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Abstract

Predicting the response of nonlinear dynamical systems subject to random, broad-
band excitation is important across a range of scientific disciplines, such as struc-
tural dynamics and neuroscience. Building data-driven models requires experimen-
tal measurements of the system input and output, but it can be difficult to determine
whether inaccuracies in the model stem from modelling errors or noise. This
influences the investment of resources into building more accurate models. There
are currently no solutions to this problem in the absence of a complete benchmark
model. This paper presents a novel method to identify the causal relationship
between the input and output of a system in the presence of output noise. Using
this method, researchers could collect experimental input and output data for a
nonlinear dynamical system, and identify how much of the output is caused by the
input as a function of frequency.

1 Introduction

Nonlinear dynamical systems are observed across a broad range of scientific disciplines [11], from
structural dynamics [19] to neuroscience [2]. Modelling their behaviour offers meaningful insights,
enables predictions, and allows for control to generate desirable outcomes. Accurate models generally
involve experimental measurements, e.g. to carry out model updating for physics-based models, or to
train data-driven models. However, it can be difficult to determine whether prediction errors are due
to additional noise or inaccuracies in the model. Consider a nonlinear dynamical system subject to
broadband random excitation, x(t), which is especially prevalent in structural dynamics. The output
of the system is measured to be yn(t), where

yn(t) = y(t) + ϵn(t) = M{x(τ)τ≤t}+ ϵn(t) . (1)

Here M{·} represents the true system, ϵn(t) is additive noise and y(t) is the component of yn(t)
that is caused by x(t). The noise ϵn is assumed to be due to additional signal sources rather than
measurement noise, hence there is no noise on the input. Measuring the causal relationship between
x and yn (i.e. the relative noise level) is important in determining the feasibility of a project before
further investment in data collection and computational resources. This can be quantified using a
nonlinear coherence metric, which is also equal to the linear coherence between y(t) and yn(t) [7],
but cannot be calculated directly due to the unavailability of y(t). As a result, only a lower bound on
the nonlinear coherence can be estimated using a model prediction:

yz(t) = G{x(t)} = M{x(τ)τ≤t}+ ϵz(t) , (2)

where G{·} is the model and ϵz represents model errors caused by the inability of G{·} to fully
capture M{·}. Determining the true nonlinear coherence is challenging because it is difficult to
distinguish between ϵn(t) and ϵz(t), which both appear as random noise.

Despite its wide ranging applications, this work is specifically motivated by feedforward
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active noise reduction (ANR), where x is used as a reference signal to reduce the target signal, yn(t).
In order to reduce the unwanted noise, a model must be developed to accurately predict yn(t) using
x(t). The maximum noise reduction that can be achieved is quantified by the causal relationship
between x(t) and yn(t). For linear systems, such as those in sound cancelling earbuds and headsets,
this is quantified using the linear coherence metric, and the level of noise reduction that can be
achieved, in decibels, is equal to ΓXY (f) = 10 log10

(
1− γ2

XY

)
. However, ANR has recently

begun implementation in cars, where the transmission pathway from x to yn is highly nonlinear
[3, 13]. For nonlinear systems such as this, the nonlinear coherence would be used to quantify
the level of noise reduction that is possible. This is crucial in evaluating the benefits of investing
resources into developing a high fidelity model of the car to enhance ANR performance. It is not
currently possible to calculate the nonlinear coherence without investing the necessary resources into
building the best model possible.

This works aims to estimate the nonlinear coherence between x(t) and yn(t) for nonlinear
dynamical systems, with relatively small quantities of data and an incomplete model. These
systems can be described by the general class of second order ordinary differential equation (ODE)
N (y, ẏ, ÿ) = x, where N (y, ẏ, ÿ) represents an arbitrary nonlinear function. The most common
form of ODE of this form seen in practice is:

1

ω2
n

ÿ +
2ζ

ωn
ẏ + y +N (y, ẏ) = x+ ẋ+ ẍ . (3)

Providing measurements are taken across nonlinearities (which are often localised), this can be
extended to systems with multiple degrees-of-freedom (extension to multiple degrees-of-freedom
is part of ongoing work). Nonlinear dynamical systems of this type are common in many scientific
disciplines and there has been significant work in modelling their response using data-based machine
learning methods [18, 8, 20, 9]. However, it is extremely difficult using feedforward modelling
techniques due to the exponentially growing number of nonlinear monomial terms which contribute
to the output, which can be formulated using the Volterra series [16]. It is especially challenging
for systems with long memory and for random broadband inputs. In this paper, the structure of the
equation is exploited to estimate the nonlinear coherence for systems of this type, with an incomplete
model. To the best of the author’s knowledge, there are currently no other methods that achieve this.

2 Related Methods

3 Related Work

The presented method for calculating the level of noise present and inferring the maximum
performance of feedforward models is novel. However, there are two broad areas of research in the
literature that overlap with, and contribute to, the goals of this paper.

Control Within control, there are methods to estimate the level of noise and model error.
The Kalman filter [6], and its extensions, aim to estimate the true state of a system by optimally
combining the predictions of a state space model with noisy measurements. A comparison of the
model error and noise level is used to balance the two signals optimally. However, when applied to
the systems described in this paper, the noise levels are not observable because it is not possible to
distinguish the contributions from the two sources. Prior knowledge of the relative noise level is
therefore required, which is not available here. However, a similar method is utilised in this paper.

Nonlinear Coherence Granger causality is a method developed to determine whether one
signal can be used to predict another [5]. A simple linear auto-regressive model is built to predict
the next value in the output signal using past values of itself and the input signal. An F-test is
then used to evaluate whether a simpler model predicts the target signal just as well as a more
complex model. This is extended to model nonlinear relationships between signals in the extended
Granger causality [1]. Mutual information is another method for determining the causal relationship
between input and output signals [17]. It represents the reduction in uncertainty in one signal when
the other is known. This is applicable when the relationship between the two signals is nonlin-
ear. Mutual information between two variables X and Y is the information that provided by X about Y.
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In both of these methodologies, to determine the link between the input and output the cor-
relation between high-dimensional time series inputs and the output must be established. If this link
can be established, then it is possible to build a simple forward model using classical methods such
as the implicit Wiener series [4]. This paper focuses on the cases where these correlations cannot be
established using classical methods. Taking the linear coherence between the response of the system
and the prediction of a CNN is effectively a nonlinear coherence metric and will outperform classical
methods such as mutual information. A CNN is therefore used as the benchmark for this purpose.

4 Methodology

4.1 Architecture

Consider the signals x(t), yn(t) and yz(t). Here x(t) is the input to the system, yn(t) is a noisy
observation and yz(t) is the prediction of a forward model. The noise is represented by ϵn(t), which
is assumed to be zero mean but otherwise can be of an arbitrary spectra and the true output is denoted
y(t). The time series data is split into N frames (input-output pairs), each of length M samples.
In the following sections, lowercase denotes the time domain and uppercase denotes the frequency
domain. In the ith frame:

Y (i)
z (f) = Y (i)(f) + E(i)

z (f) Y (i)
n (f) = Y (i)(f) + E(i)

n (f) , (4)

where E(i)
n is assumed to be uncorrelated with Y (i), whereas E(i)

z is correlated with Y (i).

A key observation of the structure of Eq. 3 is that whilst it is difficult to learn a mapping
from x to y in the ‘forward’ direction, it is relatively simple to map from y to x in the ‘reverse’
direction, even for highly nonlinear systems with long memory. This is because there is no nonlinear
mixing of terms in time in the reverse direction, and so there is not an infinite Volterra series [16] as
there is in the forward direction. The input, x, can therefore be used as a reference signal to infer
the true y. The signals yz and yn can be combined optimally to find the best estimation of y, and
therefore x, based on their relative noise levels. Consider a linear combination of Y (i)

n and Y
(i)
z at

each frequency:
Ŷ (i) = Y (i)

n K + Y (i)
z (1−K) , (5)

where 0 ≤ K(f) ≤ 1. An inverse Fourier transform is applied to Ŷ which is then used to train a
machine learning model to predict x in the time domain. Figure 1 illustrates the proposed architecture.
In this paper, Fθ is a 1D convolutional neural network (CNN). Due to the simplicity of the reverse
mapping from y to x, a relatively small CNN can be constructed, even when the system memory
from x to y is relatively long. It is hypothesised that the optimal value of K will yield the optimal

Figure 1: Architecture. The fast Fourier transform (FFT) of the signals yz and yn is taken, before the
two signals are combined at each frequency point using the parameter K(f). The inverse fast Fourier
transform (iFFT) is then applied to the resultant signal, which is then mapped to x using a CNN.

estimate of the noise-free output Y . This optimum K corresponds to minimising:

J = E
[
(Ŷ − Y )(Ŷ − Y )∗

]
, (6)

because the optimal estimation of Y will also yield the best estimate of X . Minimising this expectation
with respect to K, by setting ∂J

∂K = 0, yields:

K =
1

1 +
E[EnE∗

n]
E[EzE∗

z ]

. (7)
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Therefore if the parameters of the model, θ and K, are trained simultaneously, the architecture will
implicitly estimate the ratio of errors in order to optimally combine the two signals. This is used to
calculate the nonlinear coherence. The nonlinear coherence between x and yn is equal to the linear
coherence between y and yn and it can be shown that:

γ2
Y Yn

(f) ≡ |SY Yn
|2

SY Y SYnYn

=
E [Y Y ∗]

E [YnY ∗
n ]

, (8)

where the notation SAB = E [AB∗] is the power spectrum density (PSD) between signals A and B
at frequency f . The above estimation of K can be used to reverse engineer an estimation of E [Y Y ∗]:

E [Y Y ∗] ≈ KE [YnY
∗
n ]− (1−K)E [YzY

∗
z ] + 2 (1−K)ℜ{E [YnY

∗
z ]} , (9)

which can be calculated directly from the data using the inferred value of K. This is then substituted
into Eq. 8 to estimate the nonlinear coherence. See appendix A.1 for a more detailed derivation.

5 Experimental Results

The method was evaluated on both a simulated and an experimental system, each with different
forms of nonlinearities to demonstrate the applicability of the method. For each system, the
robustness of the method was tested for different levels of noise. The noise level can be
quantified by the nonlinear coherence: values close to 1.0 indicate low noise and values close to
0 indicate high noise. The predictions of the presented method were made using just 10 frames of data.

To benchmark the performance of the algorithm, the predictions of the nonlinear coherence
are compared against those of the forward model, denoted Co (Yz, Yn), and a linearisation of the
system, denoted Co (X,Yn). The forward model, described in Section 4.1, was chosen to be a 1D
temporal convolutional neural network with dilations, as described by van den Oord et al. [15]. The
prediction of this forward model was used as yz to demonstrate the improved estimation of the
nonlinear coherence that can be calculated using the method presented in this paper. The generated
yz is therefore used both to provide a baseline and also to estimate the nonlinear coherence. It is
likely that better forward models could be trained both now and in the future for the examples shown;
the aim is to demonstrate how the presented method utilises the forward model to improve the
estimation of the nonlinear coherence, and so it is not benchmarked against the forward prediction in
the traditional sense and the selection of a forward model is somewhat arbitrary.

5.1 Polynomial stiffness

Systems with quadratic and cubic nonlinearities appear in many mechanical [12, 19] and biological
systems [10], and y2 and y3 are the next terms in the Taylor expansion of the nonlinearity of
any system. This example therefore has wide ranging real world applications. The following
dimensionless nonlinear oscillator was simulated to generate 1000 frames of length 6000:

ÿ + 2ζẏ + y + α2y
2 + α3y

3 = x . (10)

The input, x, was bandlimited random noise with a fixed rms τ . The spectrum of x was effectively
flat in the range of interest. The hyperparameters were set as defined in Appendix B.1.

The linearised response of the system captured 88 % of the total system response and a
CNN (kernel width=20, hidden layers = 5, features=10, trained for 1000 epochs with a learning rate
of 0.01) captured 94% of the response using 10 frames of data. Without the method presented in this
paper, with just 10 frames of data it would be impossible to determine how much of the unmodelled
response is due to noise and how much is due to nonlinearities. Figure 2 shows the true nonlinear
coherence (solid black line), the prediction of the CNN in the forward direction (blue dotted line)
and the linear coherence between x and yn (solid green line). The more noise that was added, the
lower the true nonlinear coherence because the causal relationship between x and yn is weaker. The
predicted nonlinear coherence was calculated using 10 frames of data, which is represented by the
red dashed line. The method presented in this paper provides an excellent prediction of the nonlinear
coherence.
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Figure 2: Polynomial stiffness case study.

5.2 Experiment

The method was then evaluated on an experimental dataset consisting of 360 frames of length
6000. A cantilever beam was excited through a nonlinear connection using a bandlimited random
input. The nonlinear connection consisted of magnets (the cantilever is steel) and a rubber tip
which caused rattling. This nonlinear connection is complex and has not been characterised. The
set up was considered to be effectively noiseless and then three levels of additional noise were
introduced by post-processing to represent uncorrelated noise in the system. Two minutes of
data (10 frames) was used to generate the forward prediction and then predict the nonlinear coherence.

Given the nonlinearity in the system and small quantity of data captured, in the noise-free
case only 45 % of the response was captured by the linearised component of the response, and a
CNN (kernel width=10, hidden layers = 5, features=5) captured just 74 % due to the complexity of
the system response.
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Figure 3: Experimental case study.

Figure 3 shows the predicted and true nonlinear coherence for three levels of noise. For all three
levels of noise, the predicted nonlinear coherence was an excellent estimation of the true nonlinear
coherence. In the low noise case, it demonstrates that significant improvements in the prediction
could be achieved by collecting more resources and building larger models. Conversely, in the high
noise case, the potential improvements are relatively small compared with the overall noise level.

6 Conclusions

This paper presents a novel method for calculating the nonlinear coherence for a nonlinear dynamical
system in the presence of noise. A set of parameters are learnt to optimally combine an output
prediction, calculated using an available model, with noisy measurements of the output to predict
the input to the system. The nonlinear coherence is calculated using these parameters and is used
as a metric of causality. Previously, the only way to estimate this was to model the system and
assume the unmodelled component of y to be noise. The presented method improves upon this and is
able to estimate the nonlinear coherence with excellent accuracy using a relatively small quantity of
data. This would allow for researchers to collect experimental input and output data for a particular
nonlinear dynamical system, and identify how much of the output is caused by the input across the
frequency range, without developing expensive models.
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A Architecture

A.1 Derivation

The architecture is driven towards de-noising Ŷ by optimally combining Yn and Yz .

J = E
[
(Ŷ − Y )(Ŷ − Y )∗

]
(11)

= E [(YnK + Yz (1−K)− Y )(YnK + Yz (1−K)− Y )∗] (12)

= K2E [EnE∗
n] + (1−K)2E [EzE∗

z ] . (13)

Then, differentiating with respect to K gives

dJ

dK
= 2KE [EnE∗

n]− 2(1−K)E [EzE∗
z ] = 0 . (14)

Therefore rearranging for K gives

K =
1

1 +
E[EnE∗

n]
E[EzE∗

z ]

. (15)

The nonlinear coherence between x and yn is equal to the linear coherence between y and yn:

γ2
Y Yn

=
|SY Yn

|2

SY Y SYnYn

, (16)

where SZ1Z2
= E [Z1Z

∗
2 ] represents the power spectrum density (PSD) between signals Z1 and Z2

at frequency f . Assuming En and Y are uncorrelated, the following can be written.

SY Yn
= E [Y Y ∗

n ] = E [Y Y ∗] (17)
SYnYn

= E [YnY
∗
n ] (18)

SY Y = E [Y Y ∗] . (19)

Therefore

γ2
Y Yn

=
E [Y Y ∗]

E [YnY ∗
n ]

. (20)

Note that E [YnY
∗
n ] is not simplified further because this quantity can be measured from data. An

estimation of E [Y Y ∗] is required. The estimation of K, using the architecture described in Section
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4.1, can be used to reverse engineer an estimation of E [Y Y ∗]. The ratio between the error in each
signal is given as

C ≡ E [EzE∗
z ]

E [EnE∗
n]

=
K

1−K
. (21)

Therefore

CE [EnE∗
n] = E [EzE∗

z ] (22)
= E [(Y − Yz)(Y − Yz)

∗] (23)
= E [Y Y ∗]− 2ℜ{E [Y Y ∗

z ]}+ E [YzY
∗
z ] (24)

In addition to this equation, three quantities can be calculated directly from the data: E [YnY
∗
n ],

E [YzY
∗
z ] and E [YzY

∗
n ]. Noting that Ez is correlated with Y because it includes model error, two

equations can then be written:

E [YnY
∗
n ] = E [Y Y ∗] + E [EnE∗

n] (25)
E [YzY

∗
n ] = E [YzY

∗] . (26)

Combining Eq. 24 and Eq. 25 to eliminate E [EnE∗
n] gives

C (E [YnY
∗
n ]− E [Y Y ∗]) = E [Y Y ∗]− 2ℜ{E [Y Y ∗

z ]}+ E [YzY
∗
z ] . (27)

Solving for E [Y Y ∗] using Eq. 26 and Eq. 27 gives

E [Y Y ∗] ≈ CE [YnY
∗
n ]− E [YzY

∗
z ] + 2ℜ{E [YnY

∗
z ]}

C + 1
, (28)

which can be calculated directly from the data using the inferred value of K. This is then substituted
into Eq. 20 to estimate the nonlinear coherence.

B Dataset

The dataset is split into training, validation and test sets. 10 frames were used for training, 10 frames
were used for validation, and remaining frames were used for the test set. A batch size of 1 frame
was used for training using the Adam optimiser.

B.1 Polynomial Stiffness Case Study

The dataset contains 1000 frames of length 6000 samples. The parameters were set as: ζ = 4.5,
α1 = 5 × 103, α2 = −10 and α3 = 3 × 103. The input, x, was bandlimited noise with an rms of
τ = 1.0× 103. Fourth order Runge-Kutta numerical integration was used in order to calculate the
benchmark true y using x [14]. A step of 0.0025 was used. Figure 4 shows the power spectrum
density (PSD) for the system response and the linearised response.
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Figure 4: Plot of the power spectrum density of Yn and Yz for the polynomial stiffness case study
with no noise added.
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B.2 Experiment Case Study

The dataset contains 180 frames of data of length 6000. A sampling frequency of 500 Hz was used to
record the data. Figure 5 shows the power spectrum density (PSD) for the system response and the
linearised response.
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Figure 5: Plot of the power spectrum density of Yn and Ylinear for the experimental data with no
noise added.

C Computational Resources

The device used to run the code in this paper had the following specifications:
Processor: 12th Gen Intel(R) Core(TM) i7-12700KF 3.61 GHz
RAM: 64.0 GB
GPU: NVIDIA GeForce RTX 3090
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