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Abstract

The evaluation of Large-Language Models (LLMs) and Retrieval-Augmented Gen-
eration (RAG) systems, particularly in knowledge-intensive fields like chemistry,
is hindered by the number of available high-quality datasets. Existing datasets
are often small due to the labor-intensive nature of manual curation, or require
further quality checks when generated automatically. This study addresses the
need for robust scientific datasets by introducing ChemLit-QA, an open-source,
expert-validated dataset with over 1,000 entries tailored for chemistry. The dataset
was initially generated using an automated framework and subsequently reviewed
by experts.

1 Introduction

Over the last couple of years, we have seen an increased interest in developing and using Large
Language Models (LLMs) to accelerate scientific discovery.1–4 Their capability to compile vast
amounts of information has opened up new avenues for knowledge processing and extraction.1,5–7

While LLMs perform well in information retrieval and certain creative tasks within general knowledge
domains, they often fall short in specialized, knowledge-intensive scientific fields such as chemistry.8,9

In a similar study, Wang et al.10 evaluated the performance of LLMs in materials science and
highlighted the limitations of LLMs in domain-specific tasks. Often, when LLMs are prompted with
queries in specialized domains where pre-training data is limited, they are prone to hallucinations
and may generate false information.11–14 Widely adopted strategies to address these limitations
involves Retrieval-Augmented Generation (RAG)15, fine-tuning3,16,17, in-context learning18,19 and,
Language-Interfaced Fine-Tuning (LIFT)20,21. However, the success of these approaches relies on
the availability of curated high-quality, task-specific datasets for training and benchmarking.

The most common RAG-specific datasets are in the form of Question-Answer (QA) pairs or Question-
Answer-Context (QAC) triplets. The answers could be open-domain, yes-no type, or multiple-choice
type. Creating high-quality, QA-type datasets poses significant challenges, especially in scientific
fields. Manual curation by domain experts, while producing high-quality data, is resource-intensive.
while automated generation using LLMs offers a potential solution. However, this approach poses
the risk of hallucinations, propagating inaccuracies and biases present in pre-training data.22–25 Other
limitations include context limitations where QA pairs are generated without corresponding text26,
uneven information distribution, limited reasoning complexity, and lack of (RAG) specificity.
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Figure 1: Dataset generation and evaluation pipeline used in this work.

To address these challenges, we present ChemLit-QA, an open-source, expert-validated, large dataset
with more than 1000 entries, designed specifically for RAG and fine-tuning benchmark tasks in
chemistry. We evaluate the efficacy of ChemLit-QA through downstream experiments (RAG and
fine-tuning) with state-of-the-art LLMs, demonstrating its utility in generating knowledge-intensive,
context-specific, human-like QAC triplets. Our results show improved performance of fine-tuned
LLMs in RAG settings. Additionally, we present two additional datasets, 1) ChemLit-QA-neg: a
dataset of 139 entries aimed to help detect hallucinations with questions where answers are not
available, and 2) ChemLit-QA-multi: a dataset with 742 entries for multihop reasoning tasks. We
highlight areas for further improvement, particularly in negative response identification tasks. Our
datasets and source code are publicly available at https://github.com/geemi725/ChemLit-QA.

2 Method: Dataset curation

1. Literature corpus Downloaded ChemRxiv papers (https://chemrxiv.org/), up to March
2024 using “paperscraper” (https://pypi.org/project/paperscraper/) in PDF format and
parsed to TEI XML format using Grobid (https://grobid.readthedocs.io/en/latest). A
detailed procedure can be found in the Grobid GitHub repository. ChemRxiv was chosen as our data
source because it is an open-access preprint server specifically for chemistry articles, making it ideal
for building a chemistry-focused RAG benchmarking dataset.

2. Paper classification and sampling Next, we classified the parsed papers using a two-level
hierarchy. Mistral-7B27 model was used to assign labels based on title and abstract. Five papers were
randomly selected from each second-level category. This clustering step aimed to enforce diversity
within the generated dataset.

3. Text chunking and usefulness identification We used LangChain(https://www.langchain.
com/) to construct our pipeline. The context of each paper was split recursively into chunks of
a maximum length 2,000 characters. Next, each text chunk (split) was classified based on its
content – chunks were retained only if they contained substantive scientific information such as
experimental methods, results, theoretical concepts, chemical reactions, or technical discussions.
Chunks were discarded if they contained only non-technical content such as author names, references,
acknowledgments, funding information, or general background statements without specific scientific
claims. For example, a chunk containing “This work was supported by NSF grant..." would be
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discarded, while one describing “The reaction yielded 85% conversion at 75°C..." would be retained.
We employed GPT-4 Turbo28 in this task.

4. QA generation and Reasoning type classification Again, we used GPT-4 Turbo28 to generate
questions from one of the seven types of reasoning – Explanatory, Comparative, Conditional, Causal,
Predictive, Procedural, and Evaluative, to ensure their diversity and reasoning-intensiveness. Given
a context, specially prompted LLM chains were used to generate QA pairs based on the reasoning
types. Figure 2 panel (c) shows an example entry of the final dataset.

5. Difficulty assignment Next, we used LLM classifiers (GPT-4 Turbo28) to label the question-
answer difficulty as ’Easy’, ’Medium’, or ’Hard’. For example, a question is easy to answer if the
answer is directly available in a single sentence of the chunk.

6. Similar chunk identification and start-end indices for answers We used FAISS vector
database (https://faiss.ai/index.html) to identify the top 4 similar chunks to a given context
in a QAC triplet within the same document. similarity_search_by_vector method in FAISS
uses Euclidean (L2) similarity for this. We employed SpaCy(https://spacy.io/) and Python
scripting to determine start-end indices of answers within contexts. The goal of these similar chunks
are to a) simulate a basic retrieval process and b) enhance benchmarking capabilities.

7. Automatic filtering of generated data After running the full QAC generation pipeline, we
randmly sampled 2,000 entries and applied 4 LLM-based metrics (using DeepEval framework (https:
//github.com/confident-ai/deepeval) with GPT-4o) to validate the entries. The metrics are:
answer relevancy, answer faithfulness, hallucination, and question faithfulness (customized with
G-Eval) all in the range {0, 1}. Finally, we removed the QAC triplets according to the following
conditions: a) question/answer faithfulness and answer relevancy scores is less < mean − 0.5× SD,
b) hallucination score > 0.1, c) pSE > Q3 + 1.5 × IQR (IQR: quartiles Q3 − Q1) This process
resulted in a filtered dataset with 1,411 entries (dropped 589 entries).

8. Expert evaluation of the dataset Once the dataset was filtered after step 7, we further evaluated
the dataset using 4 human experts; 1 post-doctoral researcher, 2 PhD students, and 1 Bachelor’s
student in Chemistry and Chemical engineering. Each evaluator was assigned an equal split of enries
from the dataset and the entry was removed if it was marked as “drop”. An in-house interface was
used for this purpose. This resulted in a further removal of 357 entries. Hence, the final ChemLit-QA
dataset contained 1054 entries. However, we also assessed inter-evaluator agreement, an additional
subset of 60 entries was evaluated by all experts. Agreement levels were defined as: a) Completely
Agree All 4 experts agree, b) Almost agree 3 out of 4 agree, c) Partially agree 50-50 agreement, and d)
Disagree Any other case. This process ensured rigorous human validation of the dataset, enhancing
its quality and reliability for benchmarking purposes.

3 Results

Diversity of questions ChemLit-QA contains 39.8% – Explanatory, 25.1% – Causal, 17.7% –
Comparative, 7.4% – Procedural, 3.7% – Conditional, 3.4% –Evaluative and 2.8% – Predictive
questions. On the other hand, it contained 74%, 18%, and 8% easy, medium, and hard questions
in the final dataset respectively. We find that ChemLit-QA remains diverse in topics, covering 7
high-level and 12 low-level topics in chemistry, pre-defined by experts. The highest percentage of
32.25% of entries belonged to quantum and theoretical chemistry. The diversity of ChemLit-QA is
also featured in the wide range of question keywords and phrases. Besides wh-determiners such as
“why”, “what”, a considerable proportion of questions contain context-specific keywords that appear
less than 4 times in the entire dataset, which are classified under “OTHERS”.

Human and model agreements We analyzed how the LLM-based metrics correlate with the
human classification from the expert-evaluation results. Here we observed that the LLM and humans
agree on 76%, 61%, and 6% for easy, medium, and hard questions respectively. Based inter-evaluator
agreement results, we see that 84%-95% times humans either completely or substantially agree with
each other.
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RAG: benchmarking LLMs on ChemLit-QA We benchmarked different LLMs in a RAG pipeline
using the ChemLit-QA dataset (QAC triplets + similar chunks, tested on a random subset of 211
entries). As shown in Figure 2 a), our results agree with the previous findings that a RAG approach is
better at generating factual answers than relying on the model’s internal knowledge.15,29–31 All 16
models demonstrated a significant performance increase when provided with contextual information.

Figure 2: a) Mean Answer correctness scores of RAG and baseline models. b) Comparison between
baseline and fine-tuned performance on the test dataset for GPT-4o mini32, Mistral-7B27, and Llama2-
7B33. Evaluated on a test dataset with 211 entries. Error bars represent the standard deviation of
the scores.c) Sample entry from ChemLit-QA. Evidence sentence used to answer the question is
highlighted in purple

.

Fine-tuning on ChemLit-QA We used the ChemLit-QA dataset to fine-tune 3 LLM models
(Llama2-7B33, Mistral-7B27 and GPT-4o mini32), tested on the same 211 entries. While we acknowl-
edge that more advanced models have since been released, our primary goal was to demonstrate that
fine-tuning on domain-specific data improves model performance regardless of the base architecture.
Results in Figure 2 b) show that our results agree with previous studies34,35 that fine-tuning improves
the inherent performance of an LLM. In particular, we see significant performance in Llama2 com-
pared to the other 2 models, its Answer Correctness increases from an average of 0.49 to 0.73. We
expect that applying the same fine-tuning approach to more recent, cutting-edge LLMs would yield
even better results, but this demonstration effectively shows the value of our ChemLit-QA dataset for
improving chemistry-specific performance.

Evaluations on ChemLit-QA-neg & ChemLit-QA-multi One of the limitations of LLMs is
hallucinating answers, specifically when they cannot be deduced based on the given contexts. We
tested this on our ChemLit-QA-neg dataset, where we evaluated the LLM’s ability to identify negative
questions by either responding “Answer not available from the context” or arriving at the same
conclusion through reasoning. Based on these results, we see that only GPT-4o mini32 and Claude-
3.5-Sonnet36 achieved an Answer Correctness score over 0.5, scoring 0.58 and 0.55, respectively.
When we evaluated the same LLMs as Figure 2 a), in our ChemLit-QA-multi dataset, all models
retained the same performance order but much lower in scores. This proves ChemLit-QA-multi
dataset is more challenging than the main dataset.

4 Conclusion

We present ChemLit-QA, an open-source, expert-validated, QAC-type, dataset for RAG and fine-
tuning tasks in chemistry. Additionally, we include semantically similar chunks in the dataset
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to simulate the retrieval component of an RAG pipeline. We benchmarked several state-of-the-
art proprietary and open-source LLMs, finding that proprietary models outperformed open-source
counterparts in RAG tasks. However, fine-tuning models like Mistral-7B27 and Llama2-7B33 yielded
performance comparable to proprietary models. We also introduce two supplementary datasets,
ChemLit-QA-neg for hallucination detection and ChemLit-QA-multi for reasoning-intensive tasks,
revealing challenges that LLMs still face in achieving human-level intelligence. Limitations of our
work include fixed-size text chunks and the need for multi-modal data extraction. Future research is
aimed to explore these limitations. We anticipate that these datasets will significantly contribute to
advancing scientific discovery.
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