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Abstract

The discovery of super-resolution techniques, which circumvent the classical
diffraction limit of light, represent a leap in optical microscopy. Yet, the vast
space of all possible experimental configurations suggests that powerful techniques
remain undiscovered. We demonstrate the automated discovery of SR microscopy
techniques using XLUMINA, an open-source JAX-based computational frame-
work which demonstrates a speed-up of 4 orders of magnitude compared to well-
established numerical optimization methods. We implement a highly-efficient
optimization scheme that incorporates random noise sampling at each iteration to
ensure robustness, leading to the discovery of a novel, noise-resilient experimental
blueprint featuring sub-diffraction imaging capabilities. This work advances AI-
driven discovery in optics and microscopy, emphasizing both high-performance
and robustness.

1 Introduction

The space of all possible experimental optical configurations is enormous. It contains all possible
discrete arrangements of optical elements (e.g., lenses, beam splitters, phase shifters, lasers...) and
their tunable parameters (such as lenses’ focal lengths, beam splitter ratios, phases or laser power),
which leads to additional high-dimensional continuous parameter space for each of the mentioned
discrete possibilities. This vast search space contains all experimental designs possible, including
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those with exceptional properties. AI-based exploration techniques could provide enormous benefit
by exploring the space in a fast, unbiased way [1, 2].

Optical microscopy has impact on diverse fields, ranging from material sciences all the way to
medicine [3–6]. It is currently most widely used in biological sciences, where precise labeling of
imaging targets enables fluorescence microscopy with exquisite sensitivity and specificity [7, 8].
In the past two decades, several breakthroughs have broadened the scope of optical microscopy in
this area even further. Among them, through the ingenuity and creativity of human researchers, the
discovery of super-resolution (SR) methods [9–15], which circumvent the classical diffraction limit
of light, stand out in particular. These SR techniques, highlighted by the 2014 Chemistry Nobel Prize
[16], have considerable impact in biology [17–19], chemistry [20] and material sciences [21]. In
this work, we demonstrate the automated discovery of SR microscopy techniques using XLUMINA.
Crucially, the motivation of our work goes far beyond small-scale optimization of already known
optical techniques. Rather, this work sets out to discover novel, experimentally viable concepts for
advanced optical microscopy that are at-present entirely untapped.

2 Software performance

XLUMINA is a highly-efficient open-source framework developed using JAX [22], which allows
for the simulation of classical optics hardware configurations and enables the optimization and
automated discovery of new setup designs. XLUMINA is equipped with an optics simulator which
contains a diverse set of optical manipulation, interaction and measurement technologies. To include
the automated discovery feature, XLUMINA’s optical simulator and optimizer are tied together by
the loss function. The automated discovery tool is designed to explore the vast parameter space
encompassing all possible optical designs. We adopt a gradient-based strategy, where the experimental
setup’s parameters are adjusted iteratively in the steepest descent direction. We evaluate the time it
takes for numerical and analytical (auto-differentiation) methods to compute one gradient evaluation
times over different resolutions and devices. We compare XLUMINA’s performance with the optics
framework Diffractio [23], which is a high-quality, open-source NumPy-based Python module for
optics simulation with an active developer community, and is employed in numerous studies in optics
and physics in general. The acquired results are depicted in Fig. 1a. Clearly, autodiff consistently
outperforms numerical methods on the gradient evaluation time by up to 5 orders of magnitude on
GPU and 4 orders on CPU. Given that certain optical elements may operate at resolutions as high as
2048× 2048 pixels, the resulting search space can easily expand to around 8.4 million parameters.
This makes the use of autodiff within GPU-accelerated frameworks more appropriate for efficient
experimentation. Overall, the computational performance of XLUMINA highlights its suitability for
running complex simulations and optimizations with a high level of efficiency. More details on the
software and its performance are discussed in the Appendix A.

3 Large-scale discovery framework

Configuring both the optical topology and the optical parameters is essentially a hybrid discrete-
continuous optimization problem, which is extremely difficult computationally. We define a quasi-
universal computational ansatz, illustrated in Fig. 1b, which translates this hybrid scheme into a
purely continuous optimization framework that can be solved with efficient gradient-based methods.
Essentially, setting different continuous parameters leads to different optical setup topologies: e.g.,
adjusting beam splitter ratios the optimizer can “turn off " the optical paths. Remarkably, for a very
discrete approach of available parameters, the number of possible discrete arrangements within this
framework scales up to ∼ 1020. Details on the ansatz can be found in the Appendix section B.

Loss function: The loss function, L, is calculated as the inverse of the density of the total detected
intensity over a certain threshold, Iε. Thus, minimizing L aims to maximize the generation of small,
high intensity beams. In particular,

L =
1

Density
=

Area
Iε

(1)

where Iε is the sum of pixel intensity values greater than the threshold value ε · imax, where 0 ≤ ε ≤ 1
and imax corresponds to the maximum detected intensity. The Area corresponds to the total number
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hardware addition on the optical simulator are the SLMs,
each pixel of which possesses an independent (and vari-
able) phase value. They serve as a universal approxima-
tion for phase masks, including lenses and o↵er a com-
putational advantage: given a specific pixel resolution,
they allow for unrestricted phase design selection. Such
flexibility is crucial during the parameter space explo-
ration, as it allows the software to autonomously probe
all potential solutions. In addition, we defined under the
name of super-SLM (sSLM ) a hardware-box-type which
consists of two SLMs, each one independently imprinting
a phase mask on the horizontal and vertical polarization
components of the field.

To include the automated discovery feature, XLu-
minA’s optical simulator and optimizer are tied together
by the loss function. The software’s workflow is depicted
in Fig. 1. We start by feeding the system an initial
random set of optical parameters, which shape the hard-
ware design on a virtual optical table. The performance
of the virtual experiment is computed by the simulator,
which leads to detected light (e.g., captured images at
the camera). From those simulated outputs, the objec-
tive function (for instance, the spot size), is computed.
To improve the metric of the cost function, the optimizer
adjusts the optical parameters in the initial virtual setup
and the cycle is repeated. The whole process is a back-
and-forth between the simulator and the optimizer, re-
fining the setup until a convergence is observed.
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FIG. 1. Workflow of XLuminA, demonstrating the integrated
feedback between the AI discovery tool and the optics simu-
lator.

The automated discovery tool is designed to explore
the vast parameter space encompassing all possible opti-
cal designs. A direct outcome of running individual opti-
cal simulations during each optimization iteration is the
considerable computational expense. Thus, it is essential
to reduce the computation time by maximizing the speed
of optical simulation functions. By strategically lever-
aging the JAX’s jit functionality, we optimize already
existing propagation algorithms to mitigate this compu-

tational constraint. We evaluate the performance of our
optimized functions against their counterparts in Di↵rac-
tio by propagating a Gaussian beam within a computa-
tional window sized at 2048 ⇥ 2048 pixels. The average
run-time for both Di↵ractio and our approach is shown
in Table II. Generally, our methods significantly enhance
computational speeds for simulating light di↵raction and
propagation. For instance, we observe a speedup of a
factor of 2 for RS and CZT and about 2.5 for VRS and
VCZT using the CPU. With GPU utilization, the speed
increases by up to two orders of magnitude.

TABLE I. Average execution time (in seconds) over 100 runs,
within a computational window size of 2048⇥2048, for scalar
and vectorial field propagation using Rayleigh-Sommerfeld
(RS, VRS) and Chirped z-transform (CZT, VCZT) in Di↵rac-
tio and XLuminA. Times for XLuminA reflect the run with
pre-compiled jitted functions. The experiments were run on
an Intel CPU Xeon Gold 6130 and Nvidia GPU Quadro RTX
6000.

CPU

RS CZT VRS VCZT

Di↵ractio 4.07 1.90 12.31 6.08
XLuminA 1.91 0.89 4.67 2.44

GPU

RS CZT VRS VCZT

Di↵ractio / / / /
XLuminA 0.063 0.025 0.152 0.077

When it comes to the nature of the optimizer, it can
be either direct (gradient-based) or deep learning-based
(surrogate models or deep generative models, e.g., vari-
ational autoencoders [44]). In this work, we adopt a
gradient-based strategy, where the experimental setup’s
parameters are adjusted iteratively in the steepest de-
scent direction. To chose the optimizer, we evalu-
ate the convergence time of two gradient-descent tech-
niques: the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm, which numerically computes gradients and
higher-order derivative approximations, and the adap-
tive moment estimation (ADAM), an instance of the
stochastic-gradient-descent (SGD) method. While BFGS
is part of the open-source SciPy Python library and oper-
ates on the CPU, ADAM is integrated within the JAX li-
brary and runs in both CPU and GPU. Taking advantage
of the JAX’s built-in autodi↵ framework, the gradients
of the loss function are computed analytically. Combined
with the jit functionality, this approach enables the op-
timizer to e�ciently construct an internal gradient func-
tion, thus considerably reducing computational time per
iteration.

To evaluate the performance of BFGS and ADAM op-
timizers, we simulate a Gaussian beam interacting with a
phase mask. The objective function is the mean squared
error between the detected light and the ground truth,
characterized by a Gaussian beam with a spiral phase im-

b)

d)a) b)

Figure 1: Performance of XLUMINA and large-scale discovery framework. (a) Average time (in
seconds) over 5 runs for single gradient evaluation using numerical differentiation with Diffractio’s
optical simulator (blue dots) and autodiff methods (green triangles for CPU and magenta squares
for GPU) with XLUMINA’s optical simulator for different resolutions. The use of XLUMINA with
autodiff methods improves the gradient evaluation and convergence time by a factor of ×3.9 · 105 and
×2.1 · 104 in the GPU and CPU, respectively, for a resolution of 250× 250 pixels. Shaded regions
correspond to standard deviation values. The numerical and autodiff methods are computed using
BFGS and Adam optimizers, respectively. (b) Quasi-universal computational ansatz. The setup’s
complexity and size can be arbitrarily extended by incorporating additional connections.

of camera pixels fulfilling the same condition. The loss function L is common to all the optical setups
henceforth described. Importantly, light gets detected across various devices. Thus, we compute the
loss function at each detector and the parameter update is driven by the device demonstrating the
minimum loss value. This selection is performed in a fully differentiable manner. Details on the
derivation of the loss function and camera selection are provided in the Appendix section B.1.

4 Results

In this section we showcase the optical designs generated by XLUMINA. The goal is to discover both
the setup topology and the patterns to imprint onto the light beams using the available optimizable
optical parameters (i.e., SLMs, distances, beam splitter ratios and wave plate’s angles). To ensure the
discovered optical designs are robust, we implement a novel noise-robust optimization procedure that
emulates real-world experimental imperfections. Our approach involves optimizing, simultaneously,
three multiple instances of the optical setup, each subjected to randomly sampled noise in its physical
parameters. At each step, we compute the mean loss across these noisy variants and optimize based
on the average performance. This iterative process, where the noise is resampled at each step, allows
us to explore optical solutions that are inherently resilient to noise and maintain high performance
even under non-ideal conditions. The detailed description of the noise implementation are provided in
the Appendix section C. The showcased solutions are the result from running multiple optimizations.

Rediscovery through exploration: As a benchmark we aim to rediscover the generation of an ultra-
sharp focus, a feature that breaks the diffraction limit in the longitudinal direction as demonstrated
by Dorn, Quabis and Leuchs in Ref. [24]. We initialize XLUMINA with the virtual optical table
in Supplementary Fig. 3. The loss function corresponds to equation (1) considering the measured
intensity as the field’s longitudinal component, |Ez|2. The discovered topology and SLMs patterns
are depicted in Figs. 2a and 2b, respectively. Surprisingly, XLUMINA found an alternative way
to imprint a phase singularity onto the beam and produce pronounced longitudinal components on
the focal plane. The longitudinal intensity profiles of the discovered solution and the reference
experiment are depicted in Fig. 2c. Remarkably, the identified solution demonstrates a spot size close
to the reference and does not feature side lobes, which can limit practical imaging techniques. Details
on the optimization process are provided in the Appendix section D.
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Discovery of a new experimental blueprint: Finally, we demonstrate the capability of XLUMINA
for genuine discovery. For this purpose, we simulate the effect of stimulated emission-depletion, one
of the fundamental concepts of STED microscopy [9, 25]. The key idea of this technique is the use
of two diffraction-limited laser beams, one probe to activate (excite) the light emitters of the sample
and one, doughnut-shaped beam to deactivate its excitation in a controlled way (depletion). Thus, the
ultimately detected light is that of the emitters laying in the central region of the doughnut-shaped
beam. This effectively reduces the area of normal fluorescence, which leads to super-resolution
imaging. Without having to rely on time-dependent processes, such as the energy level relaxation
times of the excited emitters, we perform a nonlinear modulation of the focused light based on the
Beer-Lambert law [26], commonly used to describe the optical attenuation in light-matter interaction.
The details of our fluorescence model are provided in the Appendix section E.

We initialize the system in the virtual setup depicted in Supplementary Fig. 3. The details of the
optimization are provided in the Appendix section E.1. The loss function corresponds to equation
(1) considering the total intensity of the effective beam resulting from the STED process, |Ex|2 +
|Ey|2 + |Ez|2. The discovered topology and identified SLMs patterns are depicted in Figs. 2d and
2e, respectively. The detected intensity topologies reveal the system generates a doughnut-shaped
and a Gaussian-like beams. We compute the vertical cross-section of the focused intensity patterns
for both beams and the resulting effective beam (green, orange and dotted blue lines in Fig. 2f,
respectively). The horizontal cross-section exhibits analogous features. We further compare the
effective beam intensity with the simulated STED reference [9] and the the discovered Gaussian-like
beam with the simulated sharp focus reference [24]. Strikingly, the discovered solution exploits the
underlying physical concepts of two aforementioned optical systems. In one hand, it generates a
doughnut-shaped “depletion" beam as demonstrated in Ref. [9]. On the other hand, it generates a
Gaussian-like “excitation" signal with a sharper focus, achieving smaller effective intensity spots
resulting from the STED process. The discovered solution showcases an effective beam profile which
is sharper than the simulated STED reference. This occurs due to the enhanced sharpening of the
longitudinal component of the excitation beam, which demonstrates similar profile as the simulated
sharp focus reference [24]. To the best of our knowledge, this technique has never been discussed in
the scientific literature before. Regardless of its physical realizability, this solution demonstrates the
ability of XLUMINA to uncover interesting solutions within highly complex systems.
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FIG. 4. (a) Virtual STED-type setup. A 0.9 NA objective lens focuses both light beams into the detector screen of 0.05µm pixel
size. (b) STED spiral phase (S. W. Hell, and J. Wichmann, 1994) and discovered phase mask. (c) Radial intensity profile in
vertical beam section: excitation (green), depletion (orange), and super-resolution e↵ective STED beam (dotted blue). Lateral
position indicates lateral distance from the optical axis. (d) E↵ective beam waist (in µm) as a function of depletion and
excitation intensity ratio (Idep/Iex).

case, however, the measured intensity corresponds to the
electromagnetic field’s longitudinal component, |Ez|2.

TABLE II. Optical parameters of LCD retardance ⌘, orien-
tation ✓, propagation distances (z1 and z2) and simulated
longitudinal spot size of R. Dorn, S. Quabis and G. Leuchs
[17], and the identified solution. The spot size is computed as
� = (⇡/4)FWHMxFWHMy. The discovered approach breaks
the di↵raction limit demonstrating similar spot size as the
simulated for Ref. [17].

⌘ (rad) ✓ (rad) z1 (mm) z2 (mm)

Dorn, R. et. al. (2003) 0 0 40 3000
Discovered solution -1.23 2.32 800 710

Spot size / �2

Dorn, R. et. al. (2003) 0.4360
Discovered solution 0.5081
Di↵raction-limited 0.6853

Among the obtained results we identified an interest-
ing solution corresponding to " = 0.7. This solution
was achieved after roughly 2 hours on a GPU using the
ADAM optimizer with a step size of 0.03. The stop-
ping condition for the optimizer was checked every 100
steps. The loss value evolution over the number of itera-
tion steps is depicted in Extended Data Fig. 9c.

The identified optical parameters are displayed in Ta-
ble II. The discovered phase patterns, depicted in Fig. 5c,

produce an LG2,1 Laguerre-Gaussian mode [46], which
demonstrates an intensity pattern of concentric rings
with a phase singularity in its center. The detected
light beam is on axis and demonstrates a radial inten-
sity doughnut shape and a longitudinal intensity with a
spot size slightly larger than the simulated for R. Dorn,
S. Quabis and G. Leuchs (2003) [17] (see Table II). The
longitudinal intensity profiles of Dorn, R., Quabis, S. and
Leuchs, G. (2003) and the discovered solution are de-
picted in Fig. 5e (represented by dotted black and green
respectively). For comparison, we also feature the radial
intensity profile of the di↵raction-limited linearly polar-
ized beam (dotted orange line in Fig. 5e). Clearly, the
identified solution surpasses the di↵raction limit. Re-
markably, the AI found an alternative way to imprint a
phase singularity onto the beam and produce pronounced
longitudinal components on the focal plane.

IV. TOWARDS LARGE-SCALE DISCOVERY

The results we have presented thus far predominantly
involve optical setups characterized by a limited num-
ber of optical elements. This was crucial for our pur-
pose to demonstrate how XLuminA can compute and
e�ciently rediscover known techniques in advanced mi-
croscopy. However, our ambition extends beyond the op-
timization. We aim to use XLuminA to discover new
microscopy concepts. To achieve this, we initialize the se-
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FIG. 4. (a) Virtual STED-type setup. A 0.9 NA objective lens focuses both light beams into the detector screen of 0.05µm pixel
size. (b) STED spiral phase (S. W. Hell, and J. Wichmann, 1994) and discovered phase mask. (c) Radial intensity profile in
vertical beam section: excitation (green), depletion (orange), and super-resolution e↵ective STED beam (dotted blue). Lateral
position indicates lateral distance from the optical axis. (d) E↵ective beam waist (in µm) as a function of depletion and
excitation intensity ratio (Idep/Iex).
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intensity profile of the di↵raction-limited linearly polar-
ized beam (dotted orange line in Fig. 5e). Clearly, the
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phase singularity onto the beam and produce pronounced
longitudinal components on the focal plane.
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The results we have presented thus far predominantly
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ber of optical elements. This was crucial for our pur-
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Figure 2: Rediscovery of robust optical solutions (a-c) and discovery of a new experimental blueprint
within a highly parameterized, noise-robust optical setup (d-f). The parameter space and the values
of the identified optical parameters are specified in the Appendix section E.1. (a) Discovered optical
topology for Dorn, Quabis and Leuchs (2003). (b) Discovered amplitude and phase patterns for su-
per-SLMs (sSLM) in (2). (c) Normalized longitudinal intensity profile for Dorn, Quabis, and Leuchs
(2003) and the identified solution (black dotted, and green lines, respectively) and radial intensity pro-
file of the diffraction-limited linearly polarized beam (orange dotted line). Lateral position indicates
lateral distance from the optical axis. The spot size is computed as ϕ = (π/4)FWHMxFWHMy,
where FWHM denotes for Full Width Half Maximum. The discovered approach breaks the diffraction
limit with a spot size close to the reference. Remarkably, it does not feature side lobes (indicated
with a gray arrow), which can limit practical imaging techniques. (d) Discovered optical topology
for the new experimental blueprint. The minimum value of the loss is demonstrated in detector
#2. (e) Discovered amplitude and phase masks corresponding to the sSLM in (1) and (2). (c) Total
intensity (|Ex|2 + |Ey|2 + |Ez|2) horizontal cross-section of the detected light beams of 650 nm
(orange), 530 nm (green), and effective beam emulating stimulated emission (dashed blue). (d)
Horizontal cross-section of the normalized total intensity of the effective beam from the discovered
solution (blue), the simulated STED reference (dashed red), and the simulated reference (dotted
black) using 560 nm wavelength. The discovered solution outperforms both simulated references for
STED microscopy and the sharp focus from Dorn, Quabis and Leuchs (2003), demonstrating a spot
size of 15% smaller than both references.
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A Software workflow and performance

In this section we provide the detailed description of XLUMINA’s simulation features and performance. The
simulator enables, among many other features, to define light sources (of any wavelength and power), phase
masks (i.e., spatial light modulators, SLMs), polarizers, variable retarders (e.g., wave plates, WPs), diffraction
gratings, and high numerical aperture (NA) lenses to replicate strong focusing conditions. Light propagation and
diffraction is simulated by two methods, each available for both scalar and vectorial regimes: the fast-Fourier-
transform (FFT) based numerical integration of the Rayleigh-Sommerfeld (RS) diffraction integral [27, 28] and
the Chirped z-transform (CZT) [29]. The CZT is an accelerated version of the RS algorithm, which allows for
arbitrary selection and sampling of the region of interest. These algorithms are based on the FFT and require a
reasonable sampling for the calculation to be accurate [30]. In our simulations we consider light sources emitting
Gaussian beams of 1.2 mm beam waist. To avoid possible boundary-generated artifacts during the simulation,
we define these beams in larger computational spaces of 4 mm or 5 mm. Thus, the pixel resolutions often span
1024× 1024, or 2048× 2048.

Some functionalities of XLUMINA’s optics simulator (e.g., optical propagation algorithms, planar lens or
amplitude masks) are inspired in an open-source NumPy-based Python module for diffraction and interferometry
simulation, Diffractio [23], although we have rewritten and modified these approaches to combine them with
JAX just-in-time (jit) functionality. In essence, jit compilation optimizes sequences of operations together
and runs them at once. For this purpose, the first run of a jitted function builds an abstract representation of
the sequence of operations specified by the function. This representation encodes the shape and the dtype
of the arrays - but is agnostic to the values of such arrays. If the input shapes and dtypes are not modified,
the abstract structure of the function can be then re-used for subsequent runs, without re-compilation, which
allows to execute the subsequent calls faster. However, if the input shape or dtype is modified, the function
automatically gets re-compiled. This will cause an extra overhead time due to the extraction of a new abstract
structure of the function for the new shapes/dtypes. On top of that, we developed completely new functions (e.g.,
beam splitters, WPs or propagation through high NA objective lens with CZT methods, to name a few) which
significantly expand the software capabilities. The most important hardware addition on the optical simulator are
the SLMs, each pixel of which possesses an independent (and variable) phase value. They serve as a universal
approximation for phase masks, including lenses, and offer a computational advantage: given a specific pixel
resolution, they allow for unrestricted phase design selection. Such flexibility is crucial during the parameter
space exploration, as it allows the software to autonomously probe all potential solutions. In addition, we defined
under the name of super-SLM (sSLM) a hardware-box-type which consists of two SLMs, each one independently
imprinting an amplitude and phase mask on the horizontal and vertical polarization components of the field.

To evaluate the performance of numerical and auto-differentiation methods we chose to use BFGS (from
SciPy’s Python library) and Adam (included in the JAX library) as optimizers. Further comparison including
SGD (Stochastic-Gradient-Descent), AdaGrad (Adaptive Gradient) and AdamW (Adam with weight decay) is
presented in Supplementary Fig. 1.

As the optical system, we set-up a Gaussian beam propagating over a distance z and interacting with a phase mask.
The objective function is the mean squared error between the detected light and the ground truth, characterized
by a Gaussian beam with a spiral phase imprinted on its wavefront. We initialize the system with an arbitrary
phase mask configuration. We first evaluate the computational time for a single gradient evaluation for numerical
and autodiff methods across different computational window sizes (from 10× 10 up to 500× 500 pixels) and
devices (CPU and GPU). We keep the default settings for BFGS. For Adam, the step size is set to 0.1. The
optimization process is terminated if there is no improvement in the loss value (meaning it has not decreased
below the best value recorded), over 50 consecutive iteration steps. For each resolution window, we collect the
convergence time of both optimizers and divide it by the total number of gradient evaluations for BFGS and the
total number of steps for Adam. The acquired gradient evaluation times correspond to the mean value over 5
runs. Obtained results are depicted in Figs. 1a. It is clear how autodiff outperforms numerical methods by up to
4 orders of magnitude on CPU and 5 orders of magnitude when running in the GPU. The advantage over larger
sizes is clear given that we run simulations with resolutions of 1024× 1024 and 2024× 2048 pixels.

We then conduct the evaluation of the convergence time for both methods. We keep the aforementioned settings
for the optimizers. We initialize the systems 5 times and compute their mean value. The acquired results are
depicted in Fig. 1b. On the CPU, numerical methods exhibit exponential scaling in convergence time, reaching
about 4.5 · 104 seconds (roughly 12 hours) for 250× 250 pixel resolution. In contrast, autodiff demonstrates
superior efficiency, reducing it to roughly 53 seconds. GPU optimization performance is even more pronounced,
reaching convergence in 0.24 seconds for 250× 250 pixels, and 16 seconds for a resolution of 500× 500.
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Figure 1: Performance of XLUMINA (auto-differentiation) compared to Diffractio (numerical meth-
ods) across different resolutions and optimizers in (a) single gradient evaluation and (b) convergence
time. Data corresponds to the average time over 5 runs. Numerical differentiation is computed
using Diffractio’s optical simulator and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimizer
(black dots) and auto-differentiation (triangles for CPU and squares for GPU) on XLUMINA. The
Stochastic-Gradient-Descent (SGD), Adaptive Gradient (AdaGrad), Adaptive moment estimation
with weight decay (AdamW) and Adaptive moment estimation (Adam) correspond to blue (dash-dot
line), orange (dotted line), green (dash line) and magenta (continuous line), respectively. Shaded
regions correspond to standard deviation values. The learning rate is set to 0.1 and is common to
all the optimizers. For AdamW, the weight decay is set to 10−4. The stopping condition is common
to all the frameworks: the optimization is terminated if there is no improvement in the loss value
(i.e., it has not decreased below the best value recorded), over 500 consecutive iteration steps. This
condition is checked every 100 steps. The use of XLUMINA with autodiff methods improves the
gradient evaluation time by a factor of ×2.4 · 105 in the GPU and a factor of ×1.2 · 104 on the CPU
for resolutions of 150 × 150 pixels. This behavior is common to all the tested optimizers (Adam,
AdamW, SGD and AdaGrad). When evaluating the convergence time, the use of Autodiff methods
on XLUMINA using the Adam and AdamW optimizers improve the performance with respect to
numerical methods by a factor of ×1.1 · 104 and ×6.5 · 102 in the GPU, respectively, for a resolution
of 150 × 150 pixels. The performance of Adam and AdamW in the CPU demonstrates factors of
×5.8 · 102 and ×2.9 · 101, respectively, for the same resolution. Remarkably, the use of Diffractio
with numerical methods (BFGS) outperforms both AdaGrad and SGD in convergence time. In
particular, numerical methods outperform AdaGrad by a factor of ×1.53 in the GPU and ×14.14 in
the CPU, for a resolution of 150× 150 pixels. Similar behavior is demonstrated for SGD: numerical
methods outperform it by a factor of ×1.50 in the GPU and ×43.50 in the CPU, for a resolution of
150× 150 pixels. Overall, the use of Autodiff methods (in particular, using Adam or AdamW) within
GPU-accelerated frameworks is a more appropriate choice to conduct efficient optimization.
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B Large-scale discovery framework

In this section we detail the methodology for the optimizations conducted using our quasi-universal computational
ansatz, a purely continuous framework. We first discuss the enormous search space corresponding to large-scale
optical setups. Afterwards, we provide the derivation of the loss function in equation (1).

The large-scale optical setup depicted in Fig. 1b consists of 6 light sources that emit linearly polarized Gaussian
beams with different wavelengths (e.g., 625 nm, 530 nm and 470 nm). Through 82 vectorial propagation
(vectorial Rayleigh-Sommerfeld, VRS), these beams interact with a total of 9 beam splitters, 24 sSLMs (i.e., 48
SLMs), 24 wave plates, and get ultimately detected by 6 high NA objective lenses focusing on light detectors.

We analyze the number of possible discrete arrangements within this general optical setup. For a very discrete
approach of beam splitter ratios (either transmit, reflect or have light in both arms) and only allowing the SLMs
and wave plates (WP) to be switched ON/OFF (i.e., displaying a constant zero phase and amplitude or adding
zero retardance to the incoming light), the number of possible discrete layouts is of

NDiscrete layouts = 39BS · 248SLM · 224WP = 2 · 1020. (2)

All these are considering that the available beam splitter ratios are restricted to 3 values and the SLMs and wave
plates to turn ON/OFF, respectively. In practice, beam splitter ratios and phase values are continuous variables
and can take any value (from 0 to 1 and −π to π, respectively) which increases even more the dimension of our
search space.

In the following Table 1 we present a summary detailing the main properties of the optimizations conducted
within our large-scale ansatz: the number of tunable elements, the dimension of the parameter space and the
available number of topologies (for a very discrete approach).

Table 1: Outline of the main properties of the five digital experiments conducted within our large-scale
ansatz. Displays the total number of tunable elements, the dimension of the parameter space and the
available topologies (for a very discrete approach).

Experiment
(Fig. #)

# tunable
elements

Parameter
space

# available
topologies

Fig. 2a 26 ∼ 4 million 107

Fig. 2d 16 ∼ 2 million 103

B.1 Loss function

The loss function, L, is inversely proportional to the total detected intensity density that is above a specified
intensity threshold, Iε. Thus, minimizing L aims to maximize the generation of small, high intensity beams. In
particular, it reads

L =
1

Density
=

Area
Iε

. (3)

The total intensity Iε above the threshold is computed as

Iε =

N∑
k,l

iε(k, l) , (4)

where N is the total number of pixels in the camera’s sensor and iε(k, l) represents the intensity value at each
pixel once the threshold condition is applied. This condition is defined as follows:

iε(k, l) =

{
idet(k, l) if idet(k, l) > εimax ,

0 otherwise ,
(5)

where idet(k, l) is the intensity value at the i-th row and j-th column in the detected 2D intensity pattern, εimax
(with 0 ≤ ε ≤ 1) is the threshold value, with imax being the maximum intensity value in the entire 2D detector
array.

The Area is determined using a variation of the Heaviside function Θ applied to iε, quantifying the area where
the intensity is above the threshold:

Area =
N∑
k,l

Θ(iε(k, l)) , (6)
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where N is the total number of pixels in the camera’s sensor and Θ(iε(k, l)) is defined as:

Θ(iε(k, l)) =

{
1 if iε(k, l) > 0 ,

0 otherwise .
(7)

Therefore, the loss function can be read as follows:

L =
1

Density
=

Area
Iε

=

∑N
k,l Θ(iε(k, l))∑N

k,l iε(k, l)
. (8)

Importantly, the camera pixel selection in equation (7) is a discrete operation. However, JAX offers some
interesting capabilities due to its integrated autodiff framework. In particular, control flow operations in JAX are
supported and differentiable. Therefore, we compute the loss function in a fully differentiable manner using
jax.numpy.where().

Crucially, light is detected across six different devices. Therefore, we compute the loss function at each detector
and the parameter update is driven by the detector that shows the minimum value of the loss. We conduct this
selection by using a differentiable, smooth approximation using jax.nn.logsumexp() as:

def softmin(l_det, beta):
return - logsumexp(-beta * l_det)/ beta,

where l_det is the array of the loss values corresponding to each detector and beta is the strength of the
modulation.

C Noise-aware optimization

To ensure robustness of the optical setup solutions, we implement a noise-aware optimization procedure. The
method is depicted in Supplementary Fig. 2. This approach allows us to account for potential real-world
variations and uncertainties in the physical parameters of the optical system. The optimization procedure is as
follows: for each optimization step, we execute N parallel optical tables (in this work, N = 3) using JAX’s
vmap functionality. Then, we sample random noise and apply it to all available physical variables across each of
the N optical tables. The random noise is uniformly distributed in the phase values for spatial light modulators
(SLMs) and wave plates (WP) in the range of ± (0.01 to 0.1) radians, covering all qualities available in current
experimental devices. Also, we incorporate uniformly distributed random misalignment ranging from ± (0.01 to
0.1) millimeters, covering both expert-level precision (± 0.01 mm) and beginner-level accuracy (± 0.1 mm).
Finally, we include a 1% imperfection on the transmissivity/reflectivity of beam splitters (BS), which is a realistic
approach given the high quality of the currently available hardware.

We then simulate the optical setup for each of the N tables simultaneously, incorporating the sampled noise.
The loss function is computed independently for each of the setups. Afterwards, we calculate the mean loss
value across all optical tables, which provides an average performance metric that accounts for the introduced
experimental variability (noise). The gradients are computed based on this mean loss value and so the update of
the system parameters’.

Importantly, before applying the updated parameters and proceeding to the next iteration, we resample new
random noise for each optical table. This ensures that each optimization step encounters different noise values,
further enhancing the robustness of the solution. This procedure is repeated iteratively until convergence.

By incorporating this noise-aware optimization approach, we aim to discover optical designs that perform well
in the presence of real-world experimental imperfections.
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Figure 2: Noise-robust optimization procedure. It consists of optimizing, simultaneously, N multiple
instances of the optical setup, each subjected to randomly sampled noise in its physical parameters.
At each step, we compute the mean loss across N -different noisy variants of the optical setup and
optimize based on the average performance. In this iterative process, the noise is resampled at each
step. This method allows us to explore optical solutions that are inherently resilient to noise and
maintain high performance even under non-ideal conditions.

D Rediscovery through exploration

We task XLUMINA to rediscover the super-resolution techniques of Dorn, Quabis and Leuchs [24]. For this
purpose we build the 3 × 3 optical setup depicted in Supplementary Fig. 3. It consists of six light sources
emitting linearly polarized Gaussian beams of wavelength 650 nm. Three building blocks, which contain one
super-SLM (i.e., two SLMs imprinting independent phase and amplitude masks to orthogonal polarization states)
and a wave plate separated a distance z, are placed within the diagonal of the grid (grey boxes in Supplementary
Fig. 3). Light gets ultimately detected across six detectors. As discussed in the previous Appendix section B.1,
the loss function is computed at each detector, the parameter update is driven by the device demonstrating the
minimum value. This selection is conducted in a fully differentiable manner using jax.nn.logsumexp().

The loss function corresponds to equation (1), in this instance considering the intensity from the longitudinal
component of the electric field, |Ez|2, and ε = 0.7. We set-up the AdamW optimizer with a learning rate
of 0.05 and a weight decay of 10−5. The system is initialized with three optical tables in parallel, each one
showcasing random optical parameters with values between 0 and 1. The parallelized optimization procedure
is detailed in the previous Appendix section C. The optimization is terminated if there is no improvement in
the loss value over 500 consecutive iteration steps. This condition is checked every 100 steps. The system
converged into the topology highlighted in Fig. 2a, demonstrating the smallest loss value in the detector #6.
The identified optical parameters correspond to: the wave plate’s η = 0.01, θ = −2.1; propagation distances
(in cm): z1 = 116.76, z2 = 48.07, z3 = 19.77, z4 = 40.80, z7 = 115.40 and z8 = 96.04. The beam splitter
ratios, in [Transmittance, Reflectance] pairs: BS#4: [0.4837, 0.5162], BS#5: [0.999, 0.000], BS#6: [0.000,
0.999], and BS#9: [0.999, 0.000].
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Figure 3: Initial virtual optical setup utilized for rediscover the SR-technique of Dorn, Quabis and
Leuchs (2003). It features light sources that emit Gaussian beams with wavelength of 650 nm that
are linearly polarized at 45o. Gray boxes, numbered from (1) to (3), represent the building units,
each comprising one super-SLM (sSLM) and one wave plate (WP). Distances are denoted as zi
where i = 1, ..., 8. After interacting with a high NA objective lens (of NA= 0.9), light gets detected
across six detectors (#1 - #6) with 0.05µm pixel size screen. The parameter space (∼ 4 million
optical parameters) contains three sSLM, four wave plates (WPs) with variable phase retardance η and
orientation angle θ, eight distances and nine beam splitter ratios. The resolution is set to 1024× 1024
pixels with a computational pixel size of 4.8 µm.

E Stimulated emission-depletion model

STED microscopy [9, 25] is based on excitation and spatially targeted depletion of fluorophores. In order to
achieve this, a Gaussian-shaped excitation beam and a doughnut-shaped depletion beam (generated by imprinting
a spiral phase into its wavefront) are concentrically overlapped. The depletion beam has zero intensity in the
center, where the excitation beam has its maximum. Fluorophores that are not in the center of the beams
are forced to emit at the wavelength of the depletion beam. Their emission is spectrally filtered out. Only
fluorophores in the center of the beams are allowed to fluoresce normally, and only their emission is ultimately
detected. This effectively reduces the area of normal fluorescence, which leads to super-resolution imaging.

We simulate one of the fundamental concepts of STED microscopy without having to rely on time-dependent
processes related to absorption and fluorescence. To do so, we perform a nonlinear modulation of the intensity
of the excitation and depletion beams based on the Beer-Lambert law [26]. We define the effective fluorescence
that would ultimately be detected as:

Ieff = Iex

[
1− β

(
1− e−(Idep/Iex)

)]
, (9)

where Iex and Idep correspond to the excitation and depletion intensities, respectively, and 0 ≤ β ≤ 1 captures
the quenching efficiency of the depletion beam. This expression bounds the effect of the depletion beam such
that scenarios with negative effective intensity or unrealistically high values are avoided. In particular, assuming
a perfect efficiency of the depletion beam in suppressing the excitation (i.e., β = 1), we obtain an expression
resembling the Beer-Lambert law:

Ieff = Iex · e−(Idep/Iex) . (10)
Thus, the effective detected light falls off exponentially with the intensity ratio Idep/Iex. In the limit case where
there is no excitation intensity, Iex = 0, the detected light is zero as well, Ieff = 0. If there is no depletion
intensity, Idep = 0, the detected light corresponds to the excitation beam Ieff = Iex. The trivial case of null
efficiency in the quenching, β = 0, leads to the same result.

To evaluate the nonlinear effect we consider β = 1 and Idep = 1
2
Iex. From equation (9) we obtain

Ieff = Iexe
−1/2 ≈ 0.6Iex . (11)

Now, by slightly increasing the depletion energy, e.g., Idep = 3
2
Iex, it reads

Ieff = Iexe
−3/2 ≈ 0.2Iex . (12)
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Therefore, a small change in the depletion energy causes a large effect in the effective intensity. As a further
example, if we set an intermediate efficiency of β = 0.5 and Idep = 1

2
Iex we obtain

Ieff = Iex

[
1 + e−1/2

2

]
≈ 0.8Iex . (13)

which clearly demonstrates the effect of diminishing the efficiency of the suppression. Overall, we successfully
imprinted the nonlinear behavior of the quenching for different range of effectiveness, achieving a realistic,
bounded physical model for STED.

E.1 Discovery of a new experimental blueprint

Finally, we demonstrate the capabilities of XLUMINA for genuine discovery. We use the initial optical setup in
Supplementary Fig. 4. The parameter space (∼ 2 million parameters) corresponds to two super-SLMs (i.e., 4
SLMs) with a resolution of 512× 512 pixels with a computational pixel size of 9.6 µm, two wave plates, six
distances and four beam splitter ratios. The loss function corresponds to equation (1), in this instance considering
the total intensity of the effective light emerging from the STED process, |Ex|2 + |Ey|2 + |Ez|2, and ε = 0.5.
We simulate the stimulated emission depletion effect using equation (9) with the efficiency set to β = 1. We
set-up the AdamW optimizer with a step size of 10−3 and a weight decay of 10−3.

Figure 4: Initial virtual optical setup utilized for discover a new experimental blueprint. It features
light sources that emit Gaussian beams with wavelengths of 650 nm and 530 nm linearly polarized at
45o. Gray boxes, numbered (1) and (2), represent the building units, each comprising one super-SLM
(sSLM) and one wave plate (WP). Distances are denoted as zi where i = 1, ..., 6. After interacting
with a high NA objective lens (of NA= 0.9), light gets detected across four detectors (#1 - #4) with
0.05µm pixel size screen. The parameter space (∼ 2 million optical parameters) contains two sSLM,
two wave plates (WPs) with variable phase retardance η and orientation angle θ, six distances and
four beam splitter ratios. The resolution is set to 512× 512 pixels with a computational pixel size of
9.6 µm.

The system is initialized with three optical tables in parallel, each one showcasing random optical parameters
with values between 0 and 1. The parallelized optimization procedure is detailed in the previous Appendix
section C. The optimization is terminated if there is no improvement in the loss value over 500 consecutive
iteration steps. This condition is checked every 100 steps. The system converged into the topology highlighted in
Fig. 2d, demonstrating the smallest loss value in the detector #2. The identified optical parameters correspond
to: the beam splitter ratios, in [Transmittance, Reflectance] pairs: BS#1: [0.000, 0.999], BS#2: [0.000, 0.999],
BS#3: [0.000, 0.999], and BS#4: [0.306, 0.6937]. The wave plates, in radians (1): η = 0.00, θ = −2.39, and
(2): η = 0.13, θ = 2.50. The propagation distances (in cm) are z1 = 140.109, z2 = 165.67, z3 = 563.69,
z4 = 645.44 and z5 = 116.27.
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