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Abstract

Computational physics simulation can be a powerful tool to accelerate industry
deployment of new scientific technologies. However, it must address the chal-
lenge of computationally tractable, moderately accurate prediction at large industry
scales, and training a model without data at such large scales. A recently proposed
component reduced order modeling (CROM) tackles this challenge by combining
reduced order modeling (ROM) with discontinuous Galerkin domain decompo-
sition (DG-DD). While it can build a component ROM at small scales that can
be assembled into a large scale system, its application is limited to linear physics
equations. In this work, we extend CROM to nonlinear steady Navier-Stokes flow
equation. Nonlinear advection term is evaluated via tensorial approach or empirical
quadrature procedure. Application to flow past an array of objects at moderate
Reynolds number demonstrates ∼ 23.7 times faster solutions with a relative error
of ∼ 2.3%, even at scales 256 times larger than the original problem.

1 Introduction

Industry deployment of a novel scientific technology often involves scaling up process, which
demonstrates performance of a lab-scale proven method at industry scale. Conventionally, the scaling
up process is performed through physical pilot plants at intermediate scales, though they are costly
and time-consuming to design, construct and operate. Computational simulations can augment and
accelerate design process and prediction in this deployment procedure. However, even pilot scales are
often order-of-magnitude larger than lab scale, which is computationally intractable with traditional
numerical methods. Sub-grid scale approximations such as volume-averaging or closure model for
large-eddy simulations can compromise the accuracy significantly [1]. Meanwhile, extremely large
scale application also challenges use of recent data-driven methods, in that there is no available data
at such large scale and the prediction must be extrapolation in scale.

The recently proposed component reduced order modeling (CROM) [2, 3] tackles this challenge by
combining projection-based reduced order modeling (PROM) with discontinuous Galerkin domain
decomposition (DG-DD). Proper orthogonal decomposition (POD) [4] identifies a low-dimensional
linear subspace that can effectively represent the physics solutions based on small scale sample
snapshot data. PROM projects the physics governing equation onto the linear subspace, thereby
achieving both robust accuracy and cheap computation time. Small scale unit reduced-order models
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(ROMs) are then assembled into a large scale ROM system, where the interface condition is handled
via discontinuous Galerkin penalty terms. Since linear subspace identification and the reduced order
modeling can be performed only at the small unit scales, CROM can achieve robust extrapolation in
scale without data at large scale.

CROM has been successfully demonstrated for several applications such as Poisson equation, Stokes
flow, advection-diffusion equation [2, 3], and linear elasticity [5, 6]. However, all of these applica-
tions have been limited to linear systems. In this work, we extend CROM to nonlinear equations,
particularly steady incompressible Navier-Stokes equation. Naive projection of nonlinear terms
onto linear subspace would not gain any speed-up, requiring an efficient approximation technique.
We address this issue with two different approaches. First, exploiting the fact that the advection is
quadratic in terms of velocity, we can pre-compute a 3rd-order tensor ROM operator for advection [7].
Second, we can also employ empirical quadrature procedure (EQP) [8] to evaluate advection term
only at the selected sample grid points, which are obtained from a minimization problem with respect
to sample data. Furthermore, the incompressibility of the physics necessitates the linear subspaces to
satisfy the associated inf-sup condition [9–12]. This can be addressed by augmenting the velocity
bases with compressible components from gradients of pressure POD modes [13].

The rest of the paper is organized as follows. In Section 2, we provide a concise overview of the
proposed component model reduction approach with the specific example of steady incompressible
Navier-Stokes equation. Following that, in Section 3, we demonstrate of the proposed method to a
scaled-up prediction of flow past an array of objects at moderate Reynolds number.

2 Formulation
We consider the global-scale domain Ω ⊂ Rd decomposed into M subdomains Ωm, i.e. Ω =⋃M

m=1 Ωm. All subdomains can be categorized into a few reference domains C ≡
{
Ω1,Ω2, . . .

}
.

Steady incompressible Navier-Stokes equation for each subdomain velocity ũm ∈ H1(Ωm)d and
pressure p̃m ∈ H1(Ωm) writes

−ν∇2ũm +∇p̃m + ũm · ∇ũm = fm (1a)

∇ · ũm = 0, (1b)

with non-dimensional viscosity ν = 1/Re as the inverse of Reynolds number. The interface
Γm,n ≡ ∂Ωm ∩ ∂Ωn is constrained by the continuity and smoothness condition,

JũK = Jp̃K = 0 on Γm,n (1c)

{{n · ∇ũ}} = {{n · ∇p̃}} = 0 on Γm,n, (1d)

with Jq̃K ≡ q̃m− q̃n and {{n · ∇q̃}} ≡ 1
2 (nm · ∇q̃m + nn · ∇q̃n). nm is the outward normal vector

of the subdomain Ωm and nm = −nn on Γm,n.

DG-DD seeks an approximate solution (u,p) = {(um,pm)} that satisfies the discretization of (1),

Kmum+B⊤
mpm+Cm[um]+

∑
Γm,n ̸=∅

{
(Kmm Kmn)

(
um

un

)
+

(
B⊤

mn B⊤
mn

)(pm

pn

)}
= Lm,

(2a)

Bmum +
∑

Γm,n ̸=∅

(Bmn Bmn)

(
um

un

)
= 0, (2b)

for ∀m. Km, Bm and Cm correspond to viscous flux, velocity divergence and nonlinear advection
operator in the physics equation (1a-b), respectively. The summations over interfaces Γm,n weakly
enforces the interface condition (1c-d). This discretized physics equation provides the base for
component ROM.

We approximate the component-level solution (ur,pr) on a low-dimensional linear subspace,

ur ≈ Φu,rûr pr ≈ Φp,rp̂r, (3)

where the reduced solution (ûr, p̂r) are the coefficients of the column vectors of the basis Φu,r

and Φu,r. The bases are identified from sample solutions of (2) on the reference domains Ωr via
POD [14, 15]. The basis size is determined so that the sampled solutions may be represented with
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the basis at a desired accuracy. This accuracy can be evaluated by the ratio between the sum of the
given basis vectors’ singular values and the total sum of all singular values,

ϵR = 1−
∑R

s σs∑S
s σs

. (4)

This is equivalent to the relative representation error of the linear subspace spanned by the given basis
over the sampled component-level solutions. In this study, both velocity and pressure POD basis sizes
are chosen to be 40, with ∼ 3% relative error over the sampled solutions. Due to the incompressible
nature of solution for (2), the velocity basis Φu,r also remains divergence-free, resulting in spurious
pressure modes. To avoid this, the velocity basis is further augmented with the gradients of pressure
POD modes as supremizer [13],

Φu,r = GS
(
ΦPOD

u,r BrΦ
POD
p,r

)
, (5)

where GS(·) is modified Gram-Schmidt orthonormalization.

With the linear subspace approximation (3), The physics equation (2) is then projected onto the
column space of Φu,r and Φp,r,

K̂mum+B̂⊤
mpm+Ĉm[um]+

∑
Γm,n ̸=∅

{(
K̂mm K̂mn

)(ûm

ûn

)
+

(
B̂⊤

mn B̂⊤
mn

)(p̂m

p̂n

)}
= L̂m,

(6a)

B̂mûm +
∑

Γm,n ̸=∅

(
B̂mn B̂mn

)(ûm

ûn

)
= 0, (6b)

for ∀m, with ROM operators K̂m = Φ⊤
u,mKmΦu,m, K̂ij = Φ⊤

u,iKijΦu,j , B̂m = Φ⊤
p,mBmΦu,m,

B̂ij = Φ⊤
p,iBijΦu,j and L̂m = Φ⊤

u,mLm. The operators in (6) are the building blocks of the global
ROM. The nonlinear ROM operator C is described subsequently.

Unlike linear ROM operators K and B, the nonlinear operator in general cannot can be pre-computed
as a reduced matrix. In this work, the nonlinear ROM operator Ĉ is evaluated in two different
approaches. First, exploiting the fact that the advection term is quadratic with respect to u, we
pre-compute a 3rd-order tensor operator,

Ĉm[ûm]i =
∑
j,k

Ĉijkûm,j ûm,k ≡
∑
j,k

⟨iϕu,m, jϕu,m · ∇kϕu,m⟩Ωm
ûm,j ûm,k, (7)

for ∀i ∈ [1,dim(ûm)], where iϕu,m is the i-th column vector of Φu,m and ⟨·, ·⟩Ωm
is the inner

product over the subdomain Ωm. While the complexity of (7) scales faster than linear ROM operators,
we can still expect a significant speed-up if a moderate size of basis is used.

An alternative is the empirical quadrature procedure (EQP) where the nonlinear term is evaluated at
sampled grid points,

Ĉm[ûm]i =

Nq∑
q

iϕ
⊤
u,m(xq) wq [um(xq) · ∇um(xq)] ∀i ∈ [1,dim(ûm)], (8)

with um = Φu,mûm. Note that the summand in (8) is evaluated only at the EQP points xq , thus we
can still expect similar speed-up with tensorial approach, as long as Nq ∼ dim(ûm). Furthermore,
this EQP approach is applicable to general nonlinear equations. The EQP points xq and weight
wq are calibrated with respect to velocity basis and sample solutions on the reference domain via
non-negative least-squares method [8]. The number of points Nq is controlled by error threshold of
the quadrature, which is set to 1% in this study.

3 Results
We demonstrate CROM for steady Navier-Stokes flow on the flow past array of objects used in Chung
et al. [2]. Five different reference domains C = {Ω1, . . . ,Ω5} are considered as components for
building up the global-scale system. All reference domains lie within a unit square Ωr ⊂ [0, 1]2

with an obstacle within them: circle, square, triangle, star, and none (empty). To obtain the POD
bases, sample snapshots are generated on 2000 2-by-2-component domains with four randomly
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chosen subdomains from C. The FOM (2) is solved for ν = 0.04 (Re = 25) with the inflow velocity
randomly chosen per each sample. For flows past blunt bodies, steady flow physically exists only up
to Re ≲ 40 based on the object length scale [16]. For the details of the reference domain meshes and
sampling procedures, we refer readers to Chung et al. [2]. The details of method implementation
and instruction for the main experimental results can be found in the open-source code scaleupROM
(MIT license). All numerical experiments are performed on an Intel Sapphire Rapids 2GHz processor
with 256GB memory.

In order to obtain the ROM bases (3), POD is performed over velocity and pressure snapshots of each
reference domain. In this demonstration, 40 POD modes are chosen for both velocity and pressure,
which can represent overall snapshots with ∼ 3% relative error. The velocity POD bases are further
augmented with the gradient of pressure POD modes per (5, having additional 40 basis vectors.
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Figure 1: Scaled-up prediction of steady Navier-Stokes flow at ν = 0.04 over a 16× 16 array of 5
different random objects: (left) flow-speed prediction of the proposed CROM; (top right) computation
time with either (7) or (8), with respect to number of basis vectors; and (bottom right) relative error
compared to the FOM solution, with respect to number of basis vectors. The error bar indicates 95%
confidence interval over 100 sample cases.

Using ROM (6), scaled-up predictions are performed on 100 test cases of 16× 16 arrays of objects
with random inflow velocity uin ∈ U [−1, 1]2. Figure 1 shows an example scaled-up prediction for
a 16 × 16 array of objects. Given total 120 basis vectors, ROM achieved about 23.7× speed-up
while maintaining ∼ 2.3% relative error compared to the FOM solution. It is worth emphasizing that
the ROM operators in (6) are built only from 2× 2 domains. On larger domains, the flow tends to
accumulate on empty subdomains, which cannot be observed from the sampled snapshots. However,
ROM was able to robustly extrapolate in scale based on its underlying physics governing equation.

Right subfigures of Figure 1 compare two different approaches to evaluate the nonlinear advection.
With 30 basis vectors, both tensorial approach and EQP method takes similar computation time.
However, the computation time for EQP scales slightly better with number of basis vectors compared
to tensorial approach. Such speed-up did not come with a compromise in its accuracy almost at all,
showing EQP’s superiority over the tensorial approach. Overall, for both approaches, the relative
error scales much faster than the computation time, showing the effectiveness of ROM.

A numerical experiment is further performed to investigate the impact of augmenting the velocity
basis (5). Table 1 shows the relative errors of ROM predictions for a 16 × 16 array with different
pressure basis sizes Rp = dim(Φp,r) and supremizer sizes Zp = dim(BrΦ

POD
p,r ). For all cases of

Rp > Zp, the accuracy for the pressure degrades quickly with Zp due to spurious pressure modes.
This also impacts the accuracy for the flow velocity as well. For all Rp, the pressure error is lowest
at Rp = Zp, and plateaus for Rp < Zp. The plateau of the pressure error gradually decreases with
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Rp

Zp 20 30 40 50 60

20 (2.5, 1.7) (2.5, 3.5) (2.4, 3.8) (2.4, 3.6) (2.4, 3.3)
30 (2.8, 61.5) (2.5, 1.3) (2.5, 2.7) (2.4, 2.6) (2.4, 2.1)
40 (7.5, 1.1× 105) (3.0, 50.9) (2.6, 1.0) (2.5, 1.6) (2.4, 1.5)
50 (28, 9.3× 106) (7.7, 6.8× 104) (3.0, 28.4) (2.6, 1.1) (2.5, 1.8)
60 (N/A, N/A) (26.2, 5.8× 106) (7.8, 4.7× 104) (3.1, 34.7) (2.7, 1.2)

Table 1: Relative error of (flow velocity, pressure) in percentage, depending on pressure basis size
Rp and supremizer size Zp. The predictions are made on a 16× 16 array with velocity POD basis
size of 40 (before augmentation). N/A indicates that the numerical solution is not converged.

Rp, as more pressure basis vectors resolve the solution. As long as more supremizers are used than
pressure basis vectors, i.e. Rp ≤ Zp, the error for the flow velocity is maintained consistently, as the
same velocity POD basis is used over all cases. This result strongly shows the role of the supremizer
for stabilizing ROM pressure predictions.

4 Conclusion
In order to accelerate a scaling-up process, computational simulation must be able to reliably
extrapolate in scale only from small-scale data. CROM realizes this by combining ROM with DG-
DD, though it has been limited only to linear physics equations. In this work we extend CROM to
steady, nonlinear Navier-Stokes equation. Nonlinear advection term is evaluated by either tensorial
approach or EQP. In order to avoid spurious pressure modes coming from divergence-free velocity
bases, the velocity bases are augmented with the gradients of pressure POD modes. The proposed
method is demonstrated on a porous media flow problem, where 5 different unit components are
combined into a large array. The resulting ROM accelerates the solving time by a factor of ∼ 23.7
only with ∼ 2.3% relative error, for a global domain 256 times larger than the components. While
EQP shows its superiority over tensorial approach for both computational time and accuracy, both are
shown to be effective for reliable ROM prediction.

Though only demonstrated on steady Navier-Stokes equation, the proposed method is applicable to
general nonlinear physics equation. For examples, an advection-diffusion-reaction equation can be
added in order to solve a mass transfer problem. While tensorial approach is limited to polynomially
nonlinear terms, EQP is in general applicable to any type of nonlinear terms.

In this work, the interface penalty term did not involve any nonlinear terms, though it is not a
general limitation of this proposed method. In principle, tensorial approach or EQP method is readily
extensible for interface penalty terms. Such extension would be valuable for unsteady hyperbolic
conservation laws, further elevating the applicability of CROM.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The contribution of this work is (1) to extend component reduced order
modeling to steady Navier-Stokes flow and (2) demonstrate it on a porous media flow at
moderate Reynolds number. The abstract and introduction reflected them accurately.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

7



Justification: We discussed the limitation of the current work in the conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We included all the necessary details and references in the results section.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provided open access to the code in the results section.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The training and test details are provided in the results section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The figures in the results section are provided with error bars indicating the
statistical significance of the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provided details about the computer resources we used for the experiments
in the results section.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
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Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cited the original paper that produced the code package throughout this
abstract, and also specified the license of the open-source code used in this work.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This work provides an extension within the existing open source code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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