
synax: A Differentiable and GPU-accelerated
Synchrotron Simulation Package

Kangning Diao,∗
UC Berkeley, Berkeley 94720, U.S.

Tsinghua University, Beijing 100084, China

Zack Li
UC Berkeley, Berkeley 94720, U.S.

Richard D.P. Grumitt
Tsinghua University, Beijing 100084, China

Yi Mao
Tsinghua University, Beijing 100084, China

Abstract

We introduce synax2, a novel library for automatically differentiable simulations
of Galactic synchrotron emission. synax uses JAX’s automatic differentiation
(AD) mechanism, enabling precise computation of derivatives with respect to
any model parameters. This feature facilitates powerful inference algorithms,
such as Hamiltonian Monte Carlo (HMC) and gradient-based optimization, which
enables inference over models that would otherwise be computationally prohibitive.
Notably, we show that GPU acceleration brings a twenty-fold enhancement in
efficiency, while HMC achieves a two-fold improvement over standard random walk
Metropolis-Hastings when performing inference over a four-parameter test model.

1 Introduction

Galactic synchrotron emission dominates the low-frequency radio sky, spanning frequencies from
MHz to GHz, and obscures cosmological signals, including those from the cosmic microwave
background (CMB) [1–3], 21 cm line [4], and other line intensity measurements [e.g. 5, 6]. This
emission originates from the interaction between cosmic-ray (CR) electrons and the Galactic magnetic
field (GMF), with polarization altered due to Faraday rotation in the presence of the GMF and
thermal electrons [7]. Consequently, while modeling synchrotron emission is essential for extracting
cosmological signals, the emission itself serves as a probe for the structure of the Galactic interstellar
medium (ISM) and CR transport processes [e.g. 8].
However, current synchrotron simulations, for example hammurabi[9, 10] and ULSA[11], remain
computationally demanding, as they require integration along numerous sightlines with fine resolution.
Recently, JAX[12] has emerged as a multi-platform computation framework, supporting CPUs, GPUs,
TPUs, and offering automatic differentiation (AD). GPUs, designed for parallel computation, are
particularly well-suited for synchrotron simulations. Moreover, AD provides access to gradients,
enabling more powerful sampling and optimization algorithms, which are crucial for conducting
inference on more complex models.

2 Methods

In this section, we describe the physical processes [7] and numerical techniques used to compute the
synchrotron emission maps.
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Synchrotron Intensity Galactic synchrotron emission is caused by the spiralling of relativistic
charges in the GMF, and the cosmic-ray electron spectrum is typically modeled as a power law with a
spectral index 𝛼.
Given the physical processes and assumptions, the specific intensity of synchrotron emission 𝐼 (𝜈, n̂)
at a given frequency 𝜈 and line-of-sight (LOS) direction n̂ can be calculated with the equation

𝐼 (𝜈, n̂) =
∫ ∞

0
𝑗I (𝜈, 𝑟n̂ + robs)𝑑𝑟 (1)

where 𝑟 is the distance to the observer on Earth, robs = (−8.3, 0.0, 0.006) kpc is the distance vector
from the Galactic center to the Earth, and 𝑗I is the emissivity of the synchrotron specific intensity
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The amplitude of the galactic magnetic field (GMF) transverse to the LOS direction is given by 𝐵trans,
𝑞𝑒 is the electron charge, 𝑚𝑒 is the electron mass and 𝑐 is the speed of light. We assume the number
density of high-energy cosmic ray (CR) electrons, between Lorentz factors 𝛾 and 𝛾 + 𝑑𝛾, follow a
power law 𝑁 (𝛾, r)𝑑𝛾 = 𝑁0 (r)𝛾−𝛼𝑑𝛾, where 𝑁0 (r) is the normalizing factor.
Synchrotron Polarization For the synchrotron polarization we focus on the specific intensity
of polarization 𝑃. We further define the quantities 𝑄 and 𝑈, which describe the specific linear
polarization, through 𝑃 = 𝑄 + 𝑖𝑈. We have that 𝑃 is given by

𝑃(𝜈, n̂) =
∫ ∞

0
𝑗P (𝜈, 𝑟n̂ + robs)𝑒−2𝑖𝜒 (𝑟 n̂+robs )𝑑𝑟, (3)

where, 𝑗P is the synchrotron polarized emissivity
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𝜒(r) is the observed polarization angle of the polarized emission emitted at r. 𝜒 can be modeled as
𝜒(r) = RM𝜆2 + 𝜒0 (r), where the 𝜆 is the wavelength and the rotation measure (RM) quantifies the
linear rate of change of the angle 𝜒. RM can be calculated via

RM =
𝑞3
𝑒

2𝜋𝑚2
𝑒𝑐

4

∫ 𝑟

0
𝑛𝑒 (𝑟n̂ + robs)𝐵LOS (𝑟n̂ + robs)𝑑𝑟, (5)

where 𝑛𝑒 is the electron density and 𝐵LOS = ∥B · n̂∥ is the amplitude of line-of-sight (LOS) component
of the magnetic field.
The intrinsic polarization angle 𝜒0 is defined in [e.g. 10] as

tan(𝜒0) =
𝐵𝑧 cos(𝑏) − 𝐵𝑥 cos(𝑙) sin(𝑏) − 𝐵𝑦 sin(𝑙) sin(𝑏)

𝐵𝑦 sin(𝑙) − 𝐵𝑥 cos(𝑙) , (6)

where we have B = (𝐵𝑥 , 𝐵𝑦 , 𝐵𝑧), 𝑙 is the Galactic longitude and 𝑏 is the Galactic latitude.
Integration The input fields required when simulating synchrotron emission with synax are: 1. 3D
Galactic magnetic field B(r), 2. 3D thermal electron density distribution 𝑛𝑒 (r), 3. Normalizing
factor of CR electron distribution 𝑁0 (r), 4. Power-law index of the CR energy spectrum 𝛼. Unless
mentioned otherwise, the power-law index 𝛼 is set to be 3[13] throughout this paper.
We begin by generating the coordinates for all integration points. For the 𝑖-th sightline in the healpix
map, the coordinates 𝑙𝑖 , 𝑏𝑖 are obtained using healpy. The intersection point between the sightline
and the boundary of the 3D box is then calculated. The entire line of sight from the observer to
the boundary is divided into 𝑁int segments, and the midpoint coordinates {r𝑖,𝑛, 𝑛 = 1, 2, . . . , 𝑁int}
are computed for each segment. The field values {B(r𝑖,𝑛), 𝑛𝑒 (r𝑖,𝑛), 𝑁0 (r𝑖,𝑛)} are then evaluated at
each of the midpoints. If an analytical function is provided for a field, its value at r𝑖,𝑛 is computed
directly. Otherwise, we determine the field values using 3D linear interpolation, implemented with
Interpax3. With these field values, 𝜒, 𝑗I, and 𝑗P can be computed at each r𝑖,𝑛 using equations 2-6.

3https://interpax.readthedocs.io/en/latest/
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Figure 1: From right to left: simulated synchrotron 𝑄 map with WMAP B, mock observation, and
optimized synchrotron 𝑄 map, 𝑁0 models and YMW16 𝑛𝑒 model at 2.4 GHz. The map has NSIDE =
64 and 𝑁int = 512 with the units of K.

Summing along the sightline and multiplying by the segment length Δ𝑟𝑖 yields the specific intensity
maps 𝐼, 𝑄, and 𝑈.

3 Accelerated Inference with synax

In this section we demonstrate the performance of synax when performing inference using gradient-
based algorithms on two test cases. In the first example, we use the No-U-Turn sampler [NUTS, 14],
a variant of gradient-based sampling method, Hamiltonian Monte Carlo [HMC, see e.g. 15], to obtain
the posterior distributions for model parameters. The sampler is implemented in Blackjax[16]4. In
the second example we move beyond sampling parameters of analytical models, and consider using
gradient-based optimization on extremely high-dimensional 3D grids.
Model Setup In our mock observation, we simulate the {𝑄,𝑈} maps with synax. The 𝑁0
model here is the one adopted by Wilkinson Microwave Anisotropy Probe (WMAP) [17, 18],
𝑁0 (r) = 𝐶0𝑒

−𝜌/ℎ𝑟 sech2 (𝑧/ℎ𝑧). We fix the free parameter {ℎ𝑟 , ℎ𝑧} = {5, 1} kpc, as the original
WMAP parameter values. The 𝐶0 is fixed by 𝑁0,Earth = 4.0 × 10−5cm−3 [e.g. 19]. The 𝑛𝑒 model is
the YMW16 model [20]. The B model is also the WMAP model [18],

B(𝜌, 𝜙, 𝑧) = 𝑏0 [cos(𝜓(𝜌)) cos(𝜒𝐵 (𝑧)) �̂� + sin(𝜓(𝜌)) cos(𝜒𝐵 (𝑧))𝜙 + sin(𝜒𝐵 (𝑧))𝑧] .
The free parameters in the model are fixed as {𝑏0, 𝜓0, 𝜓1, 𝜒𝐵,0} =

{1.2 gauss, 0.4712 rad, 0.0157 rad, 0.4363 rad}. We simulate the maps with NSIDE = 64
and 𝑁int = 512, corresponding to a resolution from 0.010 to 0.056 kpc. The simulated 𝑄 map is
shown in the right panel of Figure 1. A mock observation is then created by adding Gaussian noise
with noise standard deviation 𝜎𝑛 = 1 mK, as is shown in the middle panel of Figure 1.
We then use synax to infer B. The 𝑛𝑒 and 𝑁0 inputs are identical to the simulation, while we
keep 𝑁int = 512 to avoid the numerical error from insufficient resolution. We set the prior for
these parameters as 𝑏0 ∼ U[0, 10], 𝜓0 ∼ U[0, 𝜋/2], 𝜓1 ∼ U[0, 𝜋/2], 𝜒𝐵,0 ∼ U[0, 𝜋/2], where
U[𝑎, 𝑏] represents a flat prior from 𝑎 to 𝑏. The noise in the simulated observations is Gaussian and
independent between pixels. The likelihood for this model is therefore the Gaussian likelihood with
standard deviation 𝜎 = 1 mK for each pixel. Therefore, the log-likelihood logL is

logL =
∑︁
𝑖

( (𝑄𝑖 −𝑄𝑖,obs)2

2𝜎2 +
(𝑈𝑖 −𝑈𝑖,obs)2

2𝜎2

)
+ 𝐶 (7)

where 𝐶 is a normalization constant.
Sampling with NUTS We first sample the posterior of the WMAP analytical B field model parameters,
namely {𝑏0, 𝜓0, 𝜓1, 𝜒𝐵,0}, with NUTS on a GPU. We run NUTS for 600 iterations and leave the first
100 as burn-in. Posterior summary statistics are shown in Table 1. The Gelman-Rubin 𝑟 [21] for the
samples are all below 1.01, and the effective sample size (ESS) is of the same order of sampling
iterations. We can therefore be confident that we have converged on the stationary distribution, and the
corresponding posterior samples are generated with minimal auto-correlation. We find the accuracy,

4https://blackjax-devs.github.io/blackjax/index.html
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Parameter Best-fit Accuracy 𝑟 ESS
𝑏0 1.2002 ± 0.0003 0.01% 1.003 553.35
𝜓0 0.4707 ± 0.0004 -0.11% 1.003 503.94
𝜓1 0.0147 ± 0.0012 -6.48% 0.999 310.59
𝜒0,𝐵 0.4367 ± 0.0014 0.09% 1.006 252.37
Table 1: Posterior summary statistics obtained with NUTS.

Method 𝑏0 𝜓0 𝜓1 𝜒0,𝐵
NUTS GPU 1.90 1.73 1.07 0.87
NUTS CPU 0.09 0.06 0.04 0.03
RWMH GPU 9.49 13.30 7.34 0.37
RWMH CPU 0.14 0.20 0.11 0.01

Table 2: ESS per second for NUTS and RWMH after burn-in.

defined by (𝑝 − 𝑝true)/𝑝true, is very close to 0 as is listed in Table 1, except 𝜓1 because of its small
magnitude. The true parameter mostly lies in the 1𝜎 confidence level of the posterior.
We also ran NUTS on CPU and simple Random Walk Metropolis-Hastings (RWMH) on GPU and
CPU to provide a benchmark. The ESS per second for each parameter is shown in Table 2. On
CPU, a single synax realization with 128 threads took ∼ 200 ms to finish. Typically, to ensure
convergence, the ESS for all parameters must be beyond a certain threshold. Comparing the minimum
ESS per second (i.e. ESS per second for 𝜒0,𝐵), we obtain approximately a 20× speed-up with
the GPU acceleration, and NUTS brings 2× extra improvement in this simple test model. The
improvements from using gradient-based sampling methods such as NUTS will be more apparent for
higher dimensional sampling problems [22, 23].
Optimizing 3D Grids The WMAP analytical modeling of the GMF [18] focuses on the large scale
structure of the Galaxy, but does not account for small scale features e.g., turbulence in the Galactic
plane. In this study, we consider a more general approach by directly optimizing the 3D B grids
based on mock observations. The grid consists of 128 × 128 × 32 voxels, with a corresponding box
size of (40, 40, 10) kpc. Our goal is to optimize the 3D grids to maximize the log-likelihood logL.
Due to the high dimensionality (∼ 5 × 106) of this problem, we employ the ADAM optimizer [24]
implemented via Optax[12]5. To prevent overfitting, optimization is halted after 200 iterations. The
optimized synchrotron map is presented in the right panel of Figure 1. Due to the high flexibility
of the grid representation, noise features are also reproduced, indicating significant overfitting. The

5https://optax.readthedocs.io/en/latest/

Figure 2: Left: true B field magnitude at z = 0 kpc. Right: optimised B field magnitude at z = 0 kpc.

4

https://optax.readthedocs.io/en/latest/


optimized B magnitude is shown in Figure 2, where it is evident that the B field fluctuates considerably
to replicate the noise features.
Testing with a 16-parameter Model To assess the performance of synax with gradient-based
sampling methods in higher dimensions, we construct a mock observation using a 16-parameter
model. This model is generated by stacking four WMAP magnetic field models, each with different
parameters. We compare the performance of the NUTS and RWMH algorithms on GPU for sampling
this more complex model. NUTS achieves a minimum ESS per second of 1.53 × 10−2, whereas
RWMH fails to converge within 12 hours, demonstrating a clear advantage of NUTS for efficiently
exploring high-dimensional parameter spaces.

4 Conclusion

In this paper, we introduce synax, a novel synchrotron intensity and polarization simulation package
that, for the first time, leverages automatic differentiation (AD) and hardware acceleration. GPU
acceleration significantly enhances computational speed, while AD enables efficient sampling
algorithms for Bayesian posterior inference. The incorporation of 3D grids as a representation of
fields within AD-based optimization algorithms allows for the characterization of more complex
magnetic field structures.
While this work incorporates the radiative transfer equation, secondary effects such as scattering
[e.g. 25, 26] have been omitted and will be addressed in future updates. Additionally, while free-free
emission and absorption—negligible beyond the GHz range—are not considered here, they play a
critical role in low-frequency observations. Future iterations of synax will include these processes to
extend its applicability to the low-frequency domain.
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A Accuracy and Efficiency Comparison with hammurabi

We validate our model on a simple scenario [10] at 𝜈 = 2.4 GHz. In this model, the fields are
homogeneous, B(r) = (6 × 10−6gauss, 0, 0), 𝑛𝑒 (r) = 0.01 cm−3, and 𝑁0 (r) = 4.01 × 10−5cm−3

within a spherical region of the radius 𝑅0 = 4 kpc of the Earth, and zero outside. (Note that these
fields are not spherically symmetric with respect to the Galactic center.) In this case, the emission
intensity before Faraday rotation {𝐼, 𝑄0,𝑈0} becomes:

𝐼 = 𝑗I𝑅0,

𝑄0 = 𝑗P𝑅0 cos(2𝜒0),
𝑈0 = 𝑗P𝑅0 sin(2𝜒0),

(8)

since 𝑗I, 𝑗P, 𝜒0 are constants along a sightline. The 𝑄0 and 𝑈0 will be altered by

𝑄 + 𝑖𝑈 = (𝑄0 + 𝑖𝑈0)
∫ 𝑅0

0

1
𝑅0

𝑒2𝑖𝜆2𝑟 ′𝑛𝑒𝐵LOS𝑞
3
𝑒/2𝜋𝑚2

𝑒𝑐
4
𝑑𝑟 ′ (9)

Thus, {𝐼, 𝑄,𝑈} maps can be calculated analytically.
We then simulate the {𝐼, 𝑄,𝑈} maps with synax, and for this demonstration we specify NSIDE = 64
and 𝑁int = 1024. The length of the box is (40, 40, 10) kpc. We set the input as analytical functions
and the results are shown in Figure 3. The typical scale of absolute residuals is below 1% of the signal
scale, and the relative error, defined by 𝜖rel = 2(𝑋sim − 𝑋ana)/(𝑋sim + 𝑋ana) where 𝑋sim is the simulated
map and 𝑋ana is the analytical map, is also mostly at the percentage level, except for sightlines with
field value very close to zero. We note that the residuals are all below 1 mK, suggesting that synax
with function input has no significant bias with mK noise level observations.
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Figure 3: Accuracy test with homogeneous {B(r), 𝑛𝑒 (r), 𝑁0 (r)} fields with callable field generators.
The left panel shows the synchrotron {𝐼, 𝑄,𝑈} maps generated by synax, the middle panel shows the
residual between synax and theoretical value, and the right panel shows the relative error between
synax and the theoretical value. All healpix maps are in units of Kelvin.

Our code is based on JAX [12] and can run on multiple platforms including CPU, GPU, and TPU.
synax uses ∼ 300 ms to generate the emission map on an NVidia Tesla A100 after just-in-time (JIT)
compilation. For comparison, it takes ∼ 30, 000 ms for the MPI-parallelized CPU-based code hampyx
[10] to run with 64 threads on an AMD milan CPU, while it only integrates with 100 points along
each sightline. synax obtains the same level of accuracy as hammurabi, with the standard deviation
of residuals for the {𝐼, 𝑄,𝑈} maps with synax being {1.6×10−4, 2.0×10−4, 2.0×10−4}, while with
hammurabi the standard deviation of residuals is {1.6 × 10−5, 5.6 × 10−4, 6.0 × 10−4}, respectively.
synax gains ≳ 100 times improvement in wall clock time, along with access to the gradient with AD.
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