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Abstract

X-ray observing facilities such as the Chandra X-ray Observatory and the eROSITA
all sky survey have detected millions of astronomical sources associated with
high-energy phenomena. The arrival of photons as a function of time follows a
Poisson process and can vary by orders-of-magnitude, presenting obstacles for
downstream tasks such as source classification, physical property derivation and
anomaly detection. Previous work has either failed to directly capture the Poisson
nature of the data or only focuses on Poisson rate function reconstruction. In
this work, we present Poisson Process AutoDecoder (PPAD). PPAD is a neural
field decoder that maps fixed-length latent features to continuous Poisson rate
functions across energy band and time via unsupervised learning. It reconstructs
the rate function and yields a representation at the same time. We demonstrate the
efficacy of PPAD reconstruction, regression, classification and anomaly detection
experiments using the Chandra Source Catalog.

1 Introduction

Massive volumes of X-ray data are being produced at unprecedented rates thanks to ongoing X-ray
surveys and missions, such as the Chandra X-ray Observatory [5]], the XMM-Newton[23]] telescope,
and the eROSITA survey [12], which together contain approximately 2 million individual X-ray
sources in the sky (and several million individual detections). Automated and data-driven learning
of the individual X-ray photons associated with these sources is necessary, as it enables various
downstream applications at massive scale. However, X-ray source vary by orders-of-magnitude
in terms of X-ray photons detected, as well as in the distribution of photon energies and relevant
timescales. Many sources are well-within the Poisson limit—with telescopes receiving just a few
photons per exposure per source.
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In X-ray astronomy, machine learning classification has primarily relied on the use of hand-crafted
features using both supervised and unsupervised approaches [[L1} [17, [7, 24} 2]. Manual feature
engineering requires strong domain knowledge and intensive computation, and may not select the
most representative features. For time-variable sources, other lines of work use the more primitive
light curve data (binned photon arrival times describing source variability) and apply deep neural
networks to encode light curve segments into low dimensional embeddings. These embeddings are
either learned in an unsupervised manner [[14} 15} [19] or trained end-to-end with some supervised
objectives [, 14} 20l 26]. However, such methods still require light curve reconstruction, for which
the naive binning strategy ignores the intrinsic stochastic nature of photon arrivals, thereby creating
artifacts in reconstructed light curves which are especially severe for low intensity sources. The more
robust likelihood-based Gregory-Loredo algorithm [8]] incorporates the Poisson stochasticity, yet still
requires binning with < 20 bins for efficient model selection, thereby limiting the capacity. Moreover,
the GL algorithm does not naturally allow downstream learning.

In this work, we introduce the Poisson Process Auto-Decoder (PPAD), a pipeline that embeds raw
event files (i.e., photon arrival times and tagged energies) to latent representations in an unsupervised
manner. PPAD makes the following three key contributions: 1) It employs a neural field for light
curve reconstruction, offering infinite resolution and bypassing the binning in previous approaches. 2)
It uses a Poisson likelihood-based approach that respects the intrinsic stochasticity of X-ray sources.
3) Via an auto-decoder, it learns fixed-length latent representations of variable-length event files,
offering great flexibility for downstream tasks. We showcase the remarkable performance of PPAD
via the accuracy of reconstructed light curves and the adaptability of learned latent representations on
regression, classification and anomaly detection.

2 Method

Modeling Photon Arrivals as Poisson Processes: X-ray sources are detected / stored as “event
files" — a collection of photon arrival times, each tagged with the energy of the photon. The arrival
times are commonly modelled as an inhomogenerous Poisson process [3] . For an inhomogeneous
Poisson process with rate r(t) (effectively the light curve intensity), an established result [18]]
precisely characterizes the likelihood of a list of events {¢;}?_, during an observation interval [0, T'):
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Here the integral can be approximated via discretization. Now given a list of events {¢;}7; on
[0,T"), we would like to find the rate function r(¢) that maximizes the likelihood, or minimize the
negative log-likelihood, of this event file. However, this is an ill-posed problem, because Dirac rates
at arrival times would lead to an unbounded likelihood. We therefore choose to add a smoothness
constraint in the form of a total variation (TV) penalty. Specifically, for the set of discretization points
0=mn <..<7Nx =T, the total variation of the rate function r on these points is defined as:
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We compute the TV on both the set of arrival times as well as an additional set of uniformly discretized
points on [0,7") to ensure that the penalty adequately samples at both low count and high count
regions. The combined reconstruction loss is the sum of the negative log likelihood and the TV
penalty, weighted by the hyperparameter Ary.

Neural light curve reconstruction: Given the loss defined in Section [2| we would like to find
the rate function that minimizes the loss £(r). We adopt the now common practice (e.g. [13]]) to
parametrize r with a one-dimensional neural field for its weak dependence on assumptions and its
resolution-free property. Specifically, a neural network (with weights ¢) takes time ¢ as an input
and output 74 (¢) such that r(t) =~ r(¢). We then use standard gradient descent algorithms (e.g.,
Adam [10]) to minimize the loss defined in Sectionby tuning ¢. Upon convergence, 14 yields the
reconstructed light curve of the given event file.



To enhance the network’s ability to learn high frequency signals, we adopt another common practice
(e.g. [13]) to apply the following sinusoidal Positional Encoding (PE) to the input ¢:

y(t) = [t,sin(2071), cos(2°t), ..., sin(2L 71 nt), cos(2L 71 wt)). 3)

Here ¢ = t/T'. The encoding ~y(¢) maps ¢ to a (2L + 1)-dimensional vector ~y(¢) with features in
different frequencies, which is then fed into the neural network to produce the output r,(y(t)).

Learning latent representation via auto-

decoding: To learn the latent representations of

a catalog of events, we use an auto-decoder based Latent
approach (see e.g. [16}121]]). This is because the

common auto-encoder approach is not well-suited r(t) r
for our purpose as the event files are variable in 1\_}
length and highly stochastic, preventing autore- ResNet D =
gressive type encoders to achieving good conver- . Positional Eventfile {t;}7_,
gence. Instead, we randomly initialize a latent t Encoding (t) =
variable z for each event file, which is fed together Y
with the encoding () through the neural network

r¢ to produce the reconstructed light curve. For Figure 1: Illustration of PPAD. Latent vectors are
a set of event files {¢;;},1 < j <m,1 <i<n; concatenated to positionally encoded time ¢ and
coming from m sources, we reconstruct m light fed to the shared decoder. The output r(¢) for
curves 1) (t) & 74 (t; 20)) with the same global ¢ € [0, 7)) forms the light curve, which are used
weights, ¢, and different latent variables z(/), 1 < to compute the loss function in M) together with
j < m. The set of latents are optimized together the event files. Gradients are back-propagated to
with the neural network weights during training. both the ResNet and the latents.

We regularize the latent space by adding ||z |3

to the loss; this ensures a compact manifold in the

latent space and helps with convergence.

loss

Putting it together: Poisson Process Auto-Decoder: The full PPAD architecture is displayed in
Fig.[T| The loss function of PPAD contains three parts: likelihood, total variation penalty, and latent
norm penalty. Furthermore, we bring back the energy marking, and generalize the neural field to
output a rate value for each energy bin. Summarizing these components, our final loss function has
the following formulation:
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where j = 1,..., M refers to event files, k = 1,..., K refers to energy bins, ¢; 1,7 = 1,...,n;1
refers to photon arrivals in the k-th energy bin, 7,7 = 1, ..., N refers to evenly dlscretized points,
and +y is the positional encoding defined in Eqn. Durmg trammg, ¢ and {zj 1 | are optimized
together. The neural network ¢ is a ResNet [9] which takes a (djyent + 2L + 1)- d1mens10nal input
(concatenation of the latent vector and the positional time encoding) and outputs a K dimensional
vector representing the rate function at K energy bins. At test/inference time for a new event file, ¢ is



frozen and only a new latent z is optimized:

Training :¢, {2@)};\11 := arg min Liowa (¢; {z(j)}jj‘il). 5)
@5 Zj}_?il
Inference : 2 := arg min Cto[al(é; z). 6)

3 Experiments

Data and training We collect 109 656 event files from the Chandra Source Catalog [6]], truncate
all event files into 8-hour segments, bin energies into soft (0.5-1.2 keV), medium (1.2-2.0 keV), and
hard (2.0-7.0 keV) categories. Additional implementation details can be found in Appendix [A]

Light curve reconstruction Fig. 2] displays light curve reconstruction results on four sources. The
PPAD reconstructs a wide range of light curve patterns, including periodic signals, flares, dips and
non-varying sources. The reconstruction quality remains high for the integrated (“bolometric") light
curve as well as for specific energy bands. Also note the smoothing effect of reconstructed light
curves, which filters out stochasticities in event files.

Learning source properties To demonstrate that the learned latents contain rich information
about corresponding X-ray sources, we explored relations between various source properties and
the learned latents. In Fig. EL we observe clear continuous trend of hardness ratios (hard-medium,
medium-soft, hard-soft, respectively) in PCA space, as well as clear clustering of variable sources
(medium variability probability, broad variability probability, and broad variability index) in tSNE
space. Moreover, we performed prediction tasks on various source properties and collected results
in Table m We see that using vanilla Random Forests without tuning, one can obtain remarkable
accuracy on hardness ratio prediction, variable source classification as well as source type prediction.
Specifically, with much less tuning effort, our source type classification accuracies are comparable to
[L7] and slightly lower than [25]], which uses additional optical and infrared information.
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Figure 2: Binned event files vs light curves recon-
structed by PPAD. Rate from top row to bottom
row: total, high, medium, low. Event files are
binned every 5 minutes, and rates are normalized

Figure 3: Top: top 2 principal components of la-
tent features colored by hardness ratios. Bottom:
tSNE components of latent features colored by
variability probabilities/indices.

the same way.

Anomaly detection To mimic astronomical sources discovery, we performed anomaly detection on
learned latents. With a target source in mind, we search for nearest neighbors of the target latents in
the embedding space. As Fig. ] shows, 5 of the 7 neighbors of the targeted flare also exhibit some
flare-like behavior, demonstrating the potential of PPAD in discovering interesting unlabeled sources.



Table 1: Regression/classification performance
using learned latent features. All models use a
random forest with 100 trees and default hyper-
parameters Train-test split is 0.8 — 0.2 without
validation set. SMOTE is applied in classifica-

Regression Traget MSE R? > ;
hard_ms 0.02 087 | ' AERNE :
hard_hm 0.01 0.88 =2 1 2 1

hard_hs 0.02 0.93 A o MOl | gL [ o sl A=
Classification Target Accuracy F1 Score B . : . )

var_index_b > 0.5? 0.92 0.63 22 .
source type 0.62 0.25 1 ! ’ '
YSO vs AGN 0.75 0.70 0 7 0 7 e 7
Time (hour) Time (hour) Time (hour) Time (hour)

Figure 4: Targeted anomaly (upper left) and 7
found sources who are closest in the latent space.
Most of the found sources exhibit flare-like be-
havior in one or more of the energy bands, as the
targeted anomaly source does.

tion case to resolve class imbalance.

4 Conclusion

This work proposes PPAD, a novel framework for end-to-end unsupervised X-ray sources learning.
PPAD simultaneously reconstructs light curves and learns latent representations that are useful for
various downstream tasks. Extensive experiments validates the superior performance of PPAD. A
notable limitation of PPAD is its relatively costly test time optimization compared Auto-encoders.
Another limitation is that one need to tune the network capability in order to strike a good balance
between light curve reconstruction quality and downstream task performance. Future work aims
to address these limitations as well as apply PPAD to the full Chandra source catalog, releasing
classifications and anomaly scores for all sources.
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A Implementation Details
We provide implementation details for our experiments in Section 3]

Data Among the collected 109656 event files, most has low signal-to-noise ratio. There-
fore, we first created a higher quality dataset by removing each event file with probability
1/(1 + exp(900°-2cdot1®-°t — 900)), where [ is the length (number of arrivals) in the event file. The
filtering effectively removes mostly low-count event files, and resulted in a high quality dataset of
14 891 event files. Further, to prevent the model from learning the peculiarity at ¢ = 0, we randomly
shifted each event file by ¢ ~ Unif]t, to] where ¢y, to are first two arrival times.

Network architecture The ResNet takes a (djaent + 2L + 1)-dimensional input with djyen = 8
and L = 12. It maps the input to a 512-dimensional hidden vector via a fully connected input
layer.. The hidden vector is then passed through 5 fully connected ResNet blocks, maintaining
dimensionality. Lastly, a fully connected output layer maps the hidden vector to the output of
dimension 3, representing light curve value at K = 3 energy bins. ReLU activation is used in
between consecutive layers.

Loss function For hyperparameters in Eqn. ] we used Aty = 10, Ajgene = 1. The time interval
[0,T) with T' = 8 hours is divided into 2048 evenly spaced bins when we calculate the integral from
ﬁneg—loglike]ihood and a Part of ﬁTV~



Training The training has 3 stages. For stage 1, we train both the network and the latent using the
filtered high quality dataset for 1200 epochs. For stage 2, we switch to the full dataset, but freeze the
network and only train the latents for 200 epochs to provide a good initialization. For stage 3, we
again train the latents and networks together for 300 epochs. We use the Adam optimizer [[10] with
default hyperparameters. The learning rate for the latents is 1e-3 for Stages 1&2 and 1e-4 for Stage 3.
The learning rate for network weights is always 1/10 of that for the latents. We use a batch size of
64. The whole training takes approximately 5 days on a single Nvidia V100 GPU.

Experiments All regression/classification experiments use a Random Forest with 100 trees and
default hyperparameters, with a 80%-20% train-test split. Standard deviation of numbers are provided
by running the experiments 5 times each, using random states 2020-2024.

[22]
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