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Abstract

With the growing demand for clean energy, fusion presents a promising path to sus-
tainable power generation. Inertial confinement fusion (ICF) experiments trigger
nuclear reactions by firing lasers at a fuel target, typically composed of deuterium
and tritium. These experiments are costly and require complex optimization of the
laser pulse shape across multiple shots to maximize energy yield. Even though
Bayesian Optimization (BO) has been commonly used to optimize such expensive
scientific experiments, vanilla BO methods do not leverage prior knowledge of
the function from simulations or past experiments and fail to achieve high sample
efficiency. In this work, we adapted and explored BO meta-learning techniques
for ICF that either meta-learn the BO surrogate model, the acquisition function, or
both from simulations. Our results demonstrate that the three meta-learning tech-
niques we investigated, Meta-Learning Acquisition Functions for BO (MetaBO),
Rank-Weighted Gaussian Process Ensemble (RGPE), and Neural Acquisition Pro-
cesses (NAP), drastically reduce the number of experiments needed to achieve a
satisfactory yield in ICF simulations.

Figure 1: Difference between Meta-BO and Classic BO approaches. Meta-BO methods leverage knowledge
collected from previous optimizations or simulations to increase optimization effectiveness.

1 Introduction

The global energy demand is rapidly raising, the International Energy Agency (IEA) projects that this
demand will double by 2050 (Eia, 2015). Currently, more than 80% of the world’s energy supply
comes from fossil fuels like petroleum, coal, and natural gas (Bahrami et al., 2019). Nuclear fusion
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holds the promise for limitless, clean energy. Inertial confinement fusion (ICF) initiates nuclear fusion
by rapidly compressing fuel targets, typically composed of deuterium and tritium, using high-energy
lasers. ICF experiments are complex and exceptionally costly because of the extreme conditions
needed to achieve nuclear fusion. The high expenses and the limited number of ICF facilities lead to
very few opportunities for experimentation, often just a few times a year. So the development and
study of ICF optimization techniques that can utilize data in a sample-efficient manner is critical. To
our knowledge, this work is the first to study the application of meta-learning BO techniques in ICF,
augmenting BO from previous experiments or simulations. We specifically study three classes of BO
meta-learning techniques:

• MetaBO (Volpp et al., 2020) which meta-learns the acquisition function using Reinforcement
Learning (RL).

• Rank-Weighted Gaussian Process Ensemble (RGPE) (Feurer et al., 2022) which uses an
ensemble of Gaussian Processes as the surrogate model.

• Neural Acquisition Process (NAP) (Maraval et al., 2023) which simultaneously meta-learns
the surrogate model and the acquisition process in an end-to-end manner.

We show that meta-learning improves the performance of BO by increasing the effectiveness of the
optimization process in ICF.

Figure 2: NAP’s meta-learned surrogate predictions: (left) without any context points; (middle) after three
context points; (right) the optimization target function. NAP achieves rapid adaptation with high sample
efficiency, which is ideal for the limited ICF experiments possible on a shot day, given only a few shot days
occur annually. For clarity, two of the five dimensions are plotted here.

2 Background

2.1 ICF

Figure 3: An example laser pulse shape used
in ICF experiments. The shape is controlled
by 5 parameters. The parameters are adjusted
during an optimization campaign to maxi-
mize energy yield.

ICF is a technique used to achieve nuclear fusion by sub-
jecting a tiny fuel pellet, usually made from a blend of
deuterium and tritium (hydrogen isotopes), to extremely
high temperatures and pressures. This is typically done
using high-powered lasers. The aim is to create the right
environment for the nuclei to overcome their natural re-
pulsion and fuse, releasing substantial energy (Betti and
Hurricane, 2016; Lees et al., 2021; Gopalaswamy et al.,
2019, 2024). The energy output for a given payload is
influenced by the laser pulse, which delivers a massive
burst of energy within a short time (3 ns). The shape of
this pulse is controlled by 5 parameters, which are vital
for ICF optimization. An example of a pulse is shown
in Figure 3. Other related optimization studies include
(Gutierrez et al., 2024; Shmakov et al., 2023).

ICF experiments are extremely expensive. They rely on
advanced, powerful laser systems due to the demanding
conditions necessary for achieving nuclear fusion. The high costs of the experiments and the
limited number of facilities equipped to perform ICF experiments lead to very infrequent experiment
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opportunities, often limited to ten to twenty shots annually (five to ten per experimental campaign).
To accelerate ICF development, the exploration and study of sample-efficient techniques for ICF
optimization is crucial.

2.2 Bayesian Optmization

In BO, we sequentially maximize an expensive to evaluate black-box function f(x) for variables
x ∈ X , where X is the input domain. BO techniques operate in two steps. First, based on previously
collected evaluation data, we fit a probabilistic surrogate model to emulate f(x) allowing us to make
probabilistic predictions of the function’s behavior on unobserved input points. Given the first step’s
probabilistic predictions, the second step in BO optimizes an AF that trades off exploration and
exploitation to find a new input query, xnew ∈ X , which is chosen for evaluation.

The goal in BO is to find the global optimum x∗ as:

x∗ = argmax
x∈X

f(x) (1)

2.3 Meta Bayesian Optimization

Figure 4: The progression of the pulse shape
over the course of the optimization trajectory
as recommended by NAP.

Meta-BO approaches aim to improve the optimization
of new unseen target black-box functions by leveraging
knowledge from a set of N related source tasks (functions)
F (Maraval et al., 2023).

In Meta-BO, we assume that the model has access to this
knowledge in the form of N datasets D1, ....,DN collected
from evaluations in the set of N source tasks. Each dataset
Dn consist of en evaluations of fn(x) ∈ F for all n ∈ [1 :
N ], such as Dn = {(xi

n, y
i
n)}

en
i=1, where yin = fn(x

i
n).

These datasets are leveraged by the Meta-BO approaches
to meta-learn a surrogate model, an AF, or both. In real-
world applications such as ICF, the source task used for
meta-learning can be built from simulations.

2.3.1 MetaBO

MetaBO (Volpp et al., 2020) uses RL to meta-learn an
AF on source tasks that are drawn from the same function
class as the target task. It replaces the AF with a neu-
ral network that is able to identify and exploit structural
properties of a class of functions. Specifically it uses the
Proximal Policy Optimization (PPO) method as proposed
in (Schulman et al., 2017) for training. A major drawback
of this technique is the use of a discrete grid when finding
the maximum of the AF. This is done in order to save on
computational cost during training. We replace this with
a continuous optimization algorithm during the evaluation
phase only.

2.3.2 RGPE

RGPE (Feurer et al., 2022) proposes a new method for
Bayesian optimization by combining knowledge from past
optimization runs. RGPE ranks past optimization tasks
according to their similarity to the current task and creates
a weighted combination of Gaussian process models, each
trained on these ranked tasks. This approach allows selec-
tive transfer of knowledge, focusing on the most relevant
past experiences and ultimately improving the accuracy and efficiency of the surrogate model.
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2.3.3 Neural Acquisition Process (NAP)

While most Meta-BO techniques either meta-learn the surrogate or the AF, NAP provides state-of-
the-art performance by jointly learning both in an end-to-end manner using Transformer Neural
Processes (TNP) (Nguyen and Grover, 2023; Maraval et al., 2023), a class of models that combine
the flexibility and performance of transformers with the properties of stochastic processes. NAP is
trained using PPO in conjunction with an auxiliary supervised loss to build its AF.

3 Experiments

We evaluate the performance of different Meta-BO approaches, and compare against vanilla BO
approaches, in the task of energy yield optimization for ICF. For dataset creation, we utilized
the LOTUS library (Ejaz et al., 2024) to generate various laser pulse profiles based on a custom
parametrization. These parameters determine the laser power and timing, which were then used as
inputs for LILAC (Delettrez et al., 1987), a simulator for laser-driven fusion physics. The chosen
laser pulse shape significantly affects the experimental results (energy yield), influencing both the
compression of the fusion fuel and the development of hydrodynamic instabilities (Williams et al.,
2021). To develop a response surface reflecting different entropy shapes, we varied 5 parameters
related to the laser pulse. Using Latin hypercube sampling, we generated 50,000 samples within the
design constraints of the laser system. These pulse shapes were tested with the LILAC simulator on a
fixed fusion fuel target, and the resulting neutron yields were analyzed to construct a response surface
based on these 5 parameters. Additionally, to create a diverse evaluation, we generated two source
tasks and one test task by modifying the simulator’s physics models, specifically, the equation of
state, which affects shock behavior in fusion fuel, thus changing the response surfaces across different
simulation versions. This divergence allows us to approximate the potential differences encountered
in sim-to-real scenarios for ICF experiments.

3.1 Meta-learning Performance

0 2 4 6 8 10
Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Re

gr
et

Regret Comparison between BO methods
RGPE
GP-EI

NAP
Random

GP-UCB
MetaBO

Figure 5: Comparison between classic BO methods and
Meta-BO methods in ICF. NAP is able to achieve op-
timal performance in few-samples. The shaded areas
represent a ±1 standard error. Regrets are normalized.

We compare the Meta-BO approaches with the
standard BO approach, which utilizes a GP sur-
rogate model combined with classical acquisi-
tion functions like UCB and EI (Garnett, 2023).
Additionally, we include Random Search as a
baseline. The performance of the approaches is
evaluated in terms of simple regret Volpp et al.
(2020); Maraval et al. (2023).To emulate a real-
world setting, we restrict the number of samples
in our experiments to 15. We run all experi-
ments using 5 different seeds. The results of this
evaluation, shown in Figure 5, demonstrate the
comparative performance of the methods. The
meta-learning approaches such as RGPE and
NAP demonstrate superior performance com-
pared to the classic BO baselines, highlighting
the benefits of meta-learning in the ICF domain.
Notably, NAP exhibits exceptional performance
by reaching optima with only a few samples,
indicating its potential to accelerate progress in
ICF development.

3.2 NAP’s Surrogate Predictions

To understand the superior performance achieved by NAP, we examine the predictions made by its
surrogate model and assess how well it adapts. To conduct this evaluation, we compare the real
target function (test task) with NAP’s predictions in a 2D space. For NAP, we first evaluate its
initial predictions with zero context, so the surrogate information only comes from the meta-learning
pretraining (Context:0). Moreover, we assess how NAP adapts by querying it after three samples
have been collected from the target function (Context:3). The evaluation results in Figure 2 show
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that NAP effectively uses information from source tasks to identify regions with a higher likelihood
of finding optimal solutions. Furthermore, after incorporating just a few samples, NAP accurately
adjusts its predictions to match the target function closely. Figure 4 shows the progression of the
pulse shape over the course of an optimization trajectory, as recommended by NAP. NAP proposes
larger adjustments at the early stages, while at later stages it does some minor finetunning.

3.3 Experimental Settings

For the NAP experiments, we used the default hyper-parameters provided in the original implementa-
tion (Maraval et al., 2023). Table 1 shows the hyper-parameters for PPO, and Table 2 shows those for
the TNP.

Parameter Value

Learning rate for gradient descent 3 · 10−5

Learning rate decay Linear decay to 0 over 2000 iterations
Number of training PPO iterations 2000
Horizon of episodes used in training 24
Trajectories collected per iteration 60
Total numbers of transformer updates 90,000
Mini-batch size 32
Weight of auxiliary loss in total loss (λ) 1.0
Weight of the value function loss in total loss 1.0
Generalized Advantage Estimator-λ 0.98
Discount factor γ 0.98
Clip of importance sampling ratio ϵ 0.15
L2 gradient clipping 0.5

Table 1: Hyperparameters used for NAP’s PPO

Parameter Value
Number of buckets in the output histogram 1000
Point-wise feed-forward dimension of Transformer 1024
Embedding dimension of Transformer 512
Number of self-attention layers of Transformer 6
Number of self-attention heads of Transformer 4
Dropout rate of Transformer 0.0
Softmax temperature to compute π from α 0.1 for training, argmax otherwise
Value function network Linear(2, 512), Tanh, Linear(512, 1)

Table 2: Architecture for the Transformer Neural Processes in NAP

4 Conclusion and Future Work

We show that Meta-BO techniques can significantly improve the effectiveness of ICF simulations.
High sample efficiency can reduce the cost of experiments, accelerating the path to fusion energy
and contributing to a more sustainable planet. We plan to extend these techniques to multi-fidelity
Bayesian Optimization, incorporating data from higher-fidelity simulations and past experiments to
further improve optimization.
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