioned on a
specific formula and the probability of generating identical molecules is therefore much higher than
for unconstrained search. As an example, we found just 3 isomers out of 10,000 generated molecules
for C3H8O in Table 1 (3 is actually the maximal number of unique molecules for this particular
chemical formula). Thus, we decided to leave out this metric from Table 2.

Rediscovery & Expansion ratios Relating the discovery counts to our reference dataset (QM7)
helps to probe whether the agent explores broadly or if there are large gaps in its exploration. For each
formula, we therefore construct the set of uniquely discovered SMILES. Each discovered SMILES
will then either be in the reference set or correspond to a novel molecule:

Nunique = Nrediscovered +Nnovel. (6)
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The rediscovery and expansion ratios are calcululated straightforwardly as

Rediscovery Ratio =
Nrediscovered

NQM7
unique

, (7)

Expansion Ratio =
Nnovel

NQM7
unique

. (8)

Energy metric The following metric pertains to the quality of the discovered molecules rather
than their sheer quantity. Since our agent was trained on energy based reward terms, it should be
able to generate low energy isomers. However, as our PPO agent uses 3D-spatial noise on the atomic
positions in order to facilitate exploration, we must first perform structural relaxation on the generated
molecules. To probe the quality of these relaxed molecules, we calculate the following energy based
metric:

• Relaxed Relative Atomic Energy (rRAE): This measure is defined w.r.t. our reference
dataset QM7 and is calculated (at the individual molecule level) as the energy difference
between our RL generated molecule and the mean energy of all the QM7 molecules of the
same chemical formula (bag)

∆ErRAE(CT ) = E(CT )− Ē
B(CT )
QM7 = E(C)− 1

|B(CT )|

|B(CT )|∑
i=1

E(CQM7
i ). (9)

It measures the agent’s joint ability to discover both low energy isomers (2D connectivity)
as well as sampling low energy conformers (3D positions) for the connectivity matrix of
that isomer.
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