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Abstract

The notion of duality – that a given physical system can have two different mathe-
matical descriptions – is a key idea in modern theoretical physics. Establishing a
duality in lattice statistical mechanics models requires the construction of a dual
Hamiltonian and a map from the original to the dual observables. By using neural
networks to parameterize these maps and introducing a loss function that penalises
the difference between correlation functions in original and dual models, we formu-
late the process of duality discovery as an optimization problem. We numerically
solve this problem and show that our framework can rediscover the celebrated
Kramers-Wannier duality for the 2d Ising model, numerically reconstructing the
known mapping of temperatures∗. We discuss future directions and prospects for
discovering new dualities within this framework.

1 Background

A key concept in physics is duality, i.e. the idea that the same physical system can have two different
mathematical descriptions. Duality sits at the heart of modern theoretical physics. In this work we
seek to formalize the notion of duality in statistical physics in a manner that allows modern machine
learning techniques to be used to systematically search for dualities.

Background on duality: Consider a statistical physics model with microstates σ and Hamiltonian
functional H[β, σ], where β are macroparameters such as the temperature. The model is determined
by its partition function Z =

∑
σ e

−H[β,σ]. However, in nature we often have access to sets
of expectation values of observables Oα(σ) (some real-valued functions of the microstates, e.g.
correlation functions, with α being an arbitrary label)

⟨Oα(σ)⟩H =
1

Z

∑
σ

Oα(σ) exp(−H[β, σ]). (1)

It is a profound physical fact that occasionally there are alternative representations of these sets of
correlation functions (see e.g. [1; 2; 3; 4; 5; 6; 7] for influential examples). That is, there exists
another set of microstates σ̃, another Hamiltonian H̃[β̃, σ̃] and for each observable Oα(σ) a dual

∗Our implementation is publicly available at https://github.com/pg2455/duality_exploration
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observable Õα(σ̃i) such that
⟨Oα(σ)⟩H = ⟨Õα(σ̃)⟩H̃ . (2)

When this happens, we have a duality –the same physical system has at least two distinct mathematical
descriptions, which may be useful for different reasons.

A prototypical example of such a duality is Kramers-Wannier duality for the 2d Ising model [2]. The
2d Ising model†consists of spins σi = ±1 living on the sites of a square lattice at temperature β−1,
with Hamiltonian that sums over neighbouring spins ⟨ij⟩

H[β, σ] = −β
∑
⟨ij⟩

σiσj . (3)

It is a remarkable fact that the model described by (3) is precisely equivalent to a different 2d Ising
model model with spins σ̃i = ±1 living on the dual lattice, with a dual Hamiltonian of the same
functional form H̃[β̃, σ̃] = H[β, σ̃] = −β̃

∑
⟨ij⟩ σ̃iσ̃j , but with β̃ satisfying sinh(2β) sinh(2β̃) = 1.

The fact that the functional form of the Hamiltonian is the same is exceptional, and in this case one
can call the duality a self -duality.

Importantly, all observables constructed from the σi can be mapped to observables of the σ̃i. Consider
for instance two neighbouring spins σi and σj . We can build an observable Oij = σiσj , which we
call a link product. Then the KW duality implies that

⟨Oij · · · ⟩H =
〈
Õij(σ̃) · · ·

〉
H̃
, Õij(σ̃) = e−2β̃σ̃i∗σ̃j∗ (4)

where the notation σ̃i∗ refers to sites on the dual lattice such that the link connecting sites i∗ and j∗

intersects the the link connecting i and j. The · · · indicate that this is an operator equation which
holds for arbitrary insertions of operators and thus can be used to construct any expectation value
of an even number of the σi. Appropriate products of the link products determine all correlation
functions.‡

In this work we tackle the problem of finding dualities using machine learning. In particular, starting
from the original model (H,Oij) we formulate an optimization problem whose solution recovers
both (H,Oij) as well as (H̃, Õij). This constitutes an automated discovery of a duality.

Previous work: The problem of learning the parameters in a Hamiltonian from data is precisely
that of training a Boltzmann machine, and has a very long history. Our case differs from the
classical situation in that are we simultaneously learning a mapping of observables. Other work on
dualities involving machine learning includes [9], [10], but none is aimed at recovering the full dual
descriptions as we do here.

2 Methodology

We now explain how, starting from the Hamiltonian H[β, σ] of some statistical model on a lattice,
we can learn candidates H̃[β̃, σ̃] for dual models as well as a dictionary between original and dual
observables. This includes learning the fact that the dual model is defined on the dual lattice.

Framework and loss function: We assume that H̃ can be written in terms of local couplings of
spins:

H̃[β̃, σ̃i] = −β̃
∑
⟨ij⟩

σ̃iσ̃j − β̃4

∑
⟨ijkl⟩

σ̃iσ̃j σ̃kσ̃l − · · · (5)

where the couplings β̃a are parameters to be learned. We would like to find dual representations
of the link products Oij we described for the Ising model. We assume that the link product in the

†See e.g. [8] for a textbook treatment.
‡Due to a Z2 symmetry the expectation value of a moment of an odd number of spins formally vanishes in

a finite model, though as usual in the symmetry spontaneously broken phase this might not be observed in a
simulation that uses local updates. We also note that the relation is modified if we consider precisely the same
two-spin operator twice, i.e. (σiσj)

2 = 1, when a careful derivation of the duality shows that the right-hand side
must be modified and is also identically 1.
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original model is mapped to some functions of nearby link products in the dual model, more precisely

Õij(σ̃) = G({σ̃kσ̃l}) (6)

where {σ̃kσ̃l} is a set of link products such as the one shown in Figure 1.

Figure 1: We parametrize G as a neural net-
work that takes neighboring links of a given
link (in this case # 6) as its input. The assign-
ment on horizontal links is related to that on
vertical ones by a rotation and reflection.

G is designed to be sufficiently flexible to recover models
on lattices related in various ways to the original one.
Note that a choice must be made about how to relate the
assignment of link products neighbouring a horizontal link
to the assignment of link products neighbouring a vertical
link, as multiple choices are consistent with rotational
invariance. In Figure 1 we display the choice used, which
relates them by a rotation composed with a reflection. As
we will see later, this choice is important for recovering
the geometry of the dual lattice.

We now construct a loss function L that is minimized
when all correlation functions of Oij and Õij agree on
the two sides of the duality. This is similar to the match-
ing of moments of two distributions, which is a standard
problem, and for which one can construct general kernels that are minimized only when all of
the moments of two distributions agree (see e.g. [11]). Unfortunately, in the present case we
cannot use kernels because of one conceptual and one technical problem: 1) certain moments
need not be matched, as per Footnote 2, and 2) no notion of locality is embedded in standard
moment matching (in the present case, correlation functions of faraway spins carry little information).

Figure 2: Examples of three features showing
link products considered.

Instead we explicitly match features – i.e. moments of a
small number of nearby link products, as shown in Figure 2
– which we then spatially average over the lattice. Denoting
these features as ϕa with a running over features, we then
construct the loss

L(G, H̃) =
∑
a

ℓaℓa ℓa = ⟨ϕa[σi]⟩H−⟨ϕa[G(σ̃i)]⟩H̃

(7)
ℓa can be thought of as a vector in feature space indicating how far apart the two theories are.

It is clear that this loss can be minimized in two scenarios: (a) H̃ = H and G(σ̃iσ̃j) = σ̃iσ̃j , i.e., the
original model is rediscovered, or (b) H̃ ̸= H and G(σ̃iσ̃j) ̸= σ̃iσ̃j , representing a nontrivial dual
model where (selected) moments nevertheless perfectly match those of the original model.

Optimization: We now need to solve the following optimization problem:

G∗, H̃∗ = argmin
G,H̃

L(G, H̃) (8)

G is represented by a neural network with parameters θ, G = Gθ.

Algorithm 1 outlines the procedure for optimization. Given a trial set of parameters θ and couplings
for the dual Hamiltonian β̃a, we simultaneously perform Markov Chain Monte Carlo (MCMC)
sampling from the original and dual Hamiltonians using a standard Metropolis algorithm to obtain
spin configurations σi and σ̃i drawn from the appropriate distributions respectively. We can then
evaluate the expectation values in (7), and compute the loss L.

To minimize it we also need to compute gradients ∂θL and ∂β̃a
L. For θ this can be done straightfor-

wardly using conventional automatic differentiation techniques. For the β̃a we cannot backpropagate
through a stochastic sampler, but explicit differentiation shows that we can relate the gradients to
expectation values that can be evaluated through MCMC sampling from the dual Hamiltonian (see
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Appendix C for derivation), e.g. §

∂β̃L = 2

〈∑
a

ℓa

∑
⟨ij⟩

⟨σiσj⟩H̃ −
∑
⟨ij⟩

σ̃iσ̃j

ϕa[Gθ(σ̃)]

〉
H̃

. (9)

Algorithm 1 Machine learning for finding statistical mechanics duality

1: Inputs: beta, η (learning rate), N (number of samples)
2: Initialize: β̃0 ∈ R, θ ∈ Rd

3: for each epoch t = 1, 2, . . . , T do
4: Draw N samples {σi}Ni=1 ∼ p(σ|β)
5: Draw N samples {σ̃i}Ni=1 ∼ p(σ̃|β̃) where β̃ ̸= β

6: Compute the loss L = 1
N

∑N
i=1 L(σi, Gθ(σ̃i))

7: Compute the gradients ∂β̃L and ∂θL
8: Update the parameters:

β̃t+1 ← β̃t − η∂β̃L
θt+1 ← θt − η∂θL

9: if L has not improved for the last X epochs then
10: Stop the optimization
11: end if
12: end for

3 Experiments

Figure 3: Final β̃ as found by the deep learning framework closely matches
that of the theoretical results. Points are scaled by the negative logarithm of
the best loss such that the size of the points is inversely proportional to the
loss. We cap the minimum size so that smaller points are visible. The loss is
a minimum along two fronts, i.e, original frame β = ±β̃ and the dual frame
along the lines sinh(2β) sinh(2β̃) = 1.

.

In this section, we describe
some simple experiments
using the above machinery.
We take our original Hamil-
tonian H to be that of the
2d Ising model (3), and we
take the dual Hamiltonian
H̃ in (5) to have only one
non-zero parameter β̃ (and
so β̃4 = 0, etc.).

Neural Network architec-
ture for Gθ: For a given
link product in the dual
frame we assemble the 7
nearby links shown in Fig. 1
into a 7-dimensional vector
f⟨ij⟩ ∈ (Z2)

7, where each
element of the vector is the
product of the two spins liv-
ing on the two ends of the
link. We consider a simplis-
tic neural network acting on
this input, with parameters
formed by θ1 ∈ R7, and

§We note that this evaluation is computationally expensive, as each gradient step requires us to equilibrate an
MCMC chain. For training conventional Boltzmann machines one can use more efficient approaches such as
contrastive divergence [12]. Due to the presence of the mapping G, we are not aware of a similarly efficient
algorithm in our case, and indeed all likelihood-based approaches seem conceptually difficult.
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scalars θ2 and θ3. We opt
for hard attention using Gumbel-Softmax [13] so that only a few of the seven nearby links are utilized
in the prediction task. Thus, the mapping is defined by,

Gθ(f⟨ij⟩) = θ2 · Gumbel-Softmax(θ1)T f⟨ij⟩ + θ3 (10)

As the elements of f⟨ij⟩ are ±1, a very simple network provides a very expressive function.

Rediscovery of the 2d Ising duality. In Figure 3, we show the result of deploying the above
machinery on different model values of β on an 8× 8 lattice with periodic boundary conditions. For
each value of the input β, we ran a total of 15 optimizations, five from each of three initializations of
β̃, i.e., β̃0 = 0.2, β̃0 = 0.4 and β̃0 = 0.6. Due to the randomness involved in MCMC sampling, each
seed is expected to be an independent run.

We record the value of β̃ obtained. There are three branches of solutions: the original model β̃ = β,
the dual model sinh(2β) sinh(2β̃) = 1, and an antiferromagnetic analogue of the original model
β̃ = −β. The latter is equivalent to the original frame, and is obtained by making the change of
variables σi → −σi on every other site, thus flipping the sign of β → −β. Note that the existence of
the dual branch of solutions can be viewed as a numerical “rediscovery” of the KW duality line

sinh(2β) sinh(2β̃) = 1 (11)

Further details on the experiments (including an exploration on how they depend on the system size)
are shown in the Supplementary Material.

Figure 4: Emergence of dual lat-
tice: e.g. if four original links
(marked by 6) form a square, the
corresponding four links that are
referenced by the neighbour map-
ping (marked by 2) in Figure 1
form a cross, as expected for the
dual lattice.

It is interesting to ask how the model recovers the structure of the
dual lattice, as well as the dual observables. The attention mecha-
nism used encourages the model to use only a single link of the input,
and for the runs that find the dual temperature this ends up using the
links numbered either 2 or 5 instead of the original 6 in Figure 1. As
we show in an example in Figure 4, this is equivalent to finding the
dual lattice from the original. Note that here it is important that we
relate horizontal to vertical links by the composition of a rotation and
reflection as shown in Figure 1; other choices will not result in the
possibility of finding the dual lattice, and indeed in our experiments
they do not find a duality. The optimized values of Gθ closely match
theoretical results Õij(σ̃) = e−2β̃σ̃i∗σ̃j∗ , as shown in more detail in
the supplementary material.

In this approach the 1-1 mapping of β to β̃ is only found numerically;
one could possibly supplement this numerical determination with
symbolic regression [14] to obtain an analytic formula such as (11),
but in more complicated examples of the duality we do not expect
there to necessarily exist a simple analytic formula and thus have not explored this.

4 Conclusions

Above we have explained how the process of finding dualities can be automated, demonstrating the
mechanism by “rediscovering” the well-known Kramers-Wannier duality of the 2d Ising model. This
is only a proof of principle, and much work remains to be done.

For example, as discussed in Section 3, at present we match a number of features which are constructed
by hand. It would be ideal to find a kernel that allows matching of all the required moments while
simultaneously giving lower weight to those involving faraway spins. On the operational side, it
would be helpful to have a more efficient way of training; contrastive divergence fails here as there
appears to be no simple way to map the likelihood of a single spin configuration across the duality.

On the physics side, we hope to use such techniques to find entirely new dualities. One concrete
direction is to search for Kramers-Wannier duals of deformed Ising models, where extra spin-spin
couplings have been added to the action: while some results exist for specific models [15; 16; 17], we
are not aware of a completely general approach. In the setup above our preliminary experiments show
that adding new couplings generically significantly hurts performance, and a more robust network
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architecture and training dynamics is desirable. We are currently investigating approaches which
explicitly use more of the known symmetry structure of Kramers-Wannier duality. A less concrete
but far more exciting direction would be if one could use the approach to find entirely new dualities,
unconnected to any existing ones. We hope to return to this in the future.
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A Supplementary material

We provide some further details on our experimental results. A rough measure of the uncertainty of
our results can be obtained from the spread of the learned β̃ points in Figure 3, which grows as we
approach the phase transition at βc ≈ 0.44. Interestingly, the method does not perform reliably for
β > βc, when the original frame is in the symmetry-broken phase. This is somewhat reminiscent of
known difficulties in learning parameters of Hamiltonians at high β (see e.g. Appendix B of [18])
and deserves further study.

Further, from Figure 3 we observe that the initialization of β has an impact on the frame that is
chosen. We find that β0 = 0.4 almost always drifted away from the original frame as indicated by
the absence of green points on the β = −β̃ line. Note for some β (e.g., β = 0.35), we see some
suboptimal runs resulting in the final β far away from the dual or original frame. These have high
loss and can be easily identified as failed runs.

Figure 5 shows runs from β = 0.2 grouped by β0 and β̃∗, illustrating how the training progresses
under different scenarios. For the seeds where either the dual or original frame is recovered, the
loss goes to 0. Further, we track the entropy of Gumbel-Softmax(θ1) to assess how the algorithm is
weighing each feature. A value of 0 corresponds to a strong preference for one out of the seven input
links.

Figure 5: Training progress for runs from β = 0.2, grouped by β0 and β̃∗ to showcase the trajectory of various
metrics. We show exponentially smoothed moving average of the following metrics: (A) Loss, (B) β, (C)
Mapping of observables, (D) Entropy of Gumbel-Softmax(θ1) For (B) and (C) we denote theoretically expected
values in original and dual frames by the dashed lines.

Finally, in Figure 6 we see which link is selected as a map to the observable, using the numbering in
Figure 1; links 2 and 5 correspond to a mapping to the dual lattice (and are found when we recover a
map to the dual frame) and link 6 corresponds to recovering the original link (and are found when we
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recover the original frame). The small amounts of other dimensions correspond to failed runs which
generically have a higher loss.

Figure 6: (left) Corresponding to Figure 3, we plot the frequency with which the dimension of the feature vector
f⟨ij⟩ was selected. Note that 2 and 5 pertain to the dual frame, while 6 relates to the discovery of the original
frame. (right) Loss values (log scale) and attention entropy (log scale) are positively correlated such that lower
loss increasingly prefers a single dimension of feature vectors. Note that both the loss and attention entropy are
very low on the three features corresponding to the dual and original frames, as expected for a successful run.

B Neural Network Training

Our models are all implemented in PyTorch [19]. We used the Adam [20] optimizer with the learning
rate of 0.005 for β and 0.01 for θ. [NI: Note I changed this so that it is correct – the effective
learning rate from the algorithm was off by a factor of 2 for β due to the error previously].
Moreover, we used the early stopping criterion to stop the training if the loss didn’t improve over 200
epochs. We ran the sampler in each experiment to generate 1000 samples for the lattice. We ran the
training for a maximum of 25000 epochs, and our runs took about 1-3 hours each. Our experiments
are run on the lattice size of 8× 8.

C Derivation

Here we derive (9). We seek to compute the gradients with respect to β̃ of L defined in (7). Recall
that for any function of spins O[σ̃] we have

⟨O⟩H̃ ≡
1

Z(β̃)

∑
{σ̃i}

O[σ̃]e(
∑

⟨ij⟩ β̃σ̃iσ̃j) Z(β̃) ≡
∑
{σ̃i}

e(
∑

⟨ij⟩ β̃σ̃iσ̃j) (12)

where the sum over {σi} runs over all spin configurations. Now we have

∂β̃L = −2
∑
a

ℓa∂β̃⟨ϕ
a[G(σ̃i)]⟩H̃ , (13)

where we have used the definition of ℓa in (7). From (12) the gradient of any observable with respect
to β̃ is

∂β̃⟨O⟩H̃ = −⟨O⟩H̃
∑
⟨ij⟩

⟨σ̃iσ̃j⟩H̃ +
∑
⟨ij⟩

⟨σ̃iσ̃jO⟩H̃ (14)

where the first term comes from differentiating Z(β̃) and the second from differentiating inside the
Boltzmann measure weighting each configuration in (12). Using this expression to evaluate (14) for
O = ϕa[G(σ̃i)] we find (9).

D Scaling results

Figure 7 shows the fraction of instances in which either β̃, β, or −β were successfully recovered. We
observe that as the lattice size increases to 10× 10 and 12× 12, the recovery rate improves.
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Figure 7: Fraction of times relevant beta was recovered within the tolerance of 0.01 as the lattice size is increased.

E Broader Impact

Our work, on further scaling and addressing the current limitations, hold significant potential to
advance knowledge in statistical physics. At this stage, we do not anticipate any negative societal
impacts.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We empirically demonstrate the framework’s ability to discover dualities.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss it in Section 4.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: We do not have any new theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We outlined the algorithm as well as the training parameters. We have also
provided a repository with the training code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide code in the supplemental materials. The script: figure_3.sh runs
the experiments needed to reproduce our main result, i.e., Figure 3.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide this information in Appendix B along with the Experiments section
in the main paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our main purpose is to show that the framework successfully discovers the
original and dual frame. We do that by showing the results of 180 optimizations, the results
of which are displayed in Figure 3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide that in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We don’t foreseen any negative societal impact of this work.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We include the statement in Appendix E.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide the code with README.md that explains how to run it. We will
also release the Github repo in the future.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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