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Abstract

Developing an efficient sampler capable of generating independent and identically
distributed (IID) samples from a Boltzmann distribution is a crucial challenge in
scientific research, e.g. molecular dynamics. In this work, we intend to learn neural
samplers given energy functions instead of data sampled from the Boltzmann
distribution. By learning the energies of the noised data, we propose a diffusion-
based sampler, NOISED ENERGY MATCHING, which theoretically has lower
variance and more complexity compared to related works. Furthermore, a novel
bootstrapping technique is applied to NEM to balance between bias and variance.
We evaluate NEM and BNEM on a 2-dimensional 40 Gaussian Mixture Model
(GMM) and a 4-particle double-well potential (DW-4). The experimental results
demonstrate that BNEM can achieve state-of-the-art performance while being more
robust.

1 Introduction
Given energy functions E(x), samplers for unnormalized target distributions i.e. Boltzmann distribu-
tion µtarget ∝ exp(−E(x)) are fundamental in probabilistic modeling and physical systems simulation.
For example, predicting the folding of proteins could be formalized as sampling from a Boltzmann
distribution (Śledź and Caflisch, 2018), where the energies are defined by inter-atomic forces (Case
et al., 2021). Efficient samplers for many-particle systems could have the potential to speed up drug
discovery (Zheng et al., 2024) and material design (Komanduri et al., 2000).

However, most related works face challenges with scalability to high dimensions and are time-
consuming. To solve these problems, a previous work(Akhound-Sadegh et al., 2024) proposes
Iterated Denoising Energy Matching (iDEM), which is not only computationally tractable but also
guarantees good coverage of all modes. iDEM proposes a bi-level training scheme that iteratively
generates samples from the learned sampler and performs score matching to the Monte Carlo
estimated target. While Woo and Ahn (2024) proposes a variant, iEFM, that targets the MC estimated
vector fields in a Flow Matching fashion, which we found can be linked through Tweedie’s formula
(Efron, 2011) shown in Appendix G. Nevertheless, both iDEM and iEFM require large numbers
of MC samplings for score estimation to minimize the variance at large time steps, which holds
disadvantages for complicated energy functions.

In this work, we propose an energy-based variant of DEM, NOISED ENERGY MATCHING (NEM),
which targets the MC estimated noised energies instead of scores. Despite a need to differentiate the
neural network when simulating the diffusion sampler, NEM is theoretically found to be targeting
less noisy objectives compared with iDEM. Our method demonstrates better performance on a
2-dimensional 40 Gaussian Mixture Model (GMM) and a 4-particle double-well potential (DW-4)
(Klein et al., 2023b). To further reduce the variance, BOOTSTRAP NEM (BNEM) is proposed in our
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work, which estimates high noise-level energies by bootstrapping from slightly lower noise-level
estimators. We theoretically found that BNEM trades bias to the variance of training target, which
empirically leads to state-of-the-art performance.

2 Related works
Conventional methods for many-body system simulation are based on molecular dynamics
(MD) Leimkuhler and Matthews (2012) techniques which require long simulation times. Others
leverage Monte Carlo techniques e.g. Annealed Importance Sampling (AIS) (Lyman and Zuckerman,
2007), which are computationally expensive. To speed up this process, a promising remedy is training
a deep generative model, i.e. a neural sampler. Unlike data-driven tasks, simply minimizing the
reverse Kullback-Leibler (KL) divergence for samplers can lead to mode-seeking behavior. Noé et al.
(2019) address this problem by using the Boltzmann Generator, which minimizes the combination of
forward and reverse KL divergence.

Inspired by the rapid development of deep generative models, e.g. diffusion models (Song and Ermon,
2019; Ho et al., 2020), pseudo samples could be generated from an arbitrary prior distribution. Then,
we can train the neural samplers by matching these sample trajectories, as in Path Integral Sampler
(PIS)(Zhang and Chen, 2022) and Denoising Diffusion Sampler (DDS) (Vargas et al., 2023). Midgley
et al. (2023) further deploy a replay buffer for the trajectories while proposing an α-divergence as the
objective to avoid mode-seeking. However, these methods require simulation during training. DDS
and PIS require the diffusion trajectories to minimize the KL divergence between prior distribution
and target distribution over them, while FAB requires simulating the AIS to correct the weights. This
poses challenges for scaling up to higher dimensional tasks.

3 Methods

3.1 Denoising diffusion based Boltzmann sampler

In this work, we consider training an energy-based diffusion sampler corresponding to a variance
exploding (VE) noising process defined by dxt = g(t)dwt, where t ∈ [0, 1], g(t) is a function of
time and wt is a Brownian motion. Then the corresponding reverse SDE with Brownian motion w̄t is
dxt = −g2(t)∇ log pt(xt)dt+g(t)dw̄t, where pt is the marginal distribution of the diffusion process
that starts at p0 = µtarget. Given access to the system energy E(x) and the perturbation kernel
qt(xt|x0) = N (xt;x0, σ

2
t ), where exp(−E(x)) ∝ p0(x), one can obtain the marginal distribution pt

pt(xt) ∝
∫

exp(−E(x0))N (xt;x0, σ
2
t I)dx0 = EN (x;xt,σ2

t I)
[exp(−E(x))] (1)

iDEM is proposed to train a score network sθ to match an MC score estimator SK

SK(xt, t) := ∇ log
1

K

K∑
i=1

exp(−E(x(i)
0|t)), x

(i)
0|t ∼ N (x;xt, σ

2
t I) (2)

Instead of the score network, here we consider training an energy network, Eθ(x, t), to approximate
the following noised energy, i.e. the energy of noised data

Et(x) := − logEN (x;xt,σ2
t I)

[exp(−E(x))] (3)

where exp(−Et(xt)) ∝ pt(xt). Then the score of marginal distribution at t can be approximated by
differentiating the energy network w.r.t its input x, i.e. sθ(x, t) = −∇xEθ(x, t). We train NEM with
a bi-level scheme by iterating: (a) an outer-loop that simulates the energy-based diffusion sampler
and updates the replay buffer; (b) a simulation-free inner-loop that matches the noised energies of
samples in the replay buffer. Detailed implementation is discussed in Appendix A.

3.2 Noised Energy Matching

NEM targets a novel MC energy estimator that approximates the noised energies

EK(xt, t) : = − log
1

K

K∑
i=1

exp(−E(x(i)
0|t)), x

(i)
0|t ∼ N (x;xt, σ

2
t I) (4)
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where Equation 4 can be implemented by the LogSumExp trick for stability. We characterize the bias
of EK with the following proposition:

Proposition 1 If exp(−E(x(i)
0|t)) is sub-Gaussian, then there exists a constant c̃(xt) such that with

probability 1− δ over x(i)
0|t ∼ N (xt, σ

2
t ), we have

∥EK(xt, t)− Et(xt)∥ ≤
c̃(xt)

√
log (1/δ)√
K

(5)

with c(xt)/c̃(xt) = 2(1 + ∥∇Et(xt)∥), where

∥SK(xt, t)− St(xt)∥ ≤
c(xt)

√
log (1/δ)√
K

. (6)

Proposition 1 shows that the training target of NEM has a smaller bound of bias compared with the
one of DEM, especially on regions with steep gradient, i.e. large ∥∇Et(x))∥. The complete proof is
given in Appendix B. Besides, we characterize the variance of SK and EK as follows:

Proposition 2 If exp(−E(x(i)
0|t)) is sub-Gaussian and ∥∇ exp(−E(x(i)

0|t))∥ is bounded, the total
variance of the MC score estimator SK is consistently larger than that of the MC energy estimator
EK in regions associated with low energies, with

tr (Cov[SK(xt, t)])

Var[EK(xt, t)]
= 4(1 + ∥∇Et(xt)∥)2. (7)

In regions associated with high energies, Var[EK(xt, t)] < Var[SK(xt, t)] holds when the target
energy E(xt) is positively related to at least one element of the score∇E(xt).
It demonstrates that the MC energy estimator can provide a less noisy training signal than the score
one, showcasing the theoretical advantage of NEM compared with DEM. The complete proof is
provided in Appendix C.

3.3 Bootstrap NEM: an improvement with bootstrapped energy estimation

Bootstrap NEM, or BNEM, targets a novel MC energy estimator at a high noise level that is
bootstrapped from the learned energies at a slightly lower noise level. Intuitively, the variance of EK

exploded at a high noise level as a result of the VE noising process; while we can estimate these
energies from the ones at a low noise level rather than the system energy to reduce variance. Suppose
a low-level noise-convolved energy is well learned, say Es, we can construct a bootstrap energy
estimator at higher noise level t by

EK(xt, t, s;ϕ) : = − log
1

K

K∑
i=1

exp(−Eϕ(x
(i)
s|t, s)), x

(i)
s|t ∼ N

(
x;xs, (σ

2
t − σ2

s)I
)

(8)

where s < t and ϕ a well learned neural network for any u ∈ [0, s]. We show that this bootstrap
energy estimator is trading variance to bias, in terms of training target, characterized in the following
proposition:

Proposition 3 Given a bootstrap trajectory {si}ni=0 such that σ2
si − σ2

si−1
≤ κ, where s0 = 0,

sn = 1 and κ > 0 is a small number, suppose Eθ is incrementally optimized from 0 to 1 as follows: if
t ∈ [si, si+1], then Eθ targets an energy estimator bootstrapped from s ∈ [si−1, si] using Eq. 8. Let
vyz(xz) = VarN (xz,(σ2

z−σ2
y)I)

[exp(−E(x))] and mz(xz) = exp(−Ez(xz)), where 0 ≤ y < z ≤ 1

and Ez is the ground truth noised energy at time z. The variance of the bootstrap energy estimator is
given by

Var[EK(xt, t, s; θ)] =
vst(xt)

v0t(xt)
Var[EK(xt, t)] (9)

and the bias of EK(xt, t, s; θ) is given by
v0t(xt)

2m2
t (xt)Kn+1

+

n∑
j=1

v0sj (xt)

2m2
sj (xt)Kj

. (10)

A detailed discussion and proof are given in Appendix D. Proposition 3 demonstrates that the
bootstrap energy estimator, which estimates the noised energies by sampling in a smaller ball, can
reduce the variance of the training target while this new target can introduce accumulated bias.

3



Table 1: Neural sampler performance comparison for GMM-40 and DW-4 energy function. we
measured the performance using data Wasserstein-2 distance (x-W2), Energy Wasserstein-2 dis-
tance (E-W2), and Total Variation (TV). * indicates divergent training. Bold indicates the best values
and underline indicates the second best ones.

Energy→ GMM-40 (d = 2) DW-4 (d = 8)
Sampler ↓ x-W2↓ E-W2↓ TV↓ x-W2↓ E-W2↓ TV↓
DDS 11.69 86.69 0.944 0.701 109.8 0.429
PIS 5.806 76.35 0.940 * * *
FAB 3.828 64.23 0.824 0.614 211.5 0.359
iDEM 8.512 562.7 0.909 0.532 2.109 0.161
NEM (ours) 5.192 85.05 0.906 0.489 0.999 0.145

BNEM (ours) 3.652 2.973 0.830 0.467 0.458 0.134

(a) DDS (b) PIS (c) FAB (d) iDEM (e) NEM (f) BNEM

Figure 1: Sampled points from samplers applied to GMM-40 potentials, with the ground truth
represented by contour lines.

4 Experiments

We evaluate our methods and baseline models on 2 potentials, the Gaussian mixture model (GMM)
and the 4-particle double-well (DW-4) potential. We provide the full description of the experimental
setting in Appendix H.

Baseline. We compare NEM and BNEM to following recent works: Denoising Diffusion Sampler
(DDS)(Vargas et al., 2023), Path Integral Sampler (PIS)(Zhang and Chen, 2022), Flow Annealed
Bootstrap (FAB)(Midgley et al., 2023) and Iterated Denoising Energy Matching (iDEM)(Akhound-
Sadegh et al., 2024). For a fair comparison, we set the number of integration steps to 100 and the
number of MC samples to 100. For baselines, we train all samplers using an NVIDIA-A100 GPU.

Architecture. We implement the same network architecture (MLP for GMM and EGNN for DW-4)
for all baselines. To ensure a similar number of parameters for each sampler, if the score network is
parameterized by sθ(x, t) = fθ(x, t), the energy network is set to be Eθ(x, t) =

∑
fθ(x, t) + c with

a learnable scalar c. Furthermore, this setting ensures SE(3) invariance for the energy network.

Metrics. We use x-W2, E−W2, and TV as metrics. To computeW2 and TV, we use pre-generated
samples as datasets: (a) For GMM, we sample from the ground truth distribution; (b) For DW-4, we
use samples from Klein et al. (2023b). .

Main results. We report x-W2, E−W2 and TV for GMM and DW-4 potentials in Table 1. It shows
that when the reverse SDE integration step is limited to 100, NEM can outperform iDEM on all
metrics in each task, showcasing its robustness. Furthermore, BNEM can outperform NEM by
targeting the bootstrap energy estimator, achieving state-of-the-art performance. In addition, the
visualized results for GMM are provided in Figure 1, which shows that NEM can generate samples
more concentrated to the GMM modes than iDEM and BNEM can further boost this concentration.
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5 Conclusion

In this work, we introduce NEM and BNEM, neural samplers for Boltzmann distribution and
equilibrium systems like many-body systems. NEM uses a novel Monte Carlo energy estimator with
reduced bias and variance. BNEM builds on NEM, employing an energy estimator bootstrapped
from lower noise-level data, theoretically trading bias for variance. Empirically, BNEM achieves
state-of-the-art results on the GMM and DW4 benchmarks. Future work will focus on scaling these
methods to higher-dimensional tasks like Lennard-Jones potential and alanine dipeptide.
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A Training Details

Algorithm 1 describes NEM in detail. The key difference in training the BNEM is only in the
inner-loop.

To train the BNEM, it’s crucial that the bootstrap energy estimation at t can be accurate only when
the noised energy at s is well-learned. Therefore, we need to sequentially learn energy at small t
using the original MC energy estimator then refines the estimator using bootstrap for large t, which
is inefficient. To be more efficient, we adapt a rejection training scheme: (a) given s and t, we first
compute the loss of targeting the MC energy estimator (4), ls and lt; (b) These losses indicate how
does the energy network fit the noised energies at different times, and therefore compute α = ls/lt as
an indicator; (c) with probability α, we accept targeting a energy estimator bootstrapped from s and
otherwise we stick to target the original MC estimator. We provide a full description of the inner-loop
of BNEM training in Algorithm 2.

B Proof of Proposition 1

Proposition 1 If exp(−E(x(i)
0|t)) is sub-Gaussian, then there exists a constant c̃(xt) such that with

probability 1− δ over x(i)
0|t ∼ N (xt, σ

2
t ), we have

∥EK(xt, t)− Et(xt)∥ ≤
c̃(xt)

√
log (1/δ)√
K

(11)

with c(xt)/c̃(xt) = 2(1 + ∥∇Et(xt)∥), where

∥SK(xt, t)− St(xt)∥ ≤
c(xt)

√
log (1/δ)√
K

. (12)
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Algorithm 1 Iterated training for Noised Energy Matching

Require: Network Eθ, Batch size b, Noise schedule σ2
t , Base distribution p1, Num. integration steps

L, Replay buffer B, Max Buffer Size |B|, Num. MC samples K
1: while Outer-Loop do
2: {x1}bi=1 ∼ p1(x1)
3: {x0}bi=1 ← sde.int({x1}bi=1,−∇Eθ, L) ▷ Simulate the reverse SDE for sampling
4: B = (B ∪ {x0}bi=1) ▷ Update Buffer B
5: while Inner-Loop do
6: x0 ← B.sample() ▷ Uniform sampling from B
7: t ∼ U(0, 1), xt ∼ N (x0, σ

2
t )

8: LNEM(xt, t) = ∥EK(xt, t)− Eθ(xt, t)∥2
9: θ ← Update(θ,∇θLNEM)

10: end while
11: end while
Ensure: sθ

Algorithm 2 Inner-loop of Bootstrap Noised Energy Matching training

Require: Network Eθ, Batch size b, Noise schedule σ2
t , Replay buffer B, Num. MC samples K

1: while Inner-Loop do
2: x0 ← B.sample() ▷ Uniform sampling from B
3: t ∼ U(0, 1), xt ∼ N (x0, σ

2
t )

4: n← arg{i : t ∈ [ti, ti+1]} ▷ Identify the time split range of t
5: s ∼ U(tn−1, tn), xs ∼ N (x0, σ

2
s)

6: ls(xs)← ∥EK(xs, s)− Eθ(xs, s)∥2/σ2
s

7: lt(xt)← ∥EK(xt, t)− Eθ(xt, t)∥2/σ2
t

8: α← min(1, lt(xt)/ls(xs))
9: with probability α,

10: LBNEM(xt, t) = ∥EK(xt, t, s;StopGrad(θ))− Eθ(xt, t)∥2
11: Otherwise, ▷ Use MC estimator if the model is not well trained
12: LBNEM(xt, t) = ∥EK(xt, t)− Eθ(xt, t)∥2
13: θ ← Update(θ,∇θLBNEM)
14: end while
Ensure: Eθ

Proof. We first introduce the error bound of the MC score estimator SK , where SK = ∇EK ,
proposed by Akhound-Sadegh et al. (2024) as follows

∥SK(xt, t)− S(xt, t)∥ ≤
2C
√

log( 2δ )(1 + ∥∇Et(xt)∥) exp(Et(xt))
√
K

(13)

which assumes that exp(−E(x(i)
0|t)) is sub-Gaussian. Let’s define the following variables

mt(xt) = exp(−Et(xt)) (14)
vst(xt) = VarN (xt,(σ2

t−σ2
s)I)

[exp(−E(x))] (15)

By the sub-Gaussianess assumption, it’s easy to show that the constant term C in Equation 13 is
C =

√
2v0t(xt). Notice that EK is a logarithm of an unbiased estimator . By the sub-Gaussian

assumption, one can derive that EK is also sub-Gaussian. Furthermore, it’s mean and variance can
be derived by employing a first-order Taylor expansion:

E[EK(xt, t)] ≈ Et(xt) +
v0t(xt)

2m2
t (xt)K

(16)

Var[EK(xt, t)] ≈
v0t(xt)

m2
t (xt)K

(17)
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And one can obtain its concentration inequality by incorporating the sub-Gaussianess

∥EK(xt, t)− E[EK(xt, t)]∥ ≤

√
2

v0t(xt)

m2
0t(xt)K

log
2

δ
(18)

By using the above Inequality 18 and the triangle inequality

∥EK(xt, t)− Et(xt)∥ ≤ ∥ logEK(xt, t)− E[EK(xt, t)]∥+ ∥E[EK(xt, t)]− Et(xt)∥ (19)

= ∥ logEK(xt, t)− E[EK(xt, t)]∥+
v0t(xt)

2m2
t (xt)K

(20)

≤

√
2

v0t(xt)

m2
t (xt)K

log
2

δ
+

v0t(xt)

2m2
t (xt)K

(21)

=
C
√
log 2

δ exp(Et(xt))
√
K

+O(1/K) (22)

=
c(xt)

2(1 + ∥∇Et(xt)∥)

√
log 1

δ√
K

(23)

Therefore, we have c(xt) = 2(1 + ∥∇Et(xt)∥)c̃(xt). It demonstrates a less biased estimator, which,
what’s more, doesn’t require a sub-Gaussianess assumption over ∥∇E(x(i)

0|t)∥. □

C Proof of Proposition 2

Proposition 2 If exp(−E(x(i)
0|t)) is sub-Gaussian and ∥∇ exp(−E(x(i)

0|t))∥ is bounded, the total
variance of the MC score estimator SK is consistently larger than that of the MC energy estimator
EK in regions associated with low energies, with

tr (Cov[SK(xt, t)])

Var[EK(xt, t)]
= 4(1 + ∥∇Et(xt)∥)2. (24)

In regions associated with high energies, Var[EK(xt, t)] < Var[SK(xt, t)] holds when the target
energy E(xt) is positively related to at least one element of the score∇E(xt).

Proof. We split the proof into two parts: low-energy region and high-energy one. The proof in
the low-energy region requires only the aforementioned sub-Gaussianess and bounded assumptions,
while the one in the high-energy region requires an additional constraint which will be clarified later.
Review that SK can be expressed as an importance-weighted estimator as follows:

SK(xt, t) =

1
K

∑K
i=1∇ exp(−E(x(i)

0|t))

1
K

∑K
i=1 exp(−E(x

(i)
0|t))

(25)

Let ∥∇ exp(−E(x(i)
0|t))∥ ≤ M , where M > 0. Since a bounded variable is sub-Gaussian, this

assumption resembles a sub-Gaussianess assumption of ∥∇ exp(−E(x(i)
0|t))∥. Then each element of

∥∇ exp(−E(x(i)
0|t))∥, i.e. ∇ exp(−E(x(i)

0|t))[j], is bounded by M . And therefore∇ exp(−E(x(i)
0|t))[j]

are sub-Gaussian.

In low-energy regions. exp(−E(x)) is concentrated away from 0 as E(x) is small. Then, there
exists a constant c such that exp(−E(x(i)

0|t)) ≥ c > 0 and thus for each element j = 1, .., d:

∥SK(xt, t)[j]∥ =

∥∥∥∥∥∥
1
K

∑K
i=1∇ exp(−E(x(i)

0|t))[j]

1
K

∑K
i=1 exp(−E(x

(i)
0|t))

∥∥∥∥∥∥ (26)

≤
∥
∑K

i=1∇ exp(−E(x(i)
0|t))[j]∥

Kc
≤M/c (27)
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therefore, the jth element of SK , i.e.SK [j], is bounded by M/c, suggesting it is sub-Gaussian. While
Inequality 13 can be expressed as√√√√ d∑

j=1

(SK(xt, t)[j]− St(xt)[j])2 ≤
2
√

2v0t(xt) log(
2
δ )(1 + ∥∇Et(xt)∥)

mt(xt)
√
K

(28)

We can roughly derive a bound elementwisely

|SK(xt, t)[j]− St(xt)[j]| ≤
2
√

2v0t(xt) log(
2
δ )(1 + ∥∇Et(xt)∥)

mt(xt)
√
Kd

(29)

which suggests that we can approximate the variance of SK(xt, t)[j] by leveraging its sub-Gaussianess

Var(SK(xt, t)[j]) ≈
4v0t(xt)(1 + ∥∇Et(xt)∥)2

m2
t (xt)Kd

(30)

Therefore, according to Equation 17 we can derive that

tr(Cov[SK(xt, t)]) =
d∑

j=1

Var[SK(xt, t)[j]] (31)

=
4v0t(xt)(1 + ∥∇Et(xt)∥)2

m2
t (xt)K

(32)

= 4(1 + ∥∇Et(xt)∥)2Var[EK(xt, t)] (33)

In high-energy region. we assume that there exists a direction with a large norm pointing to low
energy regions, i.e. ∃j such that E(x) are positively related to ∇E(x)[j]. According to Section 9.2 in
Owen (2023), the asymptotic variance of a self-normalized importance sampling estimator is given
by:

µ = Eq[f(X)] (34)

µ̃q =

∑K
i=1 wifi∑K
i=1 wi

(35)

Var(µ̃q) ≈
1

K
Eq[w(X)]−2Eq[w(X)2(f(X)− µ)2] (36)

By substituting µ̃q = SK(xt, t)[j], f(X) = −∇E(X)[j], w(X) = exp(−E(X)), q = N(x;xt, σ
2
t ),

Eq[w(X)] = mt(xt) and Eq[w
2(X)] = v0t(xt) + m2

t (xt), as well as using w(X) and f(X) are
positive related, we have:

Var[SK(xt, t)[j]] ≥
1

K
Eq[w(X)]−2Eq[w

2(X)]Eq[(f(X)− µ)2] (37)

=
v0t(xt) +m2

t (xt)

m2
t (xt)K

Varq[∇E(x)[j]] (38)

(39)

Therefore, if we further have a large variance over the system score at this region, i.e.
Varq[∇E(x)[j]] > 1, then we have

Var[SK(xt, t)[j]] >
v0t(xt)

m2
t (xt)K

= Var[EK(xt, t)] (40)

and thus tr(Cov[SK(xt, t])) > Var[EK(xt, t)] holds. □

D Proof of Proposition 3

Proposition 3 Given a bootstrap trajectory {si}ni=0 such that σ2
si − σ2

si−1
≤ κ, where s0 = 0,

sn = 1 and κ > 0 is a small number, suppose Eθ is incrementally optimized from 0 to 1 as follows: if

9



t ∈ [si, si+1], then Eθ targets an energy estimator bootstrapped from s ∈ [si−1, si] using Eq. 8. Let
vyz(xz) = VarN (xz,(σ2

z−σ2
y)I)

[exp(−E(x))] and mz(xz) = exp(−Ez(xz)), where 0 ≤ y < z ≤ 1

and Ez is the ground truth noised energy at time z. The variance of the bootstrap energy estimator is
given by

Var[EK(xt, t, s; θ)] =
vst(xt)

v0t(xt)
Var[EK(xt, t)] (41)

and the bias of EK(xt, t, s; θ) is given by

v0t(xt)

2m2
t (xt)Kn+1

+

n∑
j=1

v0sj (xt)

2m2
sj (xt)Kj

. (42)

Proof. The variance of EK(xt, t, s;ϕ) can be simply derived by leveraging the variance of a sub-
Gaussian random variable similar to Equation 17. While the entire proof for bias of EK(xt, t, s;ϕ) is
organized as follows:

1. we first show the bias of Bootstrap(1) estimator, which is bootstrapped from the system
energy

2. we then show the bias of Bootstrap(n) estimator, which is bootstrapped from a lower level
noise convolved energy recursively, by induction.

D.1 Bootstrap(1) estimator

The Sequential estimator and Bootstrap(1) estimator are defined by:

ESeq
K (xt, t) : = − log

1

K

K∑
i=1

exp(−EK(x
(i)
s|t, s)), x

(i)
s|t ∼ N (x;xt, (σ

2
t − σ2

s)I) (43)

= − log
1

K2

K∑
i=1

K∑
j=1

exp(−E(x(ij)
0|t )), x

(ij)
0|t ∼ N (x;xt, σ

2
t I) (44)

E
B(1)
K (xt, t, s;ϕ) : = − log

1

K

K∑
i=1

exp(−Eϕ(x
(i)
s|t, s)), x

(i)
s|t ∼ N (x;xt, (σ

2
t − σ2

s)I) (45)

The mean and variance of a Sequential estimator can be derived by considering it as the MC estimator
with K2 samples:

E[ESeq
K (xt, t)] = Et(xt) +

v0t(xt)

2m2
0t(xt)K2

and Var(ESeq
K (xt, t)) =

v0t(xt)

m2
0t(xt)K2

(46)

While an optimal network obtained by targeting the original MC energy estimator 4 at s is 1 :

Eϕ∗(xs, s) = E[EK(xs, s)] = − logms(xs) +
v0s(xs)

2m2
s(xs)K

(47)

Then the optimal Bootstrap(1) estimator can be expressed as:

E
B(1)
K (xt, t, s;ϕ

∗) = − log
1

K

K∑
i=1

exp

−
− logms(x

(i)
s|t) +

v0s(x
(i)
s|t)

2m2
s(x

(i)
s|t)K

 (48)

Before linking the Bootstrap estimator and the Sequential one, we provide the following approxima-
tion which is useful. Let a, b two random variables and {ai}Ki=1, {bi}Ki=1 are corresponding samples.
Assume that {bi}Ki=1 are close to 0 and concentrated at mb, while {ai}Ki=1 are concentrated at ma,

1We consider minimizing the L2-norm, i.e. ϕ∗ = argminϕ Ex0,t[∥Eθ(xt, t) − EK(xt, t)∥2]. Since the
target, EK , is noisy, the optimal outputs are given by the expectation, i.e. E∗

ϕ = E[EK ].

10



then

log
1

K

K∑
i=1

exp(−(ai + bi)) = log
1

K

{
K∑
i=1

exp(−ai)

[∑K
i=1 exp(−(ai + bi))∑K

i=1 exp(−ai)

]}
(49)

= log
1

K

K∑
i=1

exp(−ai) + log

∑K
i=1 exp(−(ai + bi))∑K

i=1 exp(−ai)
(50)

≈ log
1

K

K∑
i=1

exp(−ai) + log

∑K
i=1 exp(−ai)(1− bi)∑K

i=1 exp(−ai)
(51)

= log
1

K

K∑
i=1

exp(−ai) + log

(
1−

∑K
i=1 exp(−ai)bi∑K
i=1 exp(−ai)

)
(52)

≈ log
1

K

K∑
i=1

exp(−ai)−
∑K

i=1 exp(−ai)bi∑K
i=1 exp(−ai)

(53)

≈ log
1

K

K∑
i=1

exp(−ai)−mb (54)

where Approximation applies a first order Taylor expansion of ex ≈ 1 + x around x = 0 since
{bi}Ki=1 are close to 0; while Approximation uses log(1+x) ≈ x under the same assumption. Notice

that when K is large and σ2
t − σ2

s ≤ κ is small , {
v0s(x

(i)

s|t)

2m2
s(x

(i)

s|t)K
}Ki=1 are close to 0 and concentrated at

v0s(xt)
2m2

s(xt)K
. Therefore, by plugging them into Equation 54, Equation 48 can be approximated by

E
B(1)
K (xt, t, s;ϕ

∗) ≈ − log
1

K

K∑
i=1

ms(x
(i)
s|t) +

v0s(xt)

2m2
s(xt)K

(55)

When K is large and σ2
s is small, the bias and variance of EK(x

(i)
s|t, s) are small, then we have

− log
1

K

K∑
i=1

ms(x
(i)
s|t) ≈ − log

1

K

K∑
i=1

EK(x
(i)
s|t, s) = ESeq

K (xt, t) (56)

Therefore, the optimal Bootstrap estimator can be approximated as follows:

E
B(1)
K (xt, t, s;ϕ

∗) ≈ ESeq
K (xt, t) +

v0s(xt)

2m2
s(xt)K

(57)

where its mean and variance depend on those of the Sequential estimator (46):

E[EB(1)
K (xt, t, s;ϕ

∗)] = Et(xt) +
v0t(xt)

2m2
t (xt)K2

+
v0s(xt)

2m2
s(xt)K

(58)

Var[EB(1)
K (xt, t, s;ϕ

∗)] =
v0t(xt)

m2
t (xt)K2

(59)

D.2 Bootstrap(n) estimator

Given a bootstrap trajectory {si}ni=1 where s0 = 0 and sn = s, and Eϕ is well learned at [0, s]. Let
the energy network be optimal for u ≤ sn by learning a sequence of Bootstrap(i) energy estimators
(i ≤ n). Then the optimal value of Eθ(xs, s) is given by E[EB(n−1)

K (xs, s)]. We are going to show
the variance of a Bootstrap(n) estimator by induction. Suppose we have:

Eϕ∗(xs, s) = Es(xs) +

n∑
j=1

v0sj (xs)

2m2
sj (xs)Kj

(60)
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Then for any t ∈ (s, 1], the learning target of Eθ(xt, t) is bootstrapped from sn = s,

E
B(n)
K (xt, t) = − log

1

K

K∑
i=1

exp(−Eϕ∗(x
(i)
s|t, s)), x

(i)
s|t ∼ N (x;xt, (σ

2
t − σ2

s)I) (61)

= − log
1

K

K∑
i=1

exp

−Es(x(i)
s|t)−

n∑
j=1

v0sj (x
(i)
s|t)

2m2
sj (x

(i)
s|t)K

j

 (62)

Assume that σ2
t − σ2

s is small and K is large, then we can apply Approximation 54 and have

E
B(n)
K (xt, t) ≈ − log

1

K

K∑
i=1

exp(−Es(x(i)
s|t)) +

n∑
j=1

v0sj (xt)

2m2
sj (xt)Kj

(63)

In Bootstrap(n) setting, σ2
s is not small and we can’t approximate Es(x(i)

s|t) simply by a MC estimator
EK . However, we can sequentially estimate such energy by bootstrapping through the trajectory
{si}ni=1, resembling a Sequential(n) estimator which is equivalent to EKn+1 ,

E
B(n)
K (xt, t) ≈ EKn+1(xt, t) +

n∑
j=1

v0sj (xt)

2m2
sj (xt)Kj

(64)

therefore, the optimal output of the energy network at (xt, t) by learning this Bootstrap(n) estimator
is

E[EB(n)
K (xt, t)] ≈ Et(xt) +

v0t(xt)

2m2
t (xt)Kn+1

+

n∑
j=1

v0sj (xt)

2m2
sj (xt)Kj

(65)

which suggests that the accumulated bias of a Bootstrap(n) estimator is given by

v0t(xt)

2m2
t (xt)Kn+1

+

n∑
j=1

v0sj (xt)

2m2
sj (xt)Kj

(66)

□

E Incorporating Symmetry Using NEM

We consider applying NEM and BNEM in physical systems with symmetry constraints like n-body
system. We prove that our MC energy estimator EK is G-invariant under certain conditions, given in
the following Proposition.

Proposition 4 Let G be the product group SE(3)× Sn ↪→ O(3n) and p0 be a G-invariant density in
Rd. Then the Monte Carlo energy estimator of EK(xt, t) is G-invariant if the sampling distribution
x0|t ∼ N (x0|t;xt, σ

2
t ) is G-invariant, i.e.,

N (x0|t; g ◦ xt, σ
2
t ) = N (g−1x0|t;xt, σ

2
t ).

Proof. Since p0 is G-invariant, then E is G-invariant as well. Let g ∈ G acts on x ∈ Rd where
g ◦ x = gx. Since x

(i)
0|t ∼ N (x0|t;xt, σ

2
t ) is equivalent to g ◦ x(i)

0|t ∼ N (x0|t; g ◦ xt, σ
2
t ). Then we

have

EK(g ◦ xt, t) = − log
1

K

K∑
i=1

exp(−E(g ◦ x(i)
0|t)) (67)

= − log
1

K

K∑
i=1

exp(−E(x(i)
0|t)) = EK(xt, t) (68)

x
(i)
(0|t) ∼ N (x0|t;xt, σ

2
t ) (69)

Therefore, EK is invariant to G = SE(3)× Sn. □

Furthermore, EK(xt, t, s;ϕ) is obtained by applying a learned energy network, which is G-invariant,
to the analogous process and therefore is G-invariant as well.
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F NEM for General SDEs

Diffusion models can be generalized to any SDEs as dxt = f(xt, t)dt+ g(t)dwt, where t ≥ 0 and
wt is a Brownian motion. Particularly, we consider f(x, t) := −α(t)x, i.e.

dxt = −α(t)xtdt+ g(t)dwt (70)

Then the marginal of the above SDE can be analytically derived as:

xt = β(t)x0 + β(t)

√∫ t

0

(g(s)β(s))2dsϵ, β(t) := e−
∫ t
0
α(s)ds (71)

where ϵ ∼ N (0, I). For example, when g(t) =
√

β̄(t) and α(t) = 1
2 β̄(t), where β̄(t) is a monotonic

function (e.g. linear) increasing from β̄min to β̄max, the above SDE resembles a Variance Preserving
(VP) process (Song et al., 2020). In DMs, VP can be a favor since it constrains the magnitude
of noisy data across t; while a VE process doesn’t, and the magnitude of data can explode as the
noise explodes. Therefore, we aim to discover whether any SDEs rather than VE can be better by
generalizing NEM and DEM to general SDEs.

In this work, we provide a solution for general SDEs (70) rather than a VE SDE. For simplification,
we exchangeably use β(t) and βt. Given a SDE as Equation 70 for any integrable functions α and g,
we can first derive its marginal as Equation 71, which can be expressed as:

β−1
t xt = x0 +

√∫ t

0

(g(s)β(s))2dsϵ (72)

Therefore, by defining yt = β−1
t xt we have y0 = x0 and therefore:

yt = y0 +

√∫ t

0

(g(s)β(s))2dsϵ (73)

which resembles a VE SDE with noise schedule σ̃2(t) =
∫ t

0
(g(s)β(s))2ds. In fact, we can also

derive this by changing variables:

dyt = (β−1(t))′xtdt+ β−1(t)dxt (74)

= β−1(t)α(t)xtdt+ β−1(t)(−α(t)xtdt+ g(t)dwt) (75)

= β−1(t)g(t)dwt (76)

which also leads to Equation 73. Let p̃t be the marginal distribution of yt and pt the marginal
distribution of xt, with y

(i)
0|t ∼ N (y; yt, σ̃

2
t I) we have

p̃t(yt) ∝
∫

exp(−E(y))N (yt; y, σ̃
2
t I)dy (77)

S̃t(yt) = ∇yt log p̃t(yt) ≈ ∇yt log

K∑
i=1

exp(−E(y(i)0|t)) (78)

Ẽt(yt) ≈ − log
1

K

K∑
i=1

exp(−E(y(i)0|t)) (79)

Therefore, we can learn scores and energies of yt simply by following DEM and NEM for VE SDEs.
Then for sampling, we can simulate the reverse SDE of yt and eventually, we have x0 = y0.

Instead, we can also learn energies and scores of xt. By changing the variable, we can have

pt(xt) = β−1
t p̃t(β

−1
t xt) = β−1

t p̃t(yt) (80)

St(xt) = β−1
t S̃t(β

−1
t xt) = β−1

t S̃t(yt) (81)
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which provides us the energy and score estimator for xt:

Et(xt) ≈ − log β−1
t

1

K

K∑
i=1

exp(−E(x(i)
0|t)) (82)

St(xt) ≈ β−1
t ∇xt

log

K∑
i=1

exp(−E(x(i)
0|t)) (83)

x
(i)
0|t ∼ N (x;β−1

t xt, σ̃
2(t)I) (84)

Typically, α is a non-negative function, resulting in β(t) decreasing from 1 and can be close to 0 when
t is large. Therefore, the above equations realize that even though both the energies and scores for a
general SDE can be estimated, the estimators are not reliable at large t since β−1

t can be extremely
large; while the SDE of yt (76) indicates that this equivalent VE SDE is scaled by β−1

t , resulting
that the variance of yt at large t can be extremely large and requires much more MC samples for a
reliable estimator. This issue can be a bottleneck of generalizing DEM, NEM, and BNEM to other
SDE settings, therefore developing more reliable estimators for both scores and energies is of interest
in future work.

G Linking iDEM and iEFM Through Tweedie’s Formula

In this supplementary work, we propose TWEEDIE DEM (TweeDEM), by leveraging the Tweedie’s
formula (Efron, 2011) into DEM, i.e. ∇x log pt(x) = Ep(x0|xt)

[
x0−xt

σ2
t

]
. Surprisingly, TweeDEM

can be equivalent to the iEFM-VE proposed by Woo and Ahn (2024), which is a variant of iDEM
corresponding to another family of generative model, flow matching.

We first derive an MC estimator denoiser, i.e. the expected clean data given a noised data xt at t

E[x0|xt] =

∫
x0p(x0|xt)dx0 (85)

=

∫
x0

qt(xt|x0)p0(x0)

pt(xt)
dx0 (86)

=

∫
x0
N (xt;x0, σ

2
t I) exp(−E(x0))

exp(−Et(xt))
dx0 (87)

where the numerator can be estimated by an MC estimator EN (xt,σ2
t I)

[x exp(−E(x))] and the
denominator can be estimated by another similar MC estimator EN (xt,σ2

t I)
[exp(−E(x))], suggesting

we can approximate this denoiser through self-normalized importance sampling as follows

DK(xt, t) : =
K∑
i=1

exp(−E(x(i)
0|t))∑K

j=1 exp(−E(x
(j)
0|t))

x
(i)
0|t (88)

=

K∑
i=1

wix
(i)
0|t (89)

where x
(i)
0|t ∼ N (xt, σ

2
t I), wi are the importance weights and DK(xt, t) ≈ E[x0|xt]. Then a new

MC score estimator can be constructed by plugging the denoiser estimator DK into Tweedie’s formula

S̃K(xt, t) :=

K∑
i=1

wi

x
(i)
0|t − xt

σ2
t

(90)

where
x
(i)

0|t−xt

σ2
t

resembles the vector fields vt(xt) in Flow Matching. In another perspective, these

vector fields can be seen as scores of Gaussian, i.e. ∇ logN (x;xt, σ
2
t I), and therefore S̃K is

an importance-weighted sum of Gaussian scores while SK can be expressed as an importance-
weighted sum of system scores −∇E . In addition, Karras et al. (2022) demonstrates that in
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Denoising Diffusion Models, the optimal scores are an importance-weighted sum of Gaussian
scores, while these importance weights are given by the corresponding Gaussian density, i.e.
SDM(xt, t) =

∑
i w̃i(x

(i)
0|t − xt)/σ

2
t and w̃i ∝ N (x

(i)
0|t;xt, σ

2
t I). We summarize these three dif-

ferent score estimators as follows:

• DEM, sum of system scores, weighted by system energies:

SK(xt, t) =
∑
i

wi(−∇E(x(i)
0|t))

• DDM, sum of perturbation kernel scores, weighted by perturbation densities:

SDM(xt, t) =
∑
i

w̃i∇ logN (x
(i)
0|t;xt, σ

2
t I)

• EFM-VE=DEM+Tweedie, sum of perturbation kernel scores, weighted by system energies:

S̃K(xt, t) =
∑
i

wi∇ logN (x
(i)
0|t;xt, σ

2
t I)

H Additional Experimental Details

H.1 Energy functions

GMM. A Gaussian Mixture density in 2-dimensional space with 40 modes, which is proposed by
Midgley et al. (2023). Each mode in this density is evenly weighted, with identical covariances,

Σ =

(
40 0
0 40

)
(91)

and the means {µi}40i=1 are uniformly sampled from [−40, 40]2, i.e.

pgmm(x) =
1

40

40∑
i=1

N (x;µi,Σ) (92)

Then its energy is defined by the negative-log-likelihood, i.e.

EGMM(x) = − log pgmm(x) (93)

For evaluation, we sample 1000 data from this GMM with TORCH.RANDOM.SEED(0) fol-
lowing Midgley et al. (2023); Akhound-Sadegh et al. (2024) as a test set.

DW-4. First introduced by Köhler et al. (2020), the DW-4 dataset describes a system with 4 particles
in 2-dimensional space, resulting in a task with dimensionality d = 8. The energy of the system is
given by the double-well potential based on pairwise Euclidean distances of the particles,

EDW(x) =
1

2τ

∑
ij

a(dij − d0) + b(dij − d0)
2 + c(dij − d0)

4 (94)

where a, b, c and d0 are chosen design parameters of the system, τ the dimensionless temperature
and dij = ∥xi − xj∥2 are Euclidean distance between two particles. Following Akhound-Sadegh
et al. (2024), we set a = 0, b = −4, c = 0.9 d0 = 4 and τ = 1, and we use validation and test set
from the MCMC samples in Klein et al. (2023a) as the “Ground truth” samples for evaluating.

LJ-n. This dataset describes a system consisting of n particles in 3-dimensional space, resulting in a
task with dimensionality d = 3n. Following Akhound-Sadegh et al. (2024), the energy of the system
is given by ETot(x) = ELJ(x) + cEosc(x) with the Lennard-Jones potential

ELJ(x) = ϵ

2τ

∑
ij

((
rm
dij

)6

−
(
rm
dij

)12
)

(95)

and the harmonic potential

Eosc(x) = 1

2

∑
i

∥xi − xCOM∥2 (96)
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where dij = ∥xi − xj∥2 are Euclidean distance between two particles, rm, τ and ϵ are physical
constants, xCOM refers to the center of mass of the system and c the oscillator scale. We use rm = 1,
τ = 1, ϵ = 1 and c = 0.5 the same as Akhound-Sadegh et al. (2024). We test our models in LJ-13
and LJ-55, which correspond to d = 65 and d = 165 respectively. And we use the MCMC samples
given by Klein et al. (2023a) as a test set.

H.2 Evaluation Metrics

2-Wasserstein distanceW2. Given empirical samples µ from the sampler and ground truth samples
ν, the 2-Wasserstein distance is defined as:

W2(µ, ν) = (infπ

∫
π(x, y)d2(x, y)dxdy)

1
2 (97)

where π is the transport plan with marginals constrained to µ and ν respectively. Following Akhound-
Sadegh et al. (2024), we use the Hungarian algorithm as implemented in the Python optimal transport
package (POT) (Flamary et al., 2021) to solve this optimization for discrete samples with the
Euclidean distance d(x, y) = ∥x− y∥2. x−W2 is based on the data and E −W2 is based on the
corresponding energy.

Total Variation (TV). The total variation measures the dissimilarity between two probability distri-
butions. It quantifies the maximum difference between the probabilities assigned to the same event
by two distributions, thereby providing a sense of how distinguishable the distributions are. Given
two distribution P and Q, with densities p and q, over the same sample space Ω, the TV distance is
defined as

TV (P,Q) =
1

2

∫
Ω

|p(x)− q(x)|dx (98)

Following Akhound-Sadegh et al. (2024), for low-dimentional datasets like GMM, we use 200 bins
in each dimension. For larger equivariant datasets, the total variation distance is computed over the
distribution of the interatomic distances of the particles.

H.3 Experiment Settings

We set the reverse SDE integration steps for iDEM, NEM, and BNEM in our main experiment as 100.
In experiments for TweeDEM, we set this integration step 1000 for TweeDEM and iDEM.

GMM-40. For the basic model fθ, we use an MLP with sinusoidal and positional embeddings which
has 3 layers of size 128 as well as positional embeddings of size 128. The replay buffer is set to a
maximum length of 10000.

During training, the generated data was in the range [−1, 1] so to calculate the energy it was scaled
appropriately by unnormalizing by a factor of 50. All models are trained with a geometric noise
schedule with σmin = 1e − 5, σmax = 1, K = 500 samples for computing both the MC score
estimator SK and MC energy estimator EK , K = 400 samples for computing the Bootstrap energy
estimator EB

K and Bootstrap score estimator SB
K = ∇EB

K and we clipped the norm of SK and SB
K to

70. All models are trained with a learning rate of 5e− 4.

DW-4. All models use an EGNN with 3 message-passing layers and a 2-hidden layer MLP of size
128. All models are trained with a geometric noise schedule with σmin = 1e − 5, σmax = 3, a
learning rate of 1e − 3, K = 1000 samples for computing SK and EK , K = 400 samples for
computing SB

K and EB
K , and we clipped SK and SB

K to a max norm of 20.

LJ-13. All models use an EGNN with 5 hidden layers and hidden layer size 128. All models are
trained with a geometric noise schedule with σmin = 0.01 and σmax = 2, a learning rate of 1e− 3,
K = 1000 samples for SK and EK , K = 100 samples for EB

K and SB
K , and we clipped SK and SB

K
to a max norm of 20.

For all datasets. We use clipped scores as targets for iDEM and TweeDEM training for all tasks.
Meanwhile, we also clip scores during sampling in outer-loop of training, when calculating the
reverse SDE integral. These settings are shown to be crucial especially when the energy landscape is
non-smooth and exists extremely large energies or scores, like LJ-13 and LJ-55. In fact, targeting the
clipped scores refers to learning scores of smoothed energies. While we’re learning unadjusted energy

16



for NEM and BNEM, the training can be unstable, and therefore we blue smooth the Lennard-Jones
potential through the cubic spline interpolation, according to Moore et al. (2024). Besides, we predict
per-particle energies for LJ-n datasets. It shows that this setting can significantly stabilize training
and boost performance.

I Supplementary Experients

I.1 Comparing the Robustness of Energy-Matching and Score-Matching

In this section, we discussed the robustness of the energy-matching model(NEM) with the score-
matching model(iDEM) by analyzing the influence of the numbers of MC samples used for estimators
and choice of noise schedule on the sampler’s performance.

Figure 2: Comparison of the Energy Wasserstein-2 distance in DW4 benchmark between iDEM and
NEM across varying numbers of MC samples.

As in Figure 2, NEM consistently outperforms iDEM when more than 100 MC samples are used
for the estimator. Besides, NEM shows a faster decline when the number of MC samples increases.
Therefore, we can conclude that the low variance of Energy-matching makes it more beneficial when
we boost with more MC samples.

(a) Geometric: 4.16 (b) Cosine: 6.32 (c) Quadratic: 3.95 (d) Linear: 9.87

Figure 3: Comparison of iDEM sampler when employing different noise schedules. The performances
of x-W2 are listed.

Then, we evaluate the performance differences when applying various noise schedules. The following
four schedules were tested in the experiment:

• Geometric noise schedule: The noise level decreases geometrically in this schedule. The
noise at step t is given by: σt = σ1−t

0 · σt
1 where σ0 = 0.0001 is the initial noise level,

σ1 = 1 is the maximum noise level, and t is the time step.
• Cosine noise schedule: The noise level follows a cosine function over time, represented

by: sigmat = σ1 · cos(π/2 1+δ−t
1+δ )2, where δ = 0.008 is a hyper-parameter that controls

the decay rate.
• Quadratic noise schedule: The noise level follows a quadratic decay:σt = σ0t

2 where σ0

is the initial noise level. This schedule applies a slow decay initially, followed by a more
rapid reduction.
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(a) Geometric: 2.64 (b) Cosine: 2.29 (c) Quadratic: 2.53 (d) Linear: 3.13

Figure 4: Comparison of NEM sampler when employing different noise schedules. The performances
of x-W2 are listed.

• Linear noise schedule: In this case, the noise decreases linearly over time, represented as:
σt = σ1t

The experimental results are depicted in Figure 3 and Figure 4. It is pretty obvious that for iDEM
the performance varied for different noise schedules. iDEM favors noise schedules that decay more
rapidly to 0 when t approaches 0. When applying the linear noise schedules, the samples are a
lot more noisy than other schedules. This also proves our theoretical analysis that the variance
would make the score network hard to train. On the contrary, all 4 schedules are able to perform
well on NEM. This illustrates that the reduced variance makes NEM more robust and requires less
hyperparameter tuning.

I.2 Scaling up to Lennard Jones Potential

(a) iDEM (b) NEM

Figure 5: Performance comparison of iDEM and NEM for LJ-13 potential

Besides GMM and DW-4, we would also like to show preliminary experimental results on the LJ-13
potentials. The distributions of interatomic distances and energies are shown in Figure 5.

The performance comparison between iDEM and NEM for the LJ-13 potential demonstrates the supe-
rior accuracy of NEM in capturing both the interatomic distance distribution and energy distribution.
These results suggest that NEM’s capabilities allow it to generalize better in complex many-body
systems, like the Lennard-Jones potential, providing more reliable energy estimations and physical
interpretations.

I.3 Empirical Analysis of the Variance of EK and SK

To justify the theoretical results for the variance of the MC energy estimator (4) and MC score
estimator (2), we first empirically explore a 2D GMM. For better visualization, the GMM is set to be
evenly weighted by 10 modes located in [−1, 1]2 with identical variance 1/40 for each component,
resulting in the following density

p′GMM (x) =
1

10

10∑
i=1

N
(
x;µi,

1

40
I

)
(99)

while the marginal perturbed distribution at t can be analytically derived from Gaussian’s property:

pt(x) = (p′GMM ∗ N (0, σ2
t ))(xt) =

1

10

10∑
i=1

N
(
x;µi,

(
1

40
+ σ2

t

)
I

)
(100)
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(a) Ground truth energy across t ∈ [0, 1]

(b) Expected variance of estimators (c) Point-wise variance for t ∈ [0.9, 1]

Figure 6: (a) the ground truth energy of the target GMM from t = 0 to t = 1; (b) the estimation
of expected variance of x from t = 0 to t = 1, computed by a weighted sum over the variance of
estimator at each location with weights equal to the marginal density pt; (c) the variance of MC score
estimator and MC energy estimator, and their difference (Var[score]-Var[energy]) for t from 0.9 to 1,
we ignore the plots from t ∈ [0, 0.9] since the variance of both estimators are small. The colormap
ranges from blue (low) to red (high), where blues are negative and reds are positive.

(a) S̃K (ours) (b) SK (c) TweeDEM (ours) (d) DEM

Figure 7: Sampled points from samplers applied to GMM-40 potentials, with the ground truth
represented by contour lines. S̃K and SK represent using these ground truth estimators for reverse
SDE integration.

given a VE noising process.

We empirically estimate the variance for each pair of (xt, t) by simulating 10 times the MC estimators.
Besides, we estimate the expected variance over x for each time t, i.e. Ept(xt)[Var(EK(xt, t))] and
Ept(xt)[Var(SK(xt, t))].

Figure 6a shows that, the variance of both MC energy estimator and MC score estimator increase
as time increases. In contrast, the variance of EK can be smaller than that of SK in most areas,
especially when the energies are low (see Figure 6c), aligning our Proposition 2. Figure 6b shows
that in expectation over true data distribution, the variance of EK is always smaller than that of SK

across t ∈ [0, 1].

I.4 Experiments for TweeDEM

In Appendix G, we propose TweeDEM, a variant of DEM by leveraging Tweedie’s formula (Efron,
2011), which theoretically links iDEM and iEFM-VE and suggests that we can simply replace the
score estimator SK (2) with S̃K (90) to reconstruct a iEFM-VE. We conduct experiments for this
variant with the aforementioned GMM and DW-4 potential functions.

Setting. We follow the ones aforementioned, but setting the steps for reverse SDE integration 1000,
the number of MC samples 500 for GMM and 1000 for DW-4. We set a quadratic noise schedule
ranging from 0 to 3 for TweeDEM in DW-4.
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Table 2: Sampler performance comparison for GMM-40 and DW-4 energy function. we measured
the performance using data Wasserstein-2 distance (x-W2), Energy Wasserstein-2 distance (E-W2)
and Total Variation (TV). †We compare the optimal number reported by Woo and Ahn (2024) and
Akhound-Sadegh et al. (2024). - indicates metric non-reported. Bold indicates the best values.

Energy→ GMM-40 (d = 2) DW-4 (d = 8)
Sampler ↓ x-W2↓ E-W2↓ TV↓ x-W2↓ E-W2↓ TV↓
SK 2.864 0.010 0.812 1.841 0.040 0.092
S̃K (ours) 2.506 0.124 0.826 1.835 0.145 0.087

iDEM† 3.98 - 0.81 2.09 - 0.09
iDEM (rerun) 6.406 46.90 0.859 1.862 0.030 0.093
iEFM-VE† 4.31 - - 2.21 - -
iEFM-OT† 4.21 - - 2.07 - -

TweeDEM (ours) 3.182 1.753 0.815 1.910 0.217 0.120

To compare the two score estimators SK and S̃K fundamentally, we first conduct experiments
using these ground truth estimations for reverse SDE integration, i.e. samplers without learning.
In addition, we consider using a neural network to approximate these estimators, i.e. iDEM and
TweeDEM.

Table 2 reports x-W2, E−W2, and TV for GMM and DW-4 potentials. We reports the numbers from
Akhound-Sadegh et al. (2024) and Woo and Ahn (2024). We also rerun the iDEM and evaluate it for
a more reliable comparisom. Table 2 shows that when using the ground truth estimators for sampling,
there’s no significant evidence demonstrating the privilege between SK and S̃K . However, when
training a neural sampler, TweeDEM can significantly outperform iDEM (rerun), iEFM-VE, and
iEFM-OT for GMM potential. While for DW4, TweeDEM outperforms iEFM-OT and iEFM-VE in
terms of x−W2 but are not as good as our rerun iDEM.

Figure 7 visualizes the generated samples from ground truth samplers, i.e. SK and S̃K , and neural
samplers, i.e. TweeDEM and iDEM. It shows that the ground truth samplers can generate well mode-
concentrated samples, as well as TweeDEM, while samples generated by iDEM are not concentrated
on the modes and therefore result in the high value ofW2 based metrics. Also, this phenomenon
aligns with the one reported by Woo and Ahn (2024), where the iEFM-OT and iEFM-VE can generate
samples more concentrated on the modes than iDEM.

Above all, simply replacing the score estimator SK with S̃K can improve generated data quality and
outperform iEFM in GMM and DW-4 potentials. Though TweeDEM can outperform the previous
state-of-the-art sampler iDEM on GMM, it is still not as capable as iDEM on DW-4. Except scaling
up and conducting experiments on larger datasets like LJ-13, combing SK and S̃K is of interest in
the future, which balances the system scores and Gaussian ones and can possibly provide more useful
and less noisy training signals. In addition, we are considering implementing a denoiser network for
TweeDEM as our future work, which might stabilize the training process.
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