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Abstract

Data-driven discovery of partial differential equations (PDEs) has emerged as a
promising approach for deriving underlying physics when domain knowledge about
observed data is limited. Despite recent progress, the identification of governing
equations and their parametric dependencies using conventional information cri-
teria remains challenging in noisy situations, as the criteria tend to select overly
complex PDEs. We introduce an extension of the uncertainty-penalized Bayesian
information criterion (UBIC), which is adapted to solve parametric PDE discovery
problems efficiently without computationally expensive PDE simulations. This
extended UBIC uses quantified PDE uncertainty, accumulated across temporal or
spatial points, to prevent overfitting in model selection. Numerical experiments
on canonical PDEs show that our extended UBIC can identify the number of true
terms and their varying coefficients accurately, even in the presence of noise.

1 Introduction

The discovery of governing partial differential equations (PDEs) through data-driven methods has
been advanced significantly, with the development of sparse identification of nonlinear dynamics
(SINDy) [1, 2]. These methods [3, 4] offer greater flexibility and accuracy by leveraging machine
learning techniques on observed data, rather than relying on first-principles derivations. However,
challenges remain, particularly in tuning regularization hyperparameters for sparse regression, which,
if not properly done, can lead to the selection of overfitted or underfitted models. Recently, the
uncertainty-penalized information criterion (UBIC) [5] has been developed to address the challenge
by balancing model accuracy and model complexity while accounting for the quantified uncertainty
of PDE coefficients to overcome the issue of overfitting. UBIC consistently outperforms traditional
model selection criteria like AIC and BIC [6, 7], which tend to favor too complex models.

The difficulty increases when identifying parametric PDEs with spatially or temporally varying
coefficients, as most state-of-the-art PDE discovery methods (e.g., [8, 9]) are designed for uncovering
PDEs with constant coefficients and are thus not readily applicable for these tasks. Although existing
approaches such as sequential grouped threshold ridge regression (SGTR) [10] and adaptive DLGA-
PDE [11] offer possible solutions, the models they select are hyperparameter-sensitive. The adaptive
DLGA-PDE also requires expensive computations, e.g., PDE solving/simulations or the learning
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process to approximate a state variable. These limitations highlight the need for parsimony-enhanced
approaches to achieve the computationally efficient, data-driven discovery of parametric PDEs.

Contributions. This paper introduces an extension of UBIC, adapted to solve parametric PDE
discovery problems. The extended UBIC uses quantified PDE uncertainty as a complexity penalty
to address the overfitting issue in model selection. It inherits the benefits of UBIC, including no
computationally expensive PDE simulation required (different from SINDy-AIC [12]) and minimal
dependence on hyperparameter tuning. Unlike any previous work, we provide confidence intervals
for all coefficients, each evaluated at a particular time step or spatial grid point, as a byproduct of
computing the UBIC.

2 Methodology

2.1 Problem Formulation

We consider the following parametric form of governing PDEs:

ut = F(u, ux, uxx, . . . ;ψ(x, t)) =
∑
j=1

Fj(u, ux, uxx, . . . )ψj(x, t). (1)

We aim to identify the nonlinear operator F , which involves spatial derivatives of the state variable u,
whose discretization U ∈ RNx×Nt on a spatio-temporal grid is given. F is parameterized by ψ(x, t),
which we assume reducible to either ψ(x) or ψ(t)—spatially or temporally varying functions.

2.2 Best-subset Regression

Suppose, without loss of generality to spatially varying cases, Equation (1) is formulated as systems
of linear equations, with temporal dependency. Given there are Nt time steps and Nx spatial points,
the linear system evaluated at a time t = ti is expressed by

Ui
t = Qiξi =

Nq∑
j=1

ξijq
i
j ; Q

i =

qi
1 · · · qi

j · · ·

 ∈ RNx×Nq . (2)

Ut is the first-order time derivative numerically computed with Kalman smoothing. Every Qi

comprises overcomplete Nq candidate terms, each term potentially serving as a true Fj . We define
the candidate library Q as a block-diagonal matrix constructed by all Qi matrices, building a single
system for the parametric PDE discovery problem: Ut = QΞ. We solve for the solution with sk
support size (the number of nonzero terms), satisfying

Ξ̂ = argmin
Ξ

Nt∑
i=1

∥∥∥Ui
t −Qiξi

∥∥∥2
2
+ λ

∥∥ξi∥∥2
2

such that
∥∥ξi∥∥

0
= sk,∀k ≤ Ns; (3)

where U and Q are the validation data on which Ξ ∈ RNqNt (a tall column vector collecting every

ξi) is evaluated. We set λ = 1
Nt

∑Nt

i=1

∥∥∥Ui
t −QiξiLS

∥∥∥2
2
/
∥∥ξiLS

∥∥2
2
; where ξiLS is the least-squares

solution—leveraging all of the candidate terms, to balance between the residual sum of squares (RSS)
loss and the L2-norm penalty. For each time step, the best-subset solver based on mixed-integer
optimization (MIOSR) [13] is used to impose sparsity, gathering ξi of consecutive support sizes with
zero L2-norm penalty (not a sensitive hyperparameter). We prefer MIOSR over SGTR to ensure
that potential PDEs with some support sizes are not overlooked. We achieve the group sparsity by
controlling that the support set {j |

∣∣ξij∣∣ > 0}, is the same, say sk, for every time step. Since we
cannot infer the optimal number of nonzero terms solely from Equation (3), the model selection step
is performed next.
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2.3 Model Selection

We minimize an information criterion to select the optimal support size s∗ in the strictly increas-
ing sequence of all available support sizes, (sk)Ns

k=1. An information criterion is expressed by
−2 logL(Ξ̂) + C(aN , Ξ̂,P); where L is the likelihood function, and C(aN , Ξ̂,P) is the total com-
plexity penalty defined with aN , a sequence of positive numbers. For example, 2sk and log(N)sk;
where N = NxNt, is the complexity penalty for AIC and BIC, respectively. P is any other necessary
information, e.g., the complexity measures of ICOMP (informational complexity criterion) [14] or
the UBIC’s quantified PDE uncertainty. Considering a particular support size of sk, we propose an
extension of the original UBIC (incorporating a fixed threshold ζ = 10−5 to prevent underflowing)
for the parametric PDE discovery as follows:

UBIC = N log

(
2π

N

∥∥∥Ut −QΞ̂µ

∥∥∥2
2
+ ζ

)
+ log(N)(U+ sk);

U = 10λ
∗V, V =

V

Vmax
, V = ΣNt

i=1Ri, andRi =
Σsk

j=1σ
i
j∥∥∥ξ̂iµ∥∥∥
1

.
(4)

According to [5], we compute the uncertainty U of the sk-support-size PDE using the tuned data-
dependent λ∗ and the scaled coefficient of variation V . At each time step, V accumulates an instability
ratio Ri, defined as the total posterior standard deviation divided by the L1-norm of the posterior
mean coefficient vector. Both the posterior covariance matrix (∈ Rsk×sk ) and mean coefficient
vector (∈ Rsk ) are obtained using Bayesian automatic relevance determination (ARD) regression
[15]. Vmax is the maximum value of V over all available support sizes. With the temporal (or spatial)
accumulation, we essentially derive the extended UBIC for the parametric PDE discovery. After the
best PDE has been decided, a physics-informed neural network [16] or a Fourier neural operator [17]
may be employed to simulate the state variable, on which UBIC is calculated to additionally verify
the validity of the equation.

Spectral density based transformation. The validation data Q in frequency space is ob-
tained by applying discrete Fourier transformation over the temporal axis to every Qj =q1

j · · · qi
j · · ·

 ∈ RNx×Nt , and removing entries corresponding to low-power frequencies—

less than the ninety percentile. The transformation is beneficial not only when deciding the optimal
coefficient vector with sk support size, but also when selecting the optimal s∗. We generalize the RSS

to
∥∥∥T (Ut)− T (QΞ̂µ)

∥∥∥2
2
; where T transforms Ut and QΞ̂µ to new representations, i.e., mapping

T (Ut) = Ũt. Every Ũi
t is a numerical result from a trapezoidal integration applied along the spatial

axis (the frequency/temporal axis for a spatially-dependent PDE) of estimated power spectral density
(PSD) using a periodogram. The integration limits the sample number and therefore facilitates the
model selection step, as [18, 5] have shown that conventional information criteria tend to select
overfitted PDEs when the number of samples is large. The PSD representation is noise-tolerant with
its clear characteristics, exhibiting larger values for true data-generating frequencies (see Appendix
A.3). The integration is ablated if the estimated PSD is a one-dimensional vector.

3 Results and Discussion

As detailed in Table 1, we experiment with three canonical parametric PDEs: the time-dependent
Burgers’ equation, the spatially-dependent advection-diffusion (AD) PDE, and the spatially-dependent
chaotic Kuramoto-Sivashinsky (KS) PDE. Each entry of the noise-free simulated solution U is
perturbed with ϵ%-sd (standard deviation) Gaussian noise sampled from ϵ

100 × sd(U) × N (0, 1).
The noise levels are listed in Table 1. We apply a Savitzky-Golay filter to smooth the resulting
distorted data before computing partial derivatives. We refer readers to [5] for a discussion on the
positive effects of the data denoising. The candidate terms include powers of u up to the cubic degree,
which are multiplied by spatial derivatives of u up to the fourth order. All experiments were run
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Table 1: Parametric PDE datasets from [10]. These datasets are visualized in Appendix A.1.
Dataset PDE Varying coefficient Nx, Nt ϵ

Burgers ut = a(t)uux + 0.1uxx
x ∈ [−8, 8] and t ∈ [0, 1]

a(t) = −(1 + sin(t)
4 ) 256, 256 4

AD ut = a′(x)u+ a(x)ux + 0.1uxx
x ∈ [−5, 5] and t ∈ [0, 5]

a(x) = −1.5 + cos
(
2πx
5

)
256, 256 4

KS
ut = a(x)uux + b(x)uxx

+c(x)uxxxx
x ∈ [−20, 20] and t ∈ [0, 100]

a(x) = 1 + 0.25 sin
(
2πx
20

)
b(x) = −1 + 0.25e−

(x−2)2

5

c(x) = −1− 0.25e−
(x+2)2

5

512, 512 10−2
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Figure 1: Burgers’ PDE.
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Figure 2: Advection-diffusion PDE. Dashed lines in (c) denote the true spatially varying coefficients.
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Figure 3: Kuramoto-Sivashinsky PDE.

on an Intel i7 CPU with 32 GB of RAM. The code is publicly available at https://github.com/
Pongpisit-Thanasutives/parametric-discovery.

We compare our method with the widely adopted SGTR baseline, which evaluates models using
corrected AIC (AICc) [19] for finite sample sizes, under noisy situations. In Figures 1(a), 2(a), and
3(a), although SGTR converges, it fails to explore certain support sizes, including the true one of
the Burgers’ PDE, raising concerns about how SGTR imposes sparsity through hard thresholding.
The AICc losses have led to the selection of too complex or overfitted models. In contrast, our
UBIC, calculated with the PSD-based transformation, utilizes the quantified uncertainty to penalize
overfitted models and identifies the correct governing equations despite the high noise levels, consis-
tently outperforming the SGTR baseline, as shown in Figures 1(b), 2(b), and 3(b). From the three
experiments, the wall-clock time for our model selection step, which is performed after applying the
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best-subset regression, is approximately 10 to 20 seconds. Following the model selection results by
our UBIC, Figures 1(c), 2(c), and 3(C) present the posterior coefficients with twice their standard
deviation, representing about the 95% confidence intervals. These intervals demonstrate regions (in
space or time) where the instability in estimating the posterior coefficients is relatively high, offering
insights that can further improve the PDE discovery method by circumventing these unstable regions.
In Appendix A.2, we uncover symbolic expressions for the varying coefficients.

4 Conclusion

Our main contribution is the extended UBIC for identifying governing parametric PDEs. The ex-
tended UBIC, computed with the PSD-based transformation, leverages accumulated PDE uncertainty
to overcome the overfitting problem in the model selection step, disambiguating the true governing
parametric PDE from overfitted PDEs with unnecessary candidate terms. The ability to compute
confidence intervals for varying coefficients enhances the interpretability of potential models, pro-
viding comprehensive insights into their stability. Since a failure to completely include true terms,
which dictate the dynamics, in the candidate library can degrade PDE discovery results, as discussed
in Appendix A.4, we plan to use the proposed UBIC as the fitness function in a genetic-algorithm-
based PDE discovery framework [11], eliminating the limitation imposed by the overcompleteness
assumption and thus allowing us to better tackle real-world ODE/PDE discovery problems.
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A Appendix

A.1 Dataset Visualization

An illustration of each dataset experimented in this paper is provided in Figure 4.
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Figure 4: Two-dimensional visualization of the noiseless datasets.

A.2 Symbolic Discovery of Varying Coefficients

Symbolic discovery of varying coefficients is achieved via the PySR package [20]. To prioritize
parsimonious expressions of varying coefficients, we consider model rankings based on the PySR’s
score. We evaluate any selected interpretable expression ĥ(x) against its ground truth h(x) using

the percentage relative coefficient error: CE(h(x), ĥ(x)) = 100 × ∥ĥ(x)−h(x)∥
1

∥h(x)∥1
. We note that

CE(h(t), ĥ(t)) are calculated in the same manner. Table 2 lists the relative coefficient errors for every
experiment in this paper. In the experiments of the parametric Burgers’ and AD PDEs, we can uncover
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Table 2: Symbolic expression of varying coefficients
Dataset Symbolically discovered varying coefficient %Coefficient error

Burgers a(t) = −0.25146 sin(t)− 0.95987, 0.08080 3.813, 19.20

AD
a′(x) = − sin(1.2415x)
a(x) = cos(1.244x)− 1.4216
0.06406

20.06
4.554
35.94

KS
0.25113 sin(0.32253x) + 0.95955

−0.976754 + 0.353986e−0.493521(1−0.547288x)2

−0.966723− 0.249388e−3.73627(0.429437x+1)2

4.055
4.027
4.365

the correct mathematical expressions/structures of the varying coefficients with acceptable accuracy.
For the parametric KS PDE case, we cannot initially retrieve the correct expression only for the
varying coefficient of uxxxx, as the suggested expression by PySR is −0.9798+0.19909xe−0.26832x2

,
which however hints that a common Gaussian function should be used instead due to its similar
accuracy. We refine the initial expressions for uxx and uxxxx using Feyn’s autorun functionality [21]
with minimal complexity settings, ultimately discovering the Gaussian formulas with satisfactory
coefficient errors of less than 5%. Since the SGTR baseline failed to identify the true governing
equations in all of the three numerical experiments, quantifying its coefficient error is not applicable.
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Figure 5: Burgers’ PDE. We visualize different representations of Ut and measure their relative
errors against the ground truth data.

A.3 Noise-robustness of PSD

We explore the noise-robustness of our PSD-based transformation using the parametric Burgers’ PDE
as an example. In Figure 5, different representations of Ut are presented. We evaluate the accuracy
of each representation by comparing it to the ground truth data using the relative Frobenius-norm
error. The fact that our PSD-based transformed representation matches its ground truth more closely
than other representations under the noisy situation demonstrates its superior robustness. Therefore,
we apply our extended UBIC with the PSD-based transformation.
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Figure 6: Parametric PDE discovery of the KS equation with incomplete candidate terms.

A.4 Parmetric PDE Discovery with Incomplete Candidate Terms

To better understand the negative impact of incomplete candidate terms on the parametric PDE
discovery, we reduce the maximum derivative order considered in the KS experiment from 4 to 3.
Subsequently, we reperform both the SGTR baseline and our proposed method. Figure 6(a) clearly
shows that the potential PDEs or the best subsets are of inferior AICc when the candidate terms are
incomplete. Although the UBIC values from the two cases–—overcomplete and incomplete—cannot
be directly compared because of the difference in the tuned λ∗ values, our UBIC selects a PDE with
increased complexity to compensate for the true derivative term omitted from the candidate library,
as illustrated in Figure 6(b). Therefore, we stress the importance of extending our proposed UBIC to
accommodate other PDE discovery algorithms that leverage more flexible structures, such as evolving
genomes [11] or tree expressions, to encode PDEs.

B Broader Impacts

The uncertainty-penalized information criterion developed in this paper is developed to inspire the
future advancement of parsimony-enhanced information criteria. Such criteria can be seamlessly
integrated with any state-of-the-art PDE discovery methods to disregard incorrect governing PDEs
that arise from the overfitting or underfitting in the model selection step. Our contribution holds
promise for advancing interdisciplinary research and enhancing the efficiency of model discovery
processes, leading to a deeper understanding of complex physical phenomena across a broad spectrum
of scientific disciplines. We see no negative societal impacts of the work performed.
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