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Abstract

Artificial Intelligence (AI) has the potential to significantly advance scientific
discovery by finding solutions beyond human capabilities. However, these super-
human solutions are often unintuitive and require considerable effort to uncover
underlying principles, if possible at all. Here, we show how a code-generating
language model trained on synthetic data can not only find solutions to specific
problems but can create meta-solutions, which solve an entire class of problems
in one shot and simultaneously offer insight into the underlying design principles.
Specifically, for the design of new quantum physics experiments, our sequence-
to-sequence transformer model generates interpretable Python code that describes
experimental blueprints for a whole class of quantum systems. We discover gen-
eral and previously unknown design rules for infinitely large classes of quantum
states. The ability to automatically generate generalized patterns in readable com-
puter code is a crucial step toward machines that help discover new scientific
understanding – one of the central aims of physics.

1 Introduction

Quantum physics is a notoriously unintuitive field of study. Despite this, it has developed to a point
where some of its most difficult-to-conceptualize effects - such as entanglement - could become the
basis of a new generation of technological development. Due to difficulties in designing experimental
setups by hand, computational design techniques are used to deliver solutions, which surpass designs
by human experts Krenn et al. [2020]. E.g. for a given target quantum state, a machine can design the
experimental setup which creates the state, but interpretation and generalization of the results is left
to the researcher and is often an exceptionally hard challenge, if possible at all.

Here we introduce the process of meta-design. Instead of designing one solution for a single
target (i.e. one experimental setup for the creation of one quantum state), we train and sample a
sequence-to-sequence transformer to design a meta-solutions in the form of programming code. A
meta-solution solves an infinitely large class of targets (a class of quantum state) by generating
different experimental setups for different integer values of N. Our approach is successful in designing
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Figure 1: Meta-designing a class of experiments via code generation avoids exploding compu-
tational costs for the design of larger experiments. Left side: Our process takes the first three
states from a class of target quantum states and - when successful - produces a Python code which
generates the correct experimental setup for arbitrary sizes. The setup for n particles consists of n
paths leading to n detectors. The function call C(p1,p2,m1,m2,w) denotes placing a photon pair
source at a crossing of paths p1 and p2, creating photons with modes m1 and m2 (shown as color)
and a weight w (introducing possible phases). Right side: Designing an experimental setup which
produces a target quantum state is very fast for small particle numbers. But the computational cost
explodes as the target state grows.

meta-solutions for many interesting classes of quantum states, several of which were not known
previously. The readability of the code representation helps to uncover the underlying patterns in the
class of solutions. Therefore, our technique is a step towards AI methods that can help to gain new
understanding in physics De Regt [2017], Krenn et al. [2022], Barman et al. [2024].

2 Related Work

AI for discovery in quantum physics. AI techniques have been previously applied to the search
for experimental setups in quantum physics Krenn et al. [2016], Knott [2016], Nichols et al. [2019],
Wallnöfer et al. [2020], Prabhu et al. [2020], Krenn et al. [2021], Ruiz-Gonzalez et al. [2023], Goel
et al. [2024], Landgraf et al. [2024], nanophotonic structures Molesky et al. [2018], Sapra et al.
[2020], Ma et al. [2021], Gedeon et al. [2023], and quantum circuits Ostaszewski et al. [2021], Nägele
and Marquardt [2023], Kottmann [2023], Zen et al. [2024], MacLellan et al. [2024]. All of these
works have in common that the algorithm produces only a single solution and not a meta-solution
that represents large classes of solutions.

Transformers for math and physics Transformer architectures have demonstrated remarkable
success in solving a wide range of mathematics and physics reasoning tasks. Lample and Charton
[2019] and Kamienny et al. [2022] show that a transformer-based sequence-to-sequence model can
tackle symbolic math problems such as symbolic integration, differential equations and symbolic
regression. AlphaGeometry [Trinh et al., 2024] has achieved remarkable performance in solving
geometry problems at an olympiad level. Alfarano et al. [2023] finds that by training transformers
on synthetic data, they can accurately predict the Lyapunov functions of polynomial and non-
polynomial dynamical systems. In the field of theoretical high-energy physics, Cai et al. [2024]
applies transformers to compute scattering amplitudes.

3 Background Quantum Physics

We choose the design of quantum optics experiments as proof of concept and point to the great
potential in applying the approach in other fields. Quantum optics is concerned with photons, the
fundamental particles of light. A photon can have different polarization modes, e.g. horizontal (mode
0) or vertical (mode 1). A basic property of quantum particles is that they can be in a superposition
of multiple modes, i.e. they can be considered to be two things at the same time. The state |ψ⟩ of
one photon in equal superposition can be expressed in Dirac notation as |ψ⟩ = |0⟩+ |1⟩. We omit
the normalization factor for all quantum states shown in this work for readability. It can be assumed
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that all states are normalized. Another important concept in quantum physics is entanglement,
where multiple photons are in a state where they cannot be described independently, such as the
superposition of three particles being in the superposition of either all particles being in mode 0 or all
particles being in mode 1, |ψ⟩ = |000⟩+ |111⟩. This state is called the GHZ state Greenberger et al.
[1990], Pan et al. [2000]. In quantum optics, highly entangled states can be created by combining
probabilistic photon pair sources. For sufficiently large particle numbers, the task of designing these
setups becomes too difficult even for current computational methods Ruiz-Gonzalez et al. [2023] as
they become too computationally expensive (see right side of Fig. 1).

4 Methods

We introduce meta-design, the idea of generating a meta-solution that can solve a whole class of
solutions (in our case, for design problems of quantum states). Our meta-solutions are Python codes
that can generate blueprints of experimental setups. We train a sequence-to-sequence transformer on
synthetic data to translate from a class of quantum states to Python code and sample the model to
discover programs for a collection of target classes.

Meta-design for Quantum Experiments A famous class of quantum states are the GHZ states,
which are shown in the left box of Fig. 1. They are superposition of particles being either in mode
0 or mode 1 with an increasing number of photons (4, 6, 8, ...). We now aim to find a program
construct_setup(N) which generates the correct experimental setup for creating GHZ states for
a given particle number N . This is possible because the GHZ states follow a specific pattern. The
solution to the problem is shown in Fig. 1. After constructing the setup, we can compute the expected
quantum state that emerges at the detectors.

Data (generate random B, compute A) On an abstract level, we can describe the subject of our
work as translating from sequence A (a list of three quantum states) to sequence B (python program).
Direction B→A (computing the resulting quantum states from experimental setups) follows clear
instructions and can be considered easy. Direction A→B is highly non-trivial. Using a simple set of
rules, we can generate a random python code (sequence A), which contains instructions for how to set
up an experiment. Each code contains the variable index N . This means that the code will result in
a different experimental setup for each value of N . Simulating the experiment for N = 0, 1, 2, we
produce three states , making up sequence B. The maximum length for both sequences during data
generation is 640 tokens. Both sequences are tokenized by a hand-picked vocabulary dictionary. We
spend about 50,000 CPU hours on generating 56 million samples.

Training (learn A→B) We train the model with a standard encoder-decoder transformer architecture
Vaswani et al. [2017], with Pre-Layer Normalization Xiong et al. [2020] and learned positional
encoding Gehring et al. [2017]. We choose the dimensions nemb = 512, nlayer = 18, nheads = 8. We
use a learned positional encoding, as we are not attempting to apply our model to unseen lengths.
The model has approximately 133 million parameters and is trained for 750k steps with a batch size
of 256 (approximately 2.5 epochs on a dataset of 56 million samples). The learning rate of the Adam
optimizer Kingma and Ba [2014] was 10−4 for the first epoch and was then lowered to 10−5. The
training was performed on four A100-40GB GPUs.

5 Evaluating on unknown targets

Our goal is now to apply the trained model to quantum state classes of particular interest (because
of particular mathematical or physical properties) for which the code (sequence B) is unknown and
predict the correct meta-solution. We have compiled a collection of twenty target classes based
on a collection of quantum states found in Ruiz-Gonzalez et al. [2023] – all of these states have
exceptional properties that have been studied previously. The first three states of each target class
are explicitly shown in the appendix. They are expressed as strings in the same way in which they
are given to the model as input. For each target, we sample the model with top-p sampling (p = 0.5
and temperature 0.2, Chen et al. [2021], Li et al. [2023]) for four hours on one RTX 6000 GPU,
which produces 800-2500 samples (depending on the target class). We evaluate the resulting codes
by executing them to produce experimental setups for N = 0, 1, 2, 3, 4 (training data was generated
only for N = 0, 1, 2). We compute the states which are produced by these setups and compute their
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Figure 2: Our approach discovers two previously unknown and four previously known general-
izations. We show the resulting fidelities of the best produced code for 14 of the 20 target classes.
The green line represents the six target classes which our approach produces codes which correctly
extrapolate beyond the first three elements. The blue lines show classes for which the best generated
codes have fidelity one for the first three elements of the class, but do not extrapolate beyond. The
orange and red line are representatives of the 8 cases, for which the model was not able to predict
correct solutions up to N = 3. The full table of target classes with their maximum correct N is
shown in the appendix.

fidelity with respect to the corresponding target state. The fidelity ranges from 0 (orthogonal to target)
to 1 (perfect match). In Fig. 2 we show the fidelities of the best sample for fourteen of the twenty
target classes.

Successful meta-design of codes (6 out of 20 cases) For these classes, the output extrapolates
beyond what the model was trained to do, i.e. match the states for N = 0, 1, 2. Most importantly,
two out of six classes which our method successfully solves, were previously unknown and thus
constitute a genuine discovery. The Spin- 12 states Ruiz-Gonzalez et al. [2023], Bernien et al. [2017]
and the ground states of the Majumdar-Gosh Model Ruiz-Gonzalez et al. [2023], Chhajlany et al.
[2007].

Codes with unexpected generalizations (6 out of 20 cases) For these cases the model produces
codes, which generate the correct states for the first three elements of the class, but produces
experiments that produce states other than the expected ones. These cases are interesting to examine
because the model successfully performs the task it was trained for, as the first three states match the
input sequence. There is potential in examining these cases in more detail to see if the pattern they
follow is interesting from a physics side, as they might represent new unexplored classes of quantum
states.

Codes which fail to match the first three states (8 out of 20 cases) These cases could be either
too complex for the model to give the correct prediction, or generalisations cannot exist at all for
physical reasons, given the amount of quantum resources we provide.

6 Proof of concept for other fields

To show that meta-design can be applied beyond the field of designing quantum optics experiments,
we also applied it to a task in quantum circuit design. We created 5 million samples of randomly
generated python codes for constructing quantum circuits For each code we computed the resulting
quantum states for N = 1, 2, 3 with the qiskit framework and concatenated them to create the
source sequence. We trained a small model (nembed = 512, nhead = 8, nlayer = 6) for two hours on 4
A100-40GB GPUs. The model could correctly solve the task of creating GHZ states of increasing
size. No sampling was necessary as the correct code is generated through greedy decoding. This
indicates that the model would also be capable of solving more complicated tasks with sampling.
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7 Discussion

We demonstrate how a language model can produce a meta-solution for a physical design task.
The meta-solution is described in the form of computer code, which itself produces solutions to
large generalizations of the design question. In our examples, we discover previously unknown
generalizations of experimental setups for interesting quantum states. Our method is not constrained
to quantum physics but can be directly implemented in other domains, such as the discovery of new
microscopes Rodríguez et al. [2023], new gravitational wave detectors Krenn et al. [2023], new
experimental hardware for high-energy physics Baydin et al. [2021], or the design of new functional
molecules Pollice et al. [2021]. The representation of solutions as python code significantly enhances
the understandability and generalizability of AI-driven discoveries.
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Atilim Güneş Baydin, Kyle Cranmer, Pablo de Castro Manzano, Christophe Delaere, Denis Derkach, Julien
Donini, Tommaso Dorigo, Andrea Giammanco, Jan Kieseler, Lukas Layer, Gilles Louppe, Fedor Ratnikov,
Giles Strong, Mia Tosi, Andrey Ustyuzhanin, Pietro Vischia, and Hevjin Yarar. Toward machine learning
optimization of experimental design. Nuclear Physics News, 31(1):25–28, 2021.

Hannes Bernien, Sylvain Schwartz, Alexander Keesling, Harry Levine, Ahmed Omran, Hannes Pichler, Soonwon
Choi, Alexander S Zibrov, Manuel Endres, Markus Greiner, et al. Probing many-body dynamics on a 51-atom
quantum simulator. Nature, 551(7682):579–584, 2017.

Tianji Cai, Garrett W Merz, François Charton, Niklas Nolte, Matthias Wilhelm, Kyle Cranmer, and Lance J
Dixon. Transforming the bootstrap: Using transformers to compute scattering amplitudes in planar n= 4 super
yang-mills theory. arXiv:2405.06107, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri
Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov,
Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such,
Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
models trained on code. arXiv:2107.03374, 2021.

Ravindra W Chhajlany, Piotr Tomczak, Antoni Wójcik, and Johannes Richter. Entanglement in the majumdar-
ghosh model. Physical Review A, 75(3):032340, 2007.

Henk W De Regt. Understanding scientific understanding. Oxford University Press, 2017.

Johannes Gedeon, Emadeldeen Hassan, and Antonio Calà Lesina. Free-form inverse design of arbitrary dispersive
materials in nanophotonics. arXiv:2305.00234, 2023.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional sequence to
sequence learning. In International conference on machine learning, pages 1243–1252. PMLR, 2017.

Suraj Goel, Saroch Leedumrongwatthanakun, Natalia Herrera Valencia, Will McCutcheon, Armin Tavakoli,
Claudio Conti, Pepijn WH Pinkse, and Mehul Malik. Inverse design of high-dimensional quantum optical
circuits in a complex medium. Nature Physics, pages 1–8, 2024.

5



Daniel M. Greenberger, Michael A. Horne, Abner Shimony, and Anton Zeilinger. Bell’s theorem without
inequalities. American Journal of Physics, 58(12):1131–1143, December 1990.

Pierre-alexandre Kamienny, Stéphane d'Ascoli, Guillaume Lample, and Francois Charton. End-to-end symbolic
regression with transformers. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,
Advances in Neural Information Processing Systems, volume 35, pages 10269–10281. Curran Associates,
Inc., 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

PA Knott. A search algorithm for quantum state engineering and metrology. New Journal of Physics, 18(7):
073033, 2016.

Jakob S. Kottmann. Molecular quantum circuit design: A graph-based approach. Quantum, 7:1073, August
2023.

Mario Krenn, Mehul Malik, Robert Fickler, Radek Lapkiewicz, and Anton Zeilinger. Automated search for new
quantum experiments. Physical review letters, 116(9):090405, 2016.

Mario Krenn, Manuel Erhard, and Anton Zeilinger. Computer-inspired quantum experiments. Nature Reviews
Physics, 2(11):649–661, September 2020.

Mario Krenn, Jakob S Kottmann, Nora Tischler, and Alán Aspuru-Guzik. Conceptual understanding through
efficient automated design of quantum optical experiments. Physical Review X, 11(3):031044, 2021.

Mario Krenn, Robert Pollice, Si Yue Guo, Matteo Aldeghi, Alba Cervera-Lierta, Pascal Friederich, Gabriel dos
Passos Gomes, Florian Häse, Adrian Jinich, AkshatKumar Nigam, Zhenpeng Yao, and Alan Aspuru-Guzik.
On scientific understanding with artificial intelligence. Nature Reviews Physics, 4(12):761–769, 2022.

Mario Krenn, Yehonathan Drori, and Rana X Adhikari. Digital discovery of interferometric gravitational wave
detectors. arXiv:2312.04258, 2023.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics. arXiv:1912.01412, 2019.

Jonas Landgraf, Vittorio Peano, and Florian Marquardt. Automated discovery of coupled mode setups.
arXiv:2404.14887, 2024.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo, Thomas
Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko, Nicolas
Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu, Benjamin
Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry
Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu,
Swayam Singh, Sasha Luccioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony
Lee, Nadav Timor, Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra,
Alex Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy,
Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Arjun
Guha, Leandro von Werra, and Harm de Vries. Starcoder: may the source be with you! arXiv:2305.06161,
2023.

Wei Ma, Zhaocheng Liu, Zhaxylyk A Kudyshev, Alexandra Boltasseva, Wenshan Cai, and Yongmin Liu. Deep
learning for the design of photonic structures. Nature Photonics, 15(2):77–90, 2021.

Benjamin MacLellan, Piotr Roztocki, Stefanie Czischek, and Roger G Melko. End-to-end variational quantum
sensing. arXiv:2403.02394, 2024.

Sean Molesky, Zin Lin, Alexander Y Piggott, Weiliang Jin, Jelena Vucković, and Alejandro W Rodriguez.
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A Target classes

In the following table we show the hand-picked targets. These are classes of quantum states which
are of interest in different areas of quantum physics. For each class, the first three states (four, six
and eight particles) are given as strings in the same way that they are used to prompt the model. The
column "correct states" shows, up to which index N the best model output matches the target (the
first N states are correct). An infinity sign ∞ means, that the meta-solution perfectly matches the
target.
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State Name size Quantum State string correct
states

previously
known

Spin 1/2 4 +1[xxxx] +1[xxyx] +1[xyxx] +1[yxxx] +1[yxyx] ∞ unknown
6 +1[xxxxxx] +1[xxxyxx] +1[xxyxxx] +1[xyxxxx]

+1[xyxyxx] +1[yxxxxx] +1[yxxyxx] +1[yxyxxx]
8 +1[xxxxxxxx] +1[xxxxyxxx] +1[xxxyxxxx]

+1[xxyxxxxx] +1[xxyxyxxx] +1[xyxxxxxx]
+1[xyxxyxxx] +1[xyxyxxxx] +1[yxxxxxxx]
+1[yxxxyxxx] +1[yxxyxxxx] +1[yxyxxxxx]
+1[yxyxyxxx]

Majumdar-
Ghosh

4 -1[xxyy] +2[xyxy] -1[xyyx] -1[yxxy] +2[yxyx] -1[yyxx] ∞ unknown

6 -1[xxyxyy] +1[xxyyxy] +1[xyxxyy] -1[xyxyyx]
-1[xyyxxy] +1[xyyxyx] -1[yxxyxy] +1[yxxyyx]
+1[yxyxxy] -1[yxyyxx] -1[yyxxyx] +1[yyxyxx]

8 -1[xxyxyxyy] +1[xxyxyyxy] +1[xxyyxxyy] -1[xxyyxyxy]
+1[xyxxyxyy] -1[xyxxyyxy] -1[xyxyxxyy] +2[xyxyxyxy]
-1[xyxyxyyx] -1[xyxyyxxy] +1[xyxyyxyx] -1[xyyxxyxy]
+1[xyyxxyyx] +1[xyyxyxxy] -1[xyyxyxyx]
-1[yxxyxyxy] +1[yxxyxyyx] +1[yxxyyxxy] -1[yxxyyxyx]
+1[yxyxxyxy] -1[yxyxxyyx] -1[yxyxyxxy] +2[yxyxyxyx]
-1[yxyxyyxx] -1[yxyyxxyx] +1[yxyyxyxx] -1[yyxxyxyx]
+1[yyxxyyxx] +1[yyxyxxyx] -1[yyxyxyxx]

Bell pairs 2d 4 +1[xxxx] +1[xxyy] +1[yyxx] +1[yyyy] ∞ known
6 +1[xxxxxx] +1[xxxxyy] +1[xxyyxx] +1[xxyyyy]

+1[yyxxxx] +1[yyxxyy] +1[yyyyxx] +1[yyyyyy]
8 +1[xxxxxxxx] +1[xxxxxxyy] +1[xxxxyyxx]

+1[xxxxyyyy] +1[xxyyxxxx] +1[xxyyxxyy]
+1[xxyyyyxx] +1[xxyyyyyy] +1[yyxxxxxx]
+1[yyxxxxyy] +1[yyxxyyxx] +1[yyxxyyyy]
+1[yyyyxxxx] +1[yyyyxxyy] +1[yyyyyyxx]
+1[yyyyyyyy]

Bell pairs 3d 4 +1[xxxx] +1[yyxx] +1[zzxx] ∞ known
6 +1[xxxxxx] +1[xxyyxx] +1[xxzzxx]

+1[yyxxxx] +1[yyyyxx] +1[yyzzxx]
+1[zzxxxx] +1[zzyyxx] +1[zzzzxx]

8 +1[xxxxxxxx] +1[xxxxyyxx] +1[xxxxzzxx]
+1[xxyyxxxx] +1[xxyyyyxx] +1[xxyyzzxx] +1[xxzzxxxx]
+1[xxzzyyxx] +1[xxzzzzxx] +1[yyxxxxxx] +1[yyxxyyxx]
+1[yyxxzzxx] +1[yyyyxxxx] +1[yyyyyyxx] +1[yyyyzzxx]
+1[yyzzxxxx] +1[yyzzyyxx] +1[yyzzzzxx] +1[zzxxxxxx]
+1[zzxxyyxx] +1[zzxxzzxx] +1[zzyyxxxx] +1[zzyyyyxx]
+1[zzyyzzxx] +1[zzzzxxxx] +1[zzzzyyxx] +1[zzzzzzxx]

GHZ 4 +1[xxxx] +1[yyyy] ∞ known
6 +1[xxxxxx] +1[yyyyyy]
8 +1[xxxxxxxx] +1[yyyyyyyy]

W 4 +1[xxxy] +1[xxyx] +1[xyxx] +1[yxxx] ∞ known
6 +1[xxxxxy] +1[xxxxyx] +1[xxxyxx]

+1[xxyxxx] +1[xyxxxx] +1[yxxxxx]
8 +1[xxxxxxxy] +1[xxxxxxyx] +1[xxxxxyxx]

+1[xxxxyxxx] +1[xxxyxxxx] +1[xxyxxxxx]
+1[xyxxxxxx] +1[yxxxxxxx]
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State Name size Quantum State string correct
states

previously
known

GHZ x W 4 +1[xxxy] +1[xxyx] +1[yyxy] +1[yyyx] 3 unknown
6 +1[xxxxxy] +1[xxxxyx] +1[xxxyxx] +1[yyyxxy]

+1[yyyxyx] +1[yyyyxx]
8 +1[xxxxxxxy] +1[xxxxxxyx] +1[xxxxxyxx] +1[xxxxyxxx]

+1[yyyyxxxy] +1[yyyyxxyx] +1[yyyyxyxx] +1[yyyyyxxx]
W x W 4 +1[xyxy] +1[xyyx] +1[yxxy] +1[yxyx] 3 unknown

6 +1[xxyxxy] +1[xxyxyx] +1[xxyyxx] +1[xyxxxy] +1[xyxxyx]
+1[xyxyxx] +1[yxxxxy] +1[yxxxyx] +1[yxxyxx]

8 +1[xxxyxxxy] +1[xxxyxxyx] +1[xxxyxyxx] +1[xxxyyxxx]
+1[xxyxxxxy] +1[xxyxxxyx] +1[xxyxxyxx] +1[xxyxyxxx]
+1[xyxxxxxy] +1[xyxxxxyx] +1[xyxxxyxx] +1[xyxxyxxx]
+1[yxxxxxxy] +1[yxxxxxyx] +1[yxxxxyxx] +1[yxxxyxxx]

Dicke 2 4 +1[xzzx] +1[zxzx] +1[zzxx] 3 unknown
6 +1[xxzzxx] +1[xzxzxx] +1[xzzxxx] +1[zxxzxx]

+1[zxzxxx] +1[zzxxxx]
8 +1[xxxzzxxx] +1[xxzxzxxx] +1[xxzzxxxx] +1[xzxxzxxx]

+1[xzxzxxxx] +1[xzzxxxxx] +1[zxxxzxxx]
+1[zxxzxxxx] +1[zxzxxxxx] +1[zzxxxxxx]

GHZ x GHZ 4 +1[xxxx] +1[xxyy] +1[yyxx] +1[yyyy] 3 unknown
6 +1[xxxxxx] +1[xxxyyy] +1[yyyxxx] +1[yyyyyy]
8 +1[xxxxxxxx] +1[xxxxyyyy] +1[yyyyxxxx] +1[yyyyyyyy]

Dyck 2 4 +1[yyzz] +1[yzyz] 3 unknown
6 +1[yyyzzz] +1[yyzyzz] +1[yyzzyz] +1[yzyyzz] +1[yzyzyz]
8 +1[yyyyzzzz] +1[yyyzyzzz] +1[yyyzzyzz] +1[yyyzzzyz]

+1[yyzyyzzz] +1[yyzyzyzz] +1[yyzyzzyz] +1[yyzzyyzz]
+1[yyzzyzyz] +1[yzyyyzzz] +1[yzyyzyzz]
+1[yzyyzzyz] +1[yzyzyyzz] +1[yzyzyzyz]

Dyck 1 4 +1[yzxx] 3 unknown
6 +1[yyzzxx] +1[yzyzxx]
8 +1[yyyzzzxx] +1[yyzyzzxx] +1[yyzzyzxx]

+1[yzyyzzxx] +1[yzyzyzxx]
Dicke 1 4 +1[xzxx] +1[zxxx] 2 unknown

6 +1[xxzzxx] +1[xzxzxx] +1[xzzxxx] +1[zxxzxx]
+1[zxzxxx] +1[zzxxxx]

8 +1[xxxzzzxx] +1[xxzxzzxx] +1[xxzzxzxx] +1[xxzzzxxx]
+1[xzxxzzxx] +1[xzxzxzxx] +1[xzxzzxxx] +1[xzzxxzxx]
+1[xzzxzxxx] +1[xzzzxxxx] +1[zxxxzzxx] +1[zxxzxzxx]
+1[zxxzzxxx] +1[zxzxxzxx] +1[zxzxzxxx] +1[zxzzxxxx]
+1[zzxxxzxx] +1[zzxxzxxx] +1[zzxzxxxx] +1[zzzxxxxx]

Dicke 5 4 +1[zzzx] 2 unknown
6 +1[xzzzxx] +1[zxzzxx] +1[zzxzxx] +1[zzzxxx]
8 +1[xxzzzxxx] +1[xzxzzxxx] +1[xzzxzxxx] +1[xzzzxxxx]

+1[zxxzzxxx] +1[zxzxzxxx] +1[zxzzxxxx]
+1[zzxxzxxx] +1[zzxzxxxx] +1[zzzxxxxx]

AKLT 4 -1[xzxx] +1[yyxx] -1[zxxx] 2 unknown
6 -1[xyzxxx] +1[xzyxxx] +1[yxzxxx] -

1[yzxxxx] -1[zxyxxx] +1[zyxxxx]
8 -1[xyyzxxxx] +1[xyzyxxxx] +2[xzxzxxxx] -1[xzyyxxxx]

+1[yxyzxxxx] -1[yxzyxxxx] -1[yyxzxxxx] +1[yyyyxxxx]
-1[yyzxxxxx] -1[yzxyxxxx] +1[yzyxxxxx] -1[zxyyxxxx]
+2[zxzxxxxx] +1[zyxyxxxx] -1[zyyxxxxx]

Motzkin small 4 +1[xyxx] +1[zzxx] 2 unknown
6 +1[xyzxxx] +1[xzyxxx] +1[zxyxxx] +1[zzzxxx]
8 +1[xxyyxxxx] +1[xyxyxxxx] +1[xyzzxxxx]

+1[xzyzxxxx] +1[xzzyxxxx] +1[zxyzxxxx]
+1[zxzyxxxx] +1[zzxyxxxx] +1[zzzzxxxx]
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State Name size Quantum State string correct
states

previously
known

Dicke 3 4 +1[xyzx] +1[xzyx] +1[yxzx] +1[yzxx] +1[zxyx] +1[zyxx] 1 unknown
6 +1[xxyzxx] +1[xxzyxx] +1[xyxzxx] +1[xyzxxx]

+1[xzxyxx] +1[xzyxxx] +1[yxxzxx] +1[yxzxxx]
+1[yzxxxx] +1[zxxyxx] +1[zxyxxx] +1[zyxxxx]

8 +1[xxxyzxxx] +1[xxxzyxxx] +1[xxyxzxxx] +1[xxyzxxxx]
+1[xxzxyxxx] +1[xxzyxxxx] +1[xyxxzxxx] +1[xyxzxxxx]
+1[xyzxxxxx] +1[xzxxyxxx] +1[xzxyxxxx] +1[xzyxxxxx]
+1[yxxxzxxx] +1[yxxzxxxx] +1[yxzxxxxx] +1[yzxxxxxx]
+1[zxxxyxxx] +1[zxxyxxxx] +1[zxyxxxxx] +1[zyxxxxxx]

Dicke 4 4 +1[xxyy] +1[xyxy] +1[xyyx] +1[yxxy] +1[yxyx] +1[yyxx] 1 unknown
6 +1[xxxxyy] +1[xxxyxy] +1[xxxyyx] +1[xxyxxy]

+1[xxyxyx] +1[xxyyxx] +1[xyxxxy] +1[xyxxyx]
+1[xyxyxx] +1[xyyxxx] +1[yxxxxy] +1[yxxxyx]
+1[yxxyxx] +1[yxyxxx] +1[yyxxxx]

8 +1[xxxxxxyy] +1[xxxxxyxy] +1[xxxxxyyx]
+1[xxxxyxxy] +1[xxxxyxyx] +1[xxxxyyxx]
+1[xxxyxxxy] +1[xxxyxxyx] +1[xxxyxyxx]
+1[xxxyyxxx] +1[xxyxxxxy] +1[xxyxxxyx]
+1[xxyxxyxx] +1[xxyxyxxx] +1[xxyyxxxx]
+1[xyxxxxxy] +1[xyxxxxyx] +1[xyxxxyxx]
+1[xyxxyxxx] +1[xyxyxxxx] +1[xyyxxxxx]
+1[yxxxxxxy] +1[yxxxxxyx] +1[yxxxxyxx]
+1[yxxxyxxx] +1[yxxyxxxx] +1[yxyxxxxx]
+1[yyxxxxxx]

GHZ 3d x
GHZ 3d

4 +1[xxxx] +1[xxyy] +1[xxzz] +1[yyxx] +1[yyyy]
+1[yyzz] +1[zzxx] +1[zzyy] +1[zzzz]

1 unknown

6 +1[xxxxxx] +1[xxxyyy] +1[xxxzzz]
+1[yyyxxx] +1[yyyyyy] +1[yyyzzz]
+1[zzzxxx] +1[zzzyyy] +1[zzzzzz]

8 +1[xxxxxxxx] +1[xxxxyyyy] +1[xxxxzzzz]
+1[yyyyxxxx] +1[yyyyyyyy] +1[yyyyzzzz]
+1[zzzzxxxx] +1[zzzzyyyy] +1[zzzzzzzz]

Motzkin 4 +1[xyzx] +1[xzyx] +1[zxyx] +1[zzzx] 1 unknown
6 +1[xxyyxx] +1[xyxyxx] +1[xyzzxx]

+1[xzyzxx] +1[xzzyxx] +1[zxyzxx]
+1[zxzyxx] +1[zzxyxx] +1[zzzzxx]

8 +1[xxyyzxxx] +1[xxyzyxxx] +1[xxzyyxxx]
+1[xyxyzxxx] +1[xyxzyxxx] +1[xyzxyxxx]
+1[xyzzzxxx] +1[xzxyyxxx] +1[xzyxyxxx] +1[xzyzzxxx]
+1[xzzyzxxx] +1[xzzzyxxx] +1[zxxyyxxx] +1[zxyxyxxx]
+1[zxyzzxxx] +1[zxzyzxxx] +1[zxzzyxxx] +1[zzxyzxxx]
+1[zzxzyxxx] +1[zzzxyxxx] +1[zzzzzxxx]
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