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Abstract

Amorphous molecular solids offer a promising alternative to inorganic semiconduc-
tors, owing to their mechanical flexibility and solution processability. The packing
structure of these materials plays a crucial role in determining their electronic
and transport properties, which are key to enhancing the efficiency of devices like
organic solar cells (OSCs). However, obtaining these optoelectronic properties
computationally requires molecular dynamics (MD) simulations to generate a con-
formational ensemble, a process that can be computationally expensive due to the
large system sizes involved. Recent advances have focused on using generative
models, particularly flow-based models as Boltzmann generators, to improve the
efficiency of MD sampling. In this work, we developed a dual-scale flow matching
method that separates training and inference into coarse-grained and all-atom stages
and enhances both the accuracy and efficiency of standard flow matching samplers.
We demonstrate the effectiveness of this method on a dataset of Y6 molecular
clusters obtained through MD simulations, and we benchmark its efficiency and
accuracy against single-scale flow matching methods.

1 Introduction

Amorphous molecular solids are disordered organic systems with several applications in the field of
organic optoelectronics. Their mechanical flexibility and solution processability make them attractive
alternatives to inorganic semiconductors [22, 14, 19]. Different molecules tend to pack differently in
amorphous solids, which lead to different network extensivity, electronic properties, and transport
rates [13]. The influence of packing structure on optoelectronic properties has led to significant
interest in computationally simulating these materials with molecular dynamics (MD) simulations
[13, 6] to enhance our understanding of the correlations between structural design and corresponding
packing and optoelectronic properties. This can inform better design strategies for the next generation
of organic electronics devices.

Having the ability to generate amorphous solids in a computationally efficient manner can enable faster
sampling from the multi-molecule Boltzmann distribution, as well as property-guided generation of
optimally packed configurations. There have been several works developing efficient methods to
sample from Boltzmann distributions or their emulated (non re-weighted) versions [17, 11]. Scaling
up to larger systems (such as amorphous clusters) is however computationally expensive if generation
is to be performed at the all-atom (AA) level. In the field of protein generation, coarse-grained (CG)
representations are used to collapse amino acids into single beads, which drastically reduces system
size while still retaining higher-level structural features. There have been works that generate proteins
in their coarse-grained representations, and other works that back-map coarse-grained proteins into
their all-atom structure [12, 4, 24, 10].
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In this paper, we develop a unified dual-scale flow matching method that improves accuracy of
all-atom flow matching methods by separating training and inference into different stages for coarse-
grained and all-atom resolutions. Moreover, we show that by performing a majority of the inference
compute at the coarse-grained resolution, one can reduce the time taken for inference integration
without sacrificing accuracy, paving the way for more efficient generation of larger systems. As a
demonstrative example, in this work, we used a dataset of amorphously packed clusters consisting of
5 Y6 [25] molecules that we obtained from MD simulations. As the coarse-grained representation
for our experiments, we pre-defined a mapping scheme that collapses the 505 atoms system into 65
beads (see Figure 1(a)). With gains in efficiency obtained from this method, we plan to scale up to
larger systems in the future that are more representative of thin films in devices, as well as test other
choices of coarse-graining mappings.

2 Background

Conditional Flow Matching (CFM). This is a new paradigm of training continuous normalizing
flows (CNFs) efficiently in a simulation free manner [3, 2, 15]. An ODE parameterized by a learnable
vector field vθ(x, t) transforms an easy-to-sample prior distribution p0, into the more complex target
distribution p1. Parameters θ are learned through the regression objective

LCFM = Et∼U [0,1],z∼p0(x0)p1(x1),x∼pt(x|z)||vθ(x, t)− u(x|z)||2, (1)

We chose the probability path definition to be pt(x|z) = N (x|tx1 + (1− t)x0, σ
2) , which gives

u(x|z) = x1 − x0 as the conditional vector field. Similar to work by Stark et al. [20], we trained vθ
to predict x1 rather than x1 − x0, and parameterized vθ by SE(3) equivariant refinement tensor field
network (TFN) [23] layers. We present a comparison against other parameterizations in Section A.1.

Harmonic Prior. Besides the standard gaussian prior, another common choice for prior in molecule
generation tasks is the harmonic prior. The harmonic prior was introduced in Jing et al. [9] and used
within the flow-matching framework by Stark et al. [20] as a more chemically plausible prior. The
prior distribution p0(x0) is interpreted as a Boltzmann distribution with a quadratic potential energy
function, i.e., p0(x0) ∝ e−E(x) = e−xTHx, where H is chosen such that E(x) = Σi,j∈E ||xi−xj ||2.
We need to have the bond connectivity information E a-priori to sample from the harmonic prior.

3 Methods

3.1 Model

Dual-Scale CFM. This method decomposes the task of predicting all-atom coordinates x1, into
two sequential steps of predicting coarse-grained coordinates c1 ∈ RM×3, and predicting all-atom
coordinates x1 ∈ RN×3, where M and N are dimensions of coarse-grained and all-atom coordinates
respectively. Two separate vector field networks (VFNs) are learned: 1) vθ(c, t) to generate coarse-
grained bead positions c1, and 2) vϕ(x, t|ĉ1) to generate all-atom positions x1 conditioned on
predicted bead positions ĉ1. Separate priors p0(c0) and p0(x0) are used for the two flows since they
act on different input dimensionalities.

Training and Inference. Both flows are trained using Eq. 1 with the relevant distributions and vector
fields being substituted in. To be precise, the two objectives are:

LCG = Et∼U [0,1],z∼p0(c0)p1(c1),c∼pt(c|z)||vθ(c, t)− u(c|z)||2, (2)

LAA = Et∼U [0,1],z∼p0(x0)p1(x1),x∼pt(x|z)||vϕ(x, t|c1)− u(x|z)||2, (3)

vϕ was trained using the ground-truth coarse-grained coordinates c1 as the condition instead of
predicted coordinates ĉ1, which decoupled the two flows. Inference was performed using an Euler
ODE solver to integrate from t = 0 to 1 for each of the two flows. For the coarse-grained flow,
the bead positions were obtained with ĉ1 = vθ(c, t), and an integration timestep was performed
with ct+∆t = ct +∆t(ĉ1 − c0). Similarly, for the all-atom flow, x̂1 = vϕ(x, t|ĉ1), and xt+∆t =
xt +∆t(x̂1 − x0) were used. A total of 40 integration steps were taken to go from coarse-grained
prior sample c0 to all-atom target x1.
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Figure 1: Coarse-graining mapping scheme, and influence of CG:AA ratio on metrics. (a) Our
coarse-graining mapping scheme for an individual Y6 molecule consisting of 13 beads identified
with different colors. (b) JSD bond lengths, angles, and inference time on test data generation as a
function of CG:AA ratio. As we increased the ratio, we observed a noticeable decreasing trend in
inference time with negligible change in JSD values.

3.2 Graph Representation

Besides cartesian coordinates (c/x), the vector field predictors vθ/ϕ also take atom features fCG/AA

and bond features bCG/AA as input. More details on features and their data-types are provided in
Table 2.

We pre-defined a mapping B between node indices of all-atom atoms and coarse-grained beads, based
on the basic chemical intuition that atoms present within rings have restricted degrees of freedom.
The scheme is shown in Figure 1(a). We needed to define a means of collapsing the atom features
fAA and bond features bAA into corresponding features fCG and bCG of coarse-grained beads so
that this information was not completely lost to the flow vθ.

Atom Features. We aggregated atom features with fCG
i =

⊕
j∈B(i) f

AA
j , where

⊕
denotes an

arbitrary aggregation operator. In our case we used either the elementwise Mean or OR operations
depending on the data-type of the atomic feature. We did not include String atom features as input
to vθ. We assigned the cartesian coordinates of beads to be the averaged coordinates of all atoms
present within the bead, and included them as equivariant node features to vθ.

Bond Features. We assigned bond connectivity to beads based on connectivity of atoms within the
beads. If any two atoms belonging to different beads had a bond connecting them in the all-atom
structure, we created a bond between the two beads with the corresponding bond features.

3.3 Dataset

We followed the approach developed in Kupgan et al. [13] to simulate an amorphous morphology
for the molecules. We first performed geometry optimization of the Y6 molecular structure using
the method described in [21]. Then we used PACKMOL [16] to pack 5 structures in a cubic box
at a low density (∼ 0.1 g/cm3). The OPLS-AA force field [18] was used via the LigParGen server
[5]. The system was equilibrated for 30 ns at 650 K, cooled to room temperature (300 K) at 10 K/ns,
and subjected to a 30 ns production run at 300 K. All MD simulations were performed under the
NPT ensemble at 1 atm with a timestep of 2 fs, using GROMACS 2023 [1]. We saved 301 frames
from the production run and used a random 80:10:10 split into train, validation and test datasets. We
unwrapped the molecular structures to remove periodic boundary conditions (PBC) and also removed
hydrogen atoms. Each resulting frame contained 505 atoms in total in the all-atom representation.

4 Results and Discussion

We evaluated generated samples on 3 metrics (shown in Table 1). To evaluate distributional matching
capabilities, we measured Jensen Shannon Divergence (JSD) between distributions of generated and
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MD distributions for bond lengths and angles. We evaluated efficiency through the average time taken
per integration step during inference on one NVIDIA A100 GPU. We noticed that the dual-scale flow
matching method improved upon a single-scale flow matching method (with Gaussian/Harmonic
priors) by 15-25% on bond length and angle JSDs, while also decreasing the inference time by ∼85%.

We also tested the influence of the ratio of integration steps taken in coarse-grained and all-atom
resolutions, on the 3 metrics to see how much inference time can be saved without sacrificing accuracy
(shown in Figure 1(b)). We denote the ratio of number of CG and AA integration steps by CG:AA. It
is interesting to see that even for large CG:AA ratios, we significantly decreased inference time with
negligible sacrifice to JSD performance.

Table 1: Distribution and inference time metrics. Comparison of single-scale CFM with Gaussian
and Harmonic priors, and dual-scale CFM with Gaussian prior. We used 2 distributional metrics (on
bond lengths and bond angles) that quantify the Jensen Shannon divergence (JSD) between generated
and MD distributions on the test dataset. Inference time is the average time taken per integration step
on one NVIDIA A100 GPU.

Model Bond Lengths (JSD) Bond Angles (JSD) Inference Time (s)

SINGLE SCALE 0.6563 0.6316 0.2949
SINGLE SCALE HARMONIC 0.6298 0.6066 0.3039
DUAL SCALE 30:10 (OURS) 0.5472 0.4610 0.0496

The preliminary results are encouraging, opening up several avenues of further exploration for the
future. We plan to scale to larger systems (∼200 Y6 molecules) which is more representative of active
layers in devices, and also test our approach on different chemistries and system sizes. Secondly,
while we pre-defined a coarse-graining mapping scheme in this paper, we plan to test other schemes
in the future to identify correlations between the chosen schemes and performance. Finally, we plan
on expanding to other metrics that are also typically used in Boltzmann generators and conformer
generation such as effective sample size (ESS), average minimum RMSD (AMR) and coverage
[11, 7, 8].

5 Conclusions

In this work, we developed a dual-scale flow matching method that improves upon single-scale
flow matching-based samplers in accuracy as well as inference efficiency, as demonstrated on a
dataset of amorphous Y6 clusters. Moreover, it is interesting to see that we can push the ratio of
CG:AA during inference integration to large values without sacrificing the prediction accuracy, while
boosting inference speed. While we tested on clusters of size 5 in this paper, we plan to expand
to larger clusters in the future whose packing properties are more representative of active layers in
optoelectronic devices. We also plan on testing the influence of coarse-graining mapping scheme on
performance since we tested a single pre-defined scheme in this work.
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A Appendix / supplemental material

A.1 Choice of VFN architecture

Our choice of VFN architecture was based on a comparison of various architectures (shown in
Table 2). We observed that using TFN as the VFN achieved best JSD performance across bond
lengths and angles, as well as across gaussian and harmonic prior choices.

Table 2: Bond length and angle distributions comparison. JSD comparison between TFN, EGNN,
and Attentive FP with Gaussian and Harmonic priors across the two collective variables (CV).

CV Prior TFN EGNN Attentive FP

BOND LENGTH
GAUSSIAN 0.656 0.791 0.959
HARMONIC 0.629 0.781 0.894

BOND ANGLE
GAUSSIAN 0.631 0.732 0.908
HARMONIC 0.606 0.770 0.868

A.2 Graph Featurization

Table 3: Atom and Bond Features. Features extracted for atoms and bonds, along with their
respective data types used for featurization. Same as was used by Stark et al. [20].

Feature Name Datatype
ATOMIC_NUM Integer
CHIRALITY String
DEGREE Integer
NUMRING Integer
IMPLICIT_VALENCE Integer
FORMAL_CHARGE Integer
NUMH Integer
HYBRIDIZATION String
IS_AROMATIC Boolean
IS_IN_RING5 Boolean
IS_IN_RING6 Boolean

BOND_TYPE String
BOND_STEREO String
IS_CONJUGATED Boolean
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