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Abstract

The reconstruction of fields from sensor data is a common task in scientific ap-
plications. In many cases, the observation is under resolved, and memory must
be incorporated to uniquely recover the underlying system. For dissipative sys-
tems, dynamical systems theory provides guidance in formulating these data-driven
reconstructions, which has been the focus of many optimization and machine learn-
ing approaches. Most models are restricted to data sampled at fixed positions and
regular time intervals. We introduce a model which overcomes these limitations
using attention mechanisms with spatial and temporal encodings. Our model is
based on the Senseiver, which reconstructs fields from instantaneous sparse sensor
measurements. Informed by time delay embedding theorems, we formulate an
attention-based model that learns from sensor data at varying spatial position and
sampling rates. We evaluate the model on systems exhibiting a limit cycle and
spatiotemporal chaos.

1 Introduction

Inspired by success in reconstructing degraded images, neural networks (NNs) have been applied
to system reconstruction in many scientific applications [22| 2| [15] |6l [18]. These problems are
related to phase space reconstruction via Takens embedding theorem [20], which proves that for
dynamics on an attractor, a time delay embedding of a scalar observable has a diffeomorphism to
the underlying system. Data-driven applications of these approaches emerged shortly after using
local principal components analysis [S] and multi-layer perceptrons (MLPs) [16]. Progress in
implementation of machine learning algorithms has led to significant advances in the speed and
accuracy of reconstruction and forecasting models via reservoir computers (RCs) [13]], convolutional
NNss [6], Gaussian process regression [10], symbolic regression [1], long-short term memory [28} 24],
and neural ODEs (NODEs) [14] 23| 26].

Despite this success, limited availability of data prevents direct application of most models. Data is
often noisy, and sensors often drift in space or collect data intermittently. These pose challenges for
models trained on clean data available at fixed positions and uniform intervals. The noise issue can be
addressed by combining the forecast or reconstruction with model-free data assimilation methods [8]].
Several approaches have addressed variable sensor positions and time sampling using NODEs and
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implicit neural representations [25)9]. However, these approaches tend to rely on hyperparameter
tuning and lack an underlying theoretical motivation. Time delay embeddings have been extended to
the case of irregularly sampled data by ‘bundle embeddings’ [19}[10], which essentially concatenate
the sampling rate into the state representation.

Here, we develop a model for reconstructing the field values of a dynamical system with variable
measurement intervals and sensor positions. The approach relies on the bundle embedding theorem
[19], which implies the data should reside on a long-time ‘inertial manifold’ or ‘strange attractor’ of
dimension d, and embedding dimension m > 2d 4 + 1 to ensure the existence of the reconstruction
map. Positional and temporal encodings are implemented in an attention-based autoencoder as an
extension of the Senseiver model [17]. Compared to the previous model, the time delay embed-
ding improves reconstructions when the number of sensors is lower than the underlying manifold
dimension. For low Reynolds number flow past a cylinder—a limit cycle—we demonstrate accurate
reconstruction from a single sensor for: 1) a range of time sampling rates and 2) variable sensor
positions (both cases done separately). We also compare the model to previous work using MLPs [26]]
and RCs [13] for reconstructing the Kuramoto-Sivashinsky equation (KSE) in a chaotic parameter
regime.

2 Methodology

We build upon the attention-based Senseiver model [[17] by incorporating time delay embeddings.
Let s; be the sensor measurement recorded at position ;. For N, sensor values, we form the time
delay embedding s4(t) € RYsX™ where m is the number of time delays. The matrix component
sq(i,j,t) = s;(t — ;) contains the jth delay of the ith sensor value, where ¢;; and 7;; are the
corresponding sensor measurement time and delay spacing, ¢ is the leading sensor measurement time,
and 7;; = t — t;;. The sensor positions & = {%}fil are encoded with sines and cosines [[17] to a,,
where each physical coordinate value (scalar) is mapped to a vector of length 32. Each component in
the delay spacing matrix 7 is encoded with a time2vec (t2v) encoding [[L1] to get a; (see Appendix
. This space-time encoding is fed as input along with the sensor value embedding s4(t) to an
attention-based encoder E' that maps to a latent space Z; then, an attention-based decoder D maps Z
and a query position x, to get the field value §(¢). In mathematical terms, the model is as follows:

g = PE(:E)’ (1)
Z(t) = E(s4(t), az,at) = E(s4(t), Pr(zs),12v(T)), )
8(wq,t) = D(Z(t), aq) = D(Z(t), Pp(x,)). ()

Figure [I] shows a schematic of the model. We query the spatial domain point-by-point to get the
fully reconstructed field § at the current time ¢. The loss is (||s — 5|}, where the norm is performed
over spatial points and the averaging is done over all training snapshots. In this study we use all
spatial positions from the high resolution for training. However, the Senseiver output is pointwise,
meaning the model can be trained with any level of downsampling in the ground truth data or choice
of random seeding from a full field [[7]. Additional details of the architecture is in Appendix[A.2]
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Figure 1: Architecture details. A time delay embedding of sensor values is concatenated with the
positional and temporal encodings and encoded to a compressed latent space. The latent values are
passed to the decoder with a query position to reconstruct the field at the current time.




3 Results

3.1 Non-uniform sampling in time

We first test the Senseiver on 2D flow past a cylinder at Re = 100, which settles onto a limit cycle
with manifold dimension dy; = 1. We reconstruct the steady state vorticity field w from a single
sensor with a variable sampling rate. The dataset consists of 5000 snapshots that cover ~ 4 vortex
shedding periods, of which 50 are used for training and the rest used for testing. During training
and testing, the snapshots are variably spaced apart by 50 to 500 frames. As seen in Figure 2(d),
the original Senseiver with no delay embeddings (m = 1) fails to capture the limit cycle, producing
a mean L2 reconstruction error of € = |lw — @l|2/||w|l2 = 0.58. This is expected, as we cannot
prove the reconstruction map exists for m < 2daq + 1. Following Takens theorem, we select the
embedding dimension m = 3. Concatenating the variable delay spacings 7o; for j = 1,2 to the
m = 3 embedding of the sensor values yields a lower error of ¢ = 0.12 (see Figure2[e)). Upon using
a t2v encoding of 7, the error further decreases to € = 0.05 (see Figure Ekf)). As seen in Figure Ekc),
the test error remains low for each pair of delay spacings 7p; when using the method of t2v (while
not shown, the heatmap plot of € is similar for the other m = 3 method involving concatenation). We
interpret the t2v encoding improvement as an increase of expressiveness of the model in predicting
with a range of delay spacings rather than a single ‘optimal’ choice of delay coordinates.
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Figure 2: Field reconstruction of flow past a cylinder from sensor measurements that are non-uniform
in time. (a) True vorticity field w, with location of sensor marked with a square. (b) Reconstruction
error for methods shown in panels (d)-(f). (c) Reconstruction error across each pair of delay spacings
To; for method shown in panel (f). Reconstruction fields & for models trained with (d) no time delay
embedding, (¢) embedding dimension m = 3 with temporal encoding of 7(; via concatenation, and
(f) m = 3 with temporal encoding of 7y; via t2v are shown in the top panels of each subfigure.
Difference in true and reconstructed fields are shown in the respective bottom panels of (d)-(f). In
each field image, bounds on the y-axis are [—9, 9] and the z-axis are [0, 32] in dimensionless units.

3.2 Variable sensor position

We now test the model’s robustness to sensor positions not seen during training. We work with
uniformly sampled data here, so the positional encoding is still used but the temporal encoding is not.
During training and testing, we use one sensor and its 3 time delays (spaced apart by 100 frames)
as input to the model. 16 sensor positions in the vortex shedding region with high variance in the
sensor values [6]] are chosen for training. During testing, we individually evaluate the model for each
and every point in the domain. As seen in Figure [3{(a), the test error is generally lower for testing



locations at or near the 16 training locations (see Figures[3[b,c)). The high error at points exterior of
the vortex-shedding region is due to the signals exhibiting small variance at all times. While the error
is high for most out-of-training points interior of the vortex-shedding region, Figures 3{d,e) indicate
that the model still reconstructs data on the true attractor but with a phase shift from the ground truth.
The phase inaccuracy is likely a result of the chosen delay spacing not being optimal for all sensor
positions.
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Figure 3: (a) Time and space averaged reconstruction test error for using a given sensor position
as model input; dashed blue circles indicate training positions. (b) Error for each frame in a vortex
shedding period for three sensor locations; vertical line corresponds to the snapshot time below for
panels (c)-(e), which visualize the reconstruction at the selected locations. Panel (c) is a training
position x =~ 14,y ~ 0, whereas (d) y = —0.5 and (e) y =~ —1 are test positions.

3.3 Chaotic systems

Lastly, we apply our model to the KSE, which is a 1D partial differential equation exhibiting diverse
dynamical behavior. The domain size is L = 22 with periodic boundary conditions [3], for which
there is sustained chaos on an inertial manifold of dimension dy; = 8 [4, 12, 27]. We compare
Senseiver to previous work using MLPs with time delays [26]] and reservoir computing [[13]]. For all
three methods, the training data size is kept constant at 60,000 with uniform time interval At = 0.25,
the test data size is 10°, and the reconstruction error e is calculated for spatial points not corresponding
to sensor positions. We examine the case of 1, 2, 4, and 8 sensors (which are fixed and evenly-spaced)
and adjust m so that Nym = 16 = 2d\q with 7 = 8At. We list € in Table|I|f0r the three methods.
For all but the 8-sensor case, our Senseiver model with time delays achieves a lower error than the
other two methods. Moreover, our model does so with fewer parameters, which aids in computational
efficiency during training and testing.

Our method also generalizes well to non-uniform time spacing (not shown), achieving an error of
e = 0.12 for Ny = 4 and m = 4 delays with spacings ranging from 2At to 16A¢. These results
will reported in further detail along with a study of variable sensor positions in a forthcoming full
publication.

Table 1: Reconstruction error for Kuramoto-Sivashinsky equation (KSE). For all methods except
reservoir computing (RC), the number of delays m and sensors N, are set such that Nym = 16.

Method e(Ns=1) €(Ng=2) €(Nsg=4) €(Ns=28) parameters
Senseiver 0.68 0.37 0.13 0.05 2 x 104
MLP [Young et al. 2023] 0.70 0.44 0.15 0.03 3 x 10°
RC [Lu et al. 2017] 0.91 0.68 0.31 0.10 2 x 10°



4 Conclusion

We developed an attention-based model for reconstructing the fields of dissipative dynamical systems
from sensor measurements that are spatially sparse and irregularly sampled in time. We expanded on
the Senseiver [[17] by allowing for time delay embeddings as the input. We first applied our model
to flow past a cylinder, where we reconstructed the full vorticity field from a single sensor with
irregular time sampling. The model achieved low reconstruction error by using a delay embedding
dimension of 3 along with a time2vec encoding [11]] of the delay spacings to account for the temporal
intermittency of the sensor. Next, we tested the model’s ability to reconstruct the vorticity field from
variable sensor positions not seen during training. Facilitated by the spatial encoding of the sensor
positions, the model achieved modest out-of-distribution generalization; however, there was some
phase error in the reconstruction for test sensor positions that were not located near the training
positions. Lastly, we applied the model to the spatiotemporally chaotic KSE for non-variable sensor
positions and uniform time sampling. While our model achieved similar reconstruction performance
to MLPs, the attention mechanism used in our model allows for the computational complexity (and
thus number of parameters) to scale less strongly with the length of the space-time encoding, which
can be quite long and expensive to process with MLPs. We have demonstrated the developed model is
capable of reconstructing fields from spatially and temporally sparse sensors that also vary in location.
Code to reproduce the results will be included in a forthcoming publication, and the code for the
original Senseiver is available at https://github.com/OrchardLANL/Senseiver.
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A Appendix / supplemental material

A.1 Time2vec encoding
The time2vec encoding [11] maps a scalar 7 to a vector

wiT + b, ifk=0
2 k] =
v(rlE] {F(wkr+bk), forl <k<K-1’
where t2v(7)[k] is the kth component of t2v(7) € RE, F is an activation function, and wy, and by,
are learnable parameters. We choose F' to be the sine function and K to be 32. The t2v encoding
allows both cyclic and non-cyclic information to be encoded.

A.2 Architecture details

Here we provide additional details on the attention-based encoder and decoder blocks in Figure [T}
which are based on the architecture in the original Senseiver model [[17]. We use the scaled dot
product attention mechanism [21]]

Attention(Q, K, V) = Softmax (QKT> v 4)
I I - m 9

where d,, is the model dimension of query matrix Q, key matrix K, and value matrix V.

Multi-head attention applies a set of Ny linear transformations on Q,K and V and computes
the attention mechanism on each linear transformation. Then, the outputs from each head are
concatenated and passed through a final linear transformation to form the output:

MultiHead(Q,K,V) =[0; @ - ® Opn,| Wy Q)
where Oy, = Attention(QW,?, KWE VW), (6)

For the time-delayed Senseiver model, the sequence length is d; = Nym, since each sensor has m
delays. The model dimension is d,, = N5 + 2NyNg + K, where N7 is the number of channels
of the sensor measurements (one for the cases considered in this paper), N is the number of pairs
of sine-cosine frequencies used in the positional encoding for each of the N; number of spatial
directions, and K is the length of the time2vec encoding.

The attention-based encoder processes the input E(®) € R *dm with a linear layer to give an
intermediate output EM € R4:*Ne where N, is the number of latent channels. Next, a multi-head
cross attention is performed between a trainable query array Q;, € RV *Ne and key and value
matrices derived from E() to yield E(®); here, Ng,, is the latent sequence length that is held constant
to allow the attention calculations to be independent of N, and m. E(®) is then processed with multi-
head self-attention to give the latent space Z € R¥@m *Ne, The attention-based decoder performs
similar steps as the encoder (see [17]), but includes a final MLP layer to reduce the dimension and
obtain the predicted measurement $ at the queried location x, and current time ¢.



	Introduction
	Methodology
	Results
	Non-uniform sampling in time
	Variable sensor position
	Chaotic systems

	Conclusion
	Appendix / supplemental material
	Time2vec encoding
	Architecture details


