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Abstract

This work presents OMNIJET-α, one of the first multi-task foundation models for
particle physics in the context of the Large Hadron Collider (LHC) at CERN. In
contrast to natural language, particle jet data is represented by point-cloud-like
objects, requiring a different type of encoding strategy to make it suitable for auto-
regressive generation. We introduce a comprehensive set of evaluation methods
to investigate the encoding of particles into a discrete set of tokens. These meth-
ods guide us to adopt a more precise tokenization method compared to previous
strategies, and we provide insights into how a rather small set of 8192 tokens can
accurately represent a complex data space spanned by three continuous physical
features (the momenta of the particles). Moreover, we showcase the efficacy of
transfer learning between an unsupervised task (jet generation) and a common
supervised task (jet tagging). This integration of disparate tasks and the successful
transfer learning between them marks a significant advancement in the development
of foundation models for particle physics. The code and the checkpoint of the
model are available at https://github.com/uhh-pd-ml/omnijet_alpha.

1 Introduction

Foundation models have become the state-of-the-art approach for the most capable models in natural
language processing and computer vision. Being trained on broad datasets and problems and then
being able to generalize to a variety of downstream tasks and datasets [1], large-language models
(LLMs) such as BERT [2], BART [3], GPT-3 [4], GPT-4 [5], and LLaMA [6] have changed the
landscape of natural language processing, while models like CLIP [7] and DALL-E [8] have done
the same for computer vision. The benefits of foundation models for particle physics data would
be a huge leap forward. Particle physics research involves analyzing high-dimensional data from
particle collisions, such as those at CERN’s Large Hadron Collider (LHC). Understanding these
collisions requires complex data processing and analysis pipelines, often using machine learning
models that excel over classical methods [9, 10]. However, current models are tailored for specific
tasks or analyses, making development and transferability challenging.

Figure 1: High-level overview of the OMNIJET-α model.
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Foundation models on the other hand could be pre-trained on either larger simulated datasets before
being fine-tuned to specific tasks or smaller datasets [11], or they could even be pre-trained on the
measured data itself (of which there is an abundance). Recent efforts have demonstrated success with
autoregressive generation of particle physics data [12, 13, 14]. Additionally, [15] demonstrated how
a BERT-like pre-training scheme can be translated to particle physics data. Furthermore, tokenization
of particle physics data was also explored in [16, 17, 14]. Our work presents one of the first multi-
task foundation models in the context of particle jets. These particle jets are very common and
important objects in particle physics, representing a collimated spray of particles that are created
at particle collider experiments. As illustrated in Figure 1, we explore whether an autoregressive
Generative Pre-trained Transformer (GPT) model [4] paired with a Vector Quantized Variational
AutoEncoder (VQ-VAE) [18, 19, 15, 20] can be used across two distinct tasks: particle jet generation
and particle jet tagging, where the latter is a common classification task in particle physics that aims
to identify the type of particle that initiated a jet. Our main contributions are:

• we introduce a comprehensive set of evaluation methods to investigate the encoding of
particle jets into a discrete set of tokens

• we showcase for the first time the efficacy of transfer learning between an unsupervised task
(jet generation) and a common supervised task (jet tagging) in the context of particle physics,
by re-using the same model architecture for both tasks, except for a small task-specific head

As this is the first model to tackle multiple tasks with jets in particle physics, it is named OMNIJET-α.
Similar advancements in this domain have been made in [15, 21, 22].

All studies are performed using the JETCLASS dataset [23], which was originally introduced in [24],
and contains 125M1 jets that are extracted from proton-proton collisions, equally distributed over the
following ten classes: jets initiated by gluons and quarks (q/g), top quarks (t, subdivided by their
decay mode into t → bqq′ and t → bℓν) , as well as W , Z, and H (H → bb̄, H → cc̄, H → gg, H →
4q, and H → ℓνqq′) bosons. In this work, only the kinematic information per particle (pT, ϕ, η)2

is used while the particle mass m is approximated as zero. Furthermore, the pseudo-rapidity η and
the azimuthal angle ϕ are transformed to be relative to the jet axis, i.e. ηrel = ηparticle − ηjet and
ϕrel = ϕparticle − ϕjet, and we apply the cuts |ηrel| < 0.8 and |ϕrel| < 0.8.

2 Particle token creation

Given that jets can have a variable number of particles, and that the particles don’t have an inherent
order, they are usually represented as point clouds with multiple continuous features per particle [25,
26, 9, 27, 28]. However, jets can also be represented as a sequence of tokens, which allows to use
autoregressive models like GPT to generate jets. While this approach has been explored before [12,
13, 15], we take a step back to investigate the quality of the tokenization and to develop a set of
quality measures to guide the choice of a suitable tokenization model. We focus on tokenization of
jet constituents with a VQ-VAE [18, 19, 15, 20], where the input features are the ηrel, ϕrel and pT
values of the jet constituents. We compare two tokenization strategies: conditional and unconditional.
In the conditional approach, a transformer is used for both encoding and decoding the constituents
in a VQ-VAE, conditioned on each other. The unconditional approach uses a simple multi-layer
perceptron (MLP) for encoding and decoding. We also compare VQ-VAE tokenization to a simple
binning method, where input features are divided using a regular grid, with each grid cell assigned
a unique token (e.g., a 10 × 10 × 10 grid yields 1000 tokens). In the VQ-VAE, the input features
are first encoded by an encoder, and the resulting four-dimensional latent space representation is
quantized by a codebook (tokenization). This latent space representation of a jet is then decoded back
to the input / physical space (token reconstruction). An important aspect of the conditional VQ-VAE
is that a certain token can be reconstructed to multiple different points in physical space, depending
on the other tokens in the jet. This allows the model to cover a larger space of possible jets than the
unconditional VQ-VAE, which can only reconstruct a certain token to a single point in physical space.

1We use the default split of 100M jets for training, 5M jets for validation, and 20M jets for testing.
2The angle ϕ is the azimuthal angle in the transverse plane of the detector, while η is the pseudo-rapidity, a

measure of the angle between the particle and the beam axis. The transverse momentum pT is the momentum of
the particle in the plane perpendicular to the beam axis.
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Figure 2: Visualization of reconstructed tokens in physical space (ηrel, ϕrel) for different tokenization
approaches. Labels indicate the codebook size and the tokenization method. Unconditional and
binning approaches have a single reconstruction per token. For conditional tokens, we reconstruct each
token conditioned on 50 other tokens. To visualize the spread of a conditional token in physical space,
we repeat this process 500 times, each time drawing 50 random tokens. Those 500 reconstructions
are all drawn in the same color, resulting in a colored blob for each token.
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Figure 3: Difference between the
jet mass of tokenized jets and the
jet mass of the original jets for dif-
ferent tokenization approaches.
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Figure 4: Token quality evaluation
using a multi-class classifier, show-
ing accuracy for different code-
book sizes and classifier architec-
tures (purple and green). Classifiers
trained on original constituents pro-
vide an upper limit for accuracy.

The conditional VQ-VAE (with 8192 tokens) is trained on an
NVIDIA A100 GPU for 300k training steps, taking around
20 hours of training time, whereas the unconditional VQ-VAE
(with 512 tokens) converges already after a around 50k training
steps, taking around 2 hours on an NVIDIA P100 GPU.

To investigate the quality of the tokenization, we explore the fol-
lowing aspects: (a) the spread of the tokens in physical space on
a per-particle level; (b) the quality of the tokenized jets in terms
of jet-level observables; and (c) the loss of information due to
the tokenization, as measured by using the reduced-resolution
particles as an input to a jet classifier. A visualization of the
token spread in physical space is shown in Figure 2. To assess
token coverage of the physical space, we visualize reconstructed
tokens as scatter plots in the (ηrel, ϕrel) plane, which represents
the spatial orientation of the constituent with respect to the jet
axis. This is done for codebook sizes of 512 and 8192 tokens
using both VQ-VAE tokenization strategies and a (21x21x21)
binning method.3 For the conditional VQ-VAE, we plot the ηrel
and ϕrel values of each token for 500 random configurations
of the remaining particles (we always reconstruct a set of 51
tokens), which results in a spread of tokens across the physical
space. This spread is advantageous as it covers a large feature
space with fewer tokens, unlike the unconditional VQ-VAE
and binning, where each token corresponds to a single point.
Multiple jet-level observables are used to evaluate the quality
of the tokenized jets. Figure 3 shows the jet mass resolution for
t → bqq′ jets. The unconditional tokenization with a codebook
size of 8192 gives the best resolution, both in terms of accu-
racy and spread.4 A similar behavior can be observed for other
classes, where in some cases, depending on the jet observable
and the jet type, the effect is even more extreme.

To quantify the information loss due to tokenization, we train
multi-class classifiers to differentiate between the ten jet types
in the dataset. The classifiers are trained with both the original
inputs and the inputs after tokenization and reconstruction. This comparison highlights how resolution
loss affects classification performance. We use two classifier architectures: DeepSets [29, 25] (without
particle interactions) and Transformer [30, 31] (with particle interactions), studying four codebook
sizes ranging from 512 to 8192 tokens for the conditional tokenization approach. The resulting

3Chosen to match the number of tokens in VQ-VAE tokenization. The binning in pT is applied to log(pT).
4As expected, the resolution of the binning approach automatically leads to good resolution when the number

of bins is increased to a sufficiently large number. We found that around 64 000 tokens (corresponding to a
40x40x40 grid) offer similar resolution as conditional tokenization with a codebook size of 8192.
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classifier accuracy, shown in Figure 4, indicates that token quality improves with larger VQ-VAE
codebook sizes, though the performance plateaus beyond 4096 tokens. Even at the largest codebook
size, a performance gap remains compared to the original particles, suggesting the need for more
accurate tokenization methods in future work. For the remaining studies we utilize a codebook size
of 8192 with conditional tokens as this leads to the overall best performance based on our metrics.

3 Particle token generation

The core of the OMNIJET-α model is a transformer backbone based on the GPT transformer decoder
model from [32], using N = 3 GPT blocks with n = 8 heads in the multi-head attention blocks.
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Figure 5: Comparison of the subjetti-
ness ratio τ32 of generated jets from the
model trained on both q/g and t → bqq′

jets, to reconstructed JETCLASS tokens.

During training, a Next-token prediction head consisting
of a single linear layer is attached to the backbone. The to-
kens zi are sorted by pT in descending order before being
fed to the transformer. Two additional tokens, a start to-
ken and a stop token, are added to form the sequence:
(start_token, z1, ..., zn−1, zn, stop_token). During
generation, the model is provided with the start token and
then auto-regressively samples the probability distribution
p (zj |zj−1, ..., z1, start_token) for the next token. This
process is repeated until the stop token is generated or the
maximum sequence length (128) is reached. The gener-
ated tokens are then decoded back to physical space using
the (frozen) VQ-VAE decoder. The generative model is
trained on the joint dataset of q/g and t → bqq′ jets, which
totals to 20M jets, for 20 epochs, taking around 20 hours of
training time when trained on four NVIDIA A100 GPUs.
A comparison of reconstructed JETCLASS jets and gener-
ated jets is shown in Figure 5 for the N -subjettiness [33]
ratio τ32, which is known to be a difficult observable to
model. We observe that in general the model is able to match the truth level tokens well.

4 Transfer learning from generation to classification

102 103 104 105 106

Number of training jets

0.7

0.8

0.9

1.0

AU
C

OmniJet-  transfer learning

Fine-tuning
Fine-tuning
(backbone fixed)
From scratch

102 103 104 105 106

Number of training jets

0.7

0.8

0.9

Ac
cu

ra
cy

OmniJet-  transfer learning

Fine-tuning
Fine-tuning
(backbone fixed)
From scratch

Figure 6: Performance of pre-trained and
non-pre-trained models for the task of
t → bqq′ vs q/g jet classification.

To evaluate the ability of the model to generalize from
generating jets to classifying them, we focus on the task
of hadronic top quark tagging [34, 9], i.e. distinguishing
t → bqq′ and q/g jets on the JETCLASS [23] dataset. For
this test, the Next-token prediction head is replaced by
a Classification head while the transformer backbone is
retained. The classification head consists of a linear layer
followed by ReLU, a sum over the constituent dimension,
and another linear layer with softmax activation function.
We compare three training strategies: training the full ar-
chitecture with randomly initialized weights (termed from
scratch) which does not use transfer-learning and corre-
sponds to the baseline, and two versions of fine-tuning the
model obtained from the generative training. In the regular
Fine-tuning runs, both the pre-trained backbone weights
and the randomly initialized classification head weights are allowed to float in the training, while in
Fine-tuning (backbone fixed) only the classification head is allowed to change. The results of these
training runs are presented in Figure 6 as a function of the number of training examples provided to
the model. We observe a significant gain in classification accuracy of both fine-tuning approaches
compared to the baseline, leading to up to 17 percentage-points higher accuracy for small number
of training jets, and outperforming by a few percentage-points at the highest training sample size.
The difference between the two fine-tuning strategies is relatively small, with the more open training
performing slightly better. Put differently, the generative pre-trained model achieves an accuracy of
around 85% with 100 training examples for which the model that is trained from scratch requires
more than 10 000 examples.
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5 Conclusion

Our investigations into strategies for effective data representations show that methods like conditional
tokenization with a codebook size of 8192 help reduce information loss, which is crucial for classifi-
cation and regression tasks. Moreover, OMNIJET-α shows the ability to transition from unsupervised
generation to supervised classification, consistently performing well compared to training from
scratch, even with limited labeled data. This underscores the usefulness of foundation models in
leveraging large unlabeled datasets for tasks with scarce labeled data. While our work is a step
toward comprehensive foundation models, there is still room for improvement in the classification and
generation performance. Further work is currently ongoing with regards to enhancing representation
quality, exploring masked pre-training, scaling up architectures and training data, and expanding
generalization studies. Long-term, integrating diverse datasets and embedding foundation models
into community workflows are key goals.
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