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Abstract

Gravitational lenses are caused by massive bodies that distort space-time, bending
light. They can distort transients, such as Supernovae (SN), which are being studied
extensively. Gravitationally-lensed supernovae (LSN) are rare, so only a few have
been discovered. Future astronomical surveys will collect huge amounts of data,
calling for automated and accurate discovery techniques to find them. Still, only
a few works aim to discover LSN, most use only a few classes to characterize
candidate observations, and only a few exploit spatial and temporal information.
This work introduces AstroCountNet (ACoNet), an ensemble of multimodal neural
networks that takes in input spatio-temporal data and, for each observation, counts
the occurrences of 7 astronomical bodies. ACoNet achieves, on average, more
than 85% macro F1 score on four datasets. The network is then adapted into
AstroClassNet (AClaNet) to address classification problems, achieving macro F1

scores between ≈ 59% and ≈ 93%.

1 Introduction

Gravitational lensing is an astrophysical phenomenon that consists of the bending of light due to
massive bodies that distort space-time. It provides insights into the distribution and properties of dark
matter [1] and allows the study of transient phenomena [2]. Transient phenomena are time-dependent
and last from milliseconds to years [3–5]. Transient phenomena include, e.g., SN explosions and
pulsating stars, extreme phenomena that can give origin to new physical theories or models [6]. The
study of gravitationally-lensed transients is an emerging field with applications in astronomy and
cosmology [7, 8]. Their rareness and the abundance of data requires automated discovery [9].

This work proposes a novel approach that addresses two tasks: counting and classifying central and
off-central objects in multimodal data containing transient phenomena and gravitational lenses. We
use the DeepGraviLens (DGL) datasets [10, 11], which contain spatio-temporal observations, each
comprising multiple astronomical bodies (stars, galaxies, SN and lensed galaxies) observed in the
griz electromagnetic field regions. For counting, the output is the number of bodies of each type in
each observation. For classification, the output is the body types in each observation.
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Several works look for gravitational lenses in unimodal data (e.g., images or tabular data) [12–17], but
neglect the temporal component and do not account for lensed transients. The works in [18, 19, 10]
address this issue with multimodal neural networks that take in input spatio-temporal data. Still, they
are limited to a specific classification problem (i.e., classifying gravitational lenses and LSN) and are
not designed for counting nor for classifying other objects. Moreover, they focus only on the central
objects in images.

This paper presents AstroCountNet (ACoNet), the first architecture for counting and classify-
ing astronomical bodies in multimodal data comprising gravitational lenses and transients. The
contributions can be summarized as follows: (1) we introduce ACoNet, which takes in input
spatio-temporal astrophysical observations and outputs the counts for each astronomical body
in each observation, (2) demonstrate the effectiveness of soft-label and hard-label ordinal re-
gression over classification for counting astronomical bodies in the DGL datasets [10, 11], and
(3) introduce AstroClassNet (AClaNet), which uses task adaptation to classify transients and
gravitational lenses. AClaNet obtains significant improvements compared to the classes ex-
tracted from ACoNet counts (up to ≈ 11% macro F1 score). The code is made available at
https://anonymous.4open.science/r/AstroNets-F84D/.

2 Datasets and method

2.1 Datasets

Table 1: The astronomical bodies of the four datasets and the possible count values for each of them
Star Galaxy SNIa SNCC Lensed galaxy LSNIa LSNCC

Count values 0, 1, 2 0, 1, 2 0, 1 0, 1 0, 1 0, 1 0, 1

This work uses the four datasets introduced in DGL [10] and DeepZipper [18, 19] (DESI-DOT,
LSST-wide, DES-deep and DES-wide), each simulating a cosmic survey with different characteristics.
Each dataset contains ≈ 20,000 observations and is divided into a train set (≈ 70%), a validation set
(≈ 15%) and a test set (≈ 15%).

The inputs are astrophysical observations consisting of four 45 × 45-pixel images (one for each
band of the griz photometric system) and four brightness time series (one for each band of the griz
photometric system). The input samples can be labelled with multiple classes (i.e., astronomical
bodies), each associated with a count (i.e., the number of instances of that astronomical body in
the observation). The values of the count range from 0 to 2, as shown in Table 1. The datasets are
imbalanced with respect to the astronomical bodies (e.g., ≈ 3% of each dataset contains a Supernova
of type Ia (SNIa)) and the respective counts (e.g., observations with 2 stars are less frequent than the
ones with 1 star).

2.2 Tasks, targets and outputs

This work addresses the tasks and search targets summarized in Table 2. Counting aims at determining
the number of instances of all the types of bodies and classification aims at determining the types of
bodies. The considered types of bodies are: star, SNIa, Core-collapse supernova (SNCC), galaxy
and their lensed counterparts LSNIa, LSNCC, and Lensed galaxy. The class Other denotes the
observations containing none of the objects belonging to the classes considered in a task.

Binary classification aims to find SN without discerning their type (Ia and CC) or the presence of
lenses. Multi-class classification aims at distinguishing lensed and non-lensed objects into different
classes: SNIa, SNCC, Gravitationally-lensed SNIa (LSNIa), Gravitationally-lensed SNCC (LSNCC),
Lensed galaxy (only for SN and grav. lenses) and Other. This work focuses on transient and/or lensed
objects, so stars and galaxies are neglected in the multi-class classification task.

We first address the counting problem, which is more general than classification, because counting
aims at finding both the body types and the number of bodies of each type, while classification
considers only the body types. We compare the three alternative representations of the output
proposed in [20]: Multi-Class Classification (MCC), Soft-label Ordinal Regression (SOR), and
Multi-label (hard) Ordinal Regression (MOR).

2

https://anonymous.4open.science/r/AstroNets-F84D/


Table 2: Summary of the tasks. In the "Type" column, "C" stands for "counting", "BC" stands for
"binary classification", and "MC" stands for multi-class classification. The astronomical body types
considered for each task are marked with •.

Task – Target Lensed Non-lensed Other
Task Target LSNIa LSNCC LGalaxy SNIa SNCC Galaxy Star

C All objects • • • • • • •
BC Gravitational lenses • • • •
BC SN (coarse) • • • • •
MC SN (fine) • • • • •
MC SN and grav. lenses • • • • • •
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Figure 1: AstroCountNet (ACoNet) architecture

2.3 Metrics

The labels for all the tasks are imbalanced, so we use the macro F1 score. Computing the macro
F1 in classification is straightforward. In counting, there are 7 possible counts, as shown in Table 2
(one per body type). Each count is treated as a class in a multi-class single-label classification. We
apply the following procedure: (1) compute the macro F1 score for each astrophysical body type,
weighting each possible counting output equally and (2) compute the average of the macro F1 scores,
weighting each body type equally.

2.4 Architecture

The tasks listed in Table 2 are addressed with the two networks ACoNet for counting and AClaNet
for classification.

ACoNet is a multimodal multi-output inference pipeline computing one count per body type. Figure 1
illustrates its architecture, which is formed by three multimodal multi-output subnetworks (LCounter,
GCounter and MCounter) connected to an ensembling module, which takes in input the outputs
of the three subnetworks and estimates the count for each object type. LCounter, GCounter and
MCounter respectively focus on local features, global features and both local and global features.
Each subnetwork has 7 output branches, one for each astronomical body type. For each branch,
the network estimates the number of instances of that body type in that observation. Ensembling
algorithms leverage the complementarity of the sub-networks to improve the count and classification
predictions. For counting, we use Random Forest (RF)1 and 3 of the ordinal regression algorithms
implemented in the mord library2: Logistic All-Threshold (AT) [21], Ordinal Ridge (OR), and
Least Absolute Deviation (LAD). We use the default hyperparameters, as defined in mord and
scikit-learn [22, 23]. The ensembling pipeline takes in input the encoded representation of the
counts for each sub-network and output encoding. It outputs the counts for each ensembling algorithm
(and hyperparameters combination). The best ensembling algorithms and hyperparameters are the
ones that maximize the average macro F1 score on the validation set.

AClaNet has a structure similar to that of ACoNet. The ensembling module is replaced by a task
adaptation module, with the same inputs as the ensembling module. The output is the predicted class
for each sample. For this purpose, we use the three pre-trained multimodal multi-output subnetworks
(LCounter, GCounter and MCounter), concatenate their outputs and apply to the resulting vector
the classification algorithms of 4 families for task adaptation: Support Vector Classifier (SVC) (a

1As implemented in https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html (as of November 2024)

2Version 0.3, available at https://pythonhosted.org/mord/ (as of November 2024)
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Table 3: Comparison of the macro F1 scores for counting on the 4 datasets obtained by ACoNet,
sorted by the mean of the F1 scores across the datasets. The 1σ confidence intervals are obtained
using bootstrapping with 50 samples.

DES-deep DES-wide DESI-DOT LSST-wide Mean

SNCC 0.6550+0.0215
−0.0349 0.7901+0.0271

−0.0229 0.9011+0.0138
−0.0130 0.8180+0.0208

−0.0181 0.7910
SNIa 0.7330+0.0243

−0.0301 0.7533+0.0271
−0.0213 0.9310+0.0139

−0.0189 0.8684+0.0169
−0.0213 0.8214

LSNCC 0.6811+0.0112
−0.0099 0.8920+0.0059

−0.0080 0.8998+0.0042
−0.0081 0.8672+0.0086

−0.0075 0.8350
Lensed galaxy 0.7726+0.0083

−0.0126 0.8829+0.0073
−0.0084 0.8713+0.0067

−0.0084 0.9008+0.0066
−0.0072 0.8569

Galaxy 0.8434+0.0107
−0.0063 0.8756+0.0115

−0.0109 0.8704+0.0062
−0.0081 0.8820+0.0093

−0.0109 0.8678
LSNIa 0.7899+0.0068

−0.0090 0.8847+0.0099
−0.0081 0.9373+0.0025

−0.0054 0.9068+0.0066
−0.0055 0.8797

Star 0.9461+0.0045
−0.0088 0.9680+0.0066

−0.0089 0.9476+0.0074
−0.0075 0.9285+0.0081

−0.0139 0.9476

Avg. macro F1 0.7744+0.0125
−0.0159 0.8638+0.0136

−0.0127 0.9083+0.0078
−0.0099 0.8817+0.0110

−0.0121 0.8571

kernel-based method), Logistic Regression (LR) (a linear model), Decision Tree (DT) (a tree-based
model), and Multi-Layer Perceptron (MLP) (a neural network), as implemented in scikit-learn.

3 Evaluation

Table 3 summarizes the results for the counting task after ensembling LCounter, MCounter and
GCounter and using the MOR and SOR output representations, which outperform the MCC represen-
tation (+10% macro F1 score). Each row represents an astronomical body type, each column is a
dataset and each cell contains the macro F1 score for the counting task, where each counting value
(0, 1, 2) is regarded as a different class. The results show that the F1 scores are consistently high
(> 0.65) across all datasets and objects. The most significant variations in results arise for transients,
both lensed and not lensed, because of significant differences in the number of acquired samples
across datasets [18]. Some objects are observed often (e.g., stars) or have peculiar and recognizable
characteristics (e.g., LSN brightness variations are visible because of the gravitational lens). On
average, ACoNet can find and count them better than other objects. In DESI-DOT, the non-lensed
SN F1 score is similar to that of other bodies, because the higher quality of observations mitigates
the faintness and compensates for the scarcity of samples.

Table 4 presents the results of the four classification tasks. The table also includes a column labeled
"Co", which shows the results obtained by ACoNet considering that an object is present if its count is
at least 1. A prediction by ACoNet is considered correct if all the classes considered in the task are
predicted correctly. Task adaptation, on average, improves the F1 score (+1% to +6%) with respect
to the ACoNet-based prediction. The results are better for binary classification tasks ("Gravitational
lenses" and "SN (coarse)"). The two multi-class tasks have similar results, indicating that the presence
of lensed galaxies does not affect performances significantly. The lowest F1 scores are observed
for DES-deep. The results on the other datasets are similar because the quality of their images is
comparable and better than that of DES-deep, as shown in [18, 19].

4 Conclusions and future work

This work introduces ACoNet, an ensemble of multimodal neural networks that counts bodies
belonging to different classes in astronomical observations. We show that, for this task, ordinal
regression with MOR and SOR is more effective than MCC (more than +10% macro F1 score on
average). We also show that ACoNet is effective at classifying gravitational lenses and SN but
adapting ACoNet into AClaNet for classification tasks improves the macro F1 score up to +11%.

Despite promising results, some limitations should be considered. This approach must be evaluated
on a large set of real data and could be extended to more classes of gravitationally-lensed transients
and to redshift estimation, which is otherwise time-consuming. Future work will concentrate on
applying ACoNet to real observations, further extensions of the network to address redshift estimation
and using explainability techniques.

4



Ta
bl

e
4:

C
om

pa
ris

on
of

th
e

m
ac

ro
F
1

sc
or

es
fo

rc
la

ss
ifi

ca
tio

n.
"C

o"
in

di
ca

te
s

th
e

re
su

lts
ob

ta
in

ed
by

A
C

oN
et

,"
C

l"
in

di
ca

te
s

th
e

re
su

lts
ob

ta
in

ed
by

A
C

la
N

et
an

d
"I

"
is

th
e

im
pr

ov
em

en
t.

T
he

1σ
co

nfi
de

nc
e

in
te

rv
al

s
ar

e
co

m
pu

te
d

us
in

g
bo

ot
st

ra
pp

in
g

w
ith

50
sa

m
pl

es
.

G
ra

vi
ta

tio
na

ll
en

se
s

SN
(c

oa
rs

e)
SN

(fi
ne

)
SN

an
d

gr
av

.L
en

se
s

D
at

as
et

C
o

C
l

I
C

o
C

l
I

C
o

C
l

I
C

o
C

l
I

D
E

S-
de

ep
0.
7
52
7+

0
.0
0
7
0

−
0
.0
0
8
2

0
.8
58
5+

0
.0
0
4
6

−
0
.0
0
6
3

0.
10

58
0.
7
9
55

+
0
.0
0
4
2

−
0
.0
0
7
5

0
.8
5
6
6+

0
.0
0
7
7

−
0
.0
0
7
6

0.
06

11
0
.5
5
05

+
0
.0
2
2
8

−
0
.0
2
0
1

0.
5
9
07

+
0
.0
1
4
6

−
0
.0
1
3
5

0.
04

02
0
.5
3
39

+
0
.0
1
2
5

−
0
.0
1
5
8

0.
59
35

+
0
.0
1
8
9

−
0
.0
1
1
2

0.
05

96
D

E
S-

w
id

e
0.
8
51
9+

0
.0
0
7
9

−
0
.0
0
4
6

0
.9
17
6+

0
.0
0
5
8

−
0
.0
0
5
9

0.
06

57
0.
8
6
15

+
0
.0
0
4
0

−
0
.0
0
6
0

0
.8
8
5
2+

0
.0
0
3
9

−
0
.0
0
8
7

0.
02

37
0
.7
2
45

+
0
.0
1
4
2

−
0
.0
0
8
7

0.
7
2
74

+
0
.0
1
2
8

−
0
.0
2
2
4

0.
00

29
0
.7
1
63

+
0
.0
1
5
3

−
0
.0
1
2
8

0.
72
97

+
0
.0
1
2
1

−
0
.0
1
1
3

0.
01

35
D

E
SI

-D
O

T
0.
8
78
0+

0
.0
0
5
4

−
0
.0
0
6
7

0
.9
19
1+

0
.0
0
6
9

−
0
.0
0
4
7

0.
04

11
0.
9
0
47

+
0
.0
0
6
8

−
0
.0
0
4
6

0
.9
1
1
3+

0
.0
0
5
6

−
0
.0
0
4
5

0.
00

65
0
.8
6
15

+
0
.0
0
7
3

−
0
.0
1
5
4

0.
8
7
01

+
0
.0
0
7
6

−
0
.0
1
0
4

0.
00

85
0
.8
3
08

+
0
.0
0
7
5

−
0
.0
1
1
4

0.
85
26

+
0
.0
0
8
1

−
0
.0
0
7
6

0.
02

19
L

SS
T-

w
id

e
0.
9
03
6+

0
.0
0
8
8

−
0
.0
0
3
9

0
.9
27
0+

0
.0
0
4
5

−
0
.0
0
5
5

0.
02

34
0.
9
2
00

+
0
.0
0
4
7

−
0
.0
0
5
4

0
.9
3
0
8+

0
.0
0
3
8

−
0
.0
0
5
4

0.
01

08
0
.7
9
17

+
0
.0
1
7
1

−
0
.0
1
4
1

0.
7
9
72

+
0
.0
1
1
5

−
0
.0
1
6
7

0.
00

55
0
.7
8
33

+
0
.0
1
4
8

−
0
.0
0
5
5

0.
79
74

+
0
.0
1
3
3

−
0
.0
1
3
4

0.
01

40

M
ea

n
0.

84
56

0.
90

56
0.

05
90

0.
87

04
0.

89
56

0.
02

55
0.

73
21

0.
74

67
0.

01
43

0.
71

61
0.

74
56

0.
02

72

5



References
[1] L. A. Moustakas and R. B. Metcalf. Detecting dark matter substructure spectroscopically

in strong gravitational lenses. Monthly Notices of the Royal Astronomical Society, 339(3):
607–615, March 2003. ISSN 1365-2966. doi: 10.1046/j.1365-8711.2003.06055.x. URL
http://dx.doi.org/10.1046/j.1365-8711.2003.06055.x.

[2] Masamune Oguri. Strong gravitational lensing of explosive transients. Reports on Progress in
Physics, 82(12):126901, November 2019. ISSN 1361-6633. doi: 10.1088/1361-6633/ab4fc5.
URL http://dx.doi.org/10.1088/1361-6633/ab4fc5.

[3] A. Papitto, E. Bozzo, C. Ferrigno, T. Belloni, L. Burderi, T. Di Salvo, A. Riggio, A. D’Aì, and
R. Iaria. The discovery of the 401 hz accreting millisecond pulsar igr j17498-2921 in a 3.8 h
orbit. Astronomy & Astrophysics, 535:L4, November 2011. ISSN 1432-0746. doi: 10.1051/
0004-6361/201117995. URL http://dx.doi.org/10.1051/0004-6361/201117995.

[4] G. Bélanger. On detecting transient phenomena. The Astrophysical Journal, 773(1):66, July
2013. ISSN 1538-4357. doi: 10.1088/0004-637x/773/1/66. URL http://dx.doi.org/10.
1088/0004-637X/773/1/66.

[5] Jian-Min Wang, Jun-Rong Liu, Luis C. Ho, and Pu Du. Accretion-modified stars in accretion
disks of active galactic nuclei: Slowly transient appearance. The Astrophysical Journal Letters,
911(1):L14, April 2021. ISSN 2041-8213. doi: 10.3847/2041-8213/abee81. URL http:
//dx.doi.org/10.3847/2041-8213/abee81.

[6] S. Charpinet, G. Fontaine, P. Brassard, and B. Dorman. The potential of asteroseismology
for hot, subdwarf b stars: A new class of pulsating stars? The Astrophysical Journal, 471
(2):L103–L106, November 1996. ISSN 0004-637X. doi: 10.1086/310335. URL http:
//dx.doi.org/10.1086/310335.

[7] Dan Ryczanowski, Graham P Smith, Matteo Bianconi, Sean McGee, Andrew Robertson,
Richard Massey, and Mathilde Jauzac. Enabling discovery of gravitationally lensed explosive
transients: a new method to build an all-sky watch list of groups and clusters of galaxies. Monthly
Notices of the Royal Astronomical Society, 520(2):2547–2557, January 2023. ISSN 1365-2966.
doi: 10.1093/mnras/stad231. URL http://dx.doi.org/10.1093/mnras/stad231.

[8] Patrick L. Kelly, Steven Rodney, Tommaso Treu, Masamune Oguri, Wenlei Chen, Adi Zitrin,
Simon Birrer, Vivien Bonvin, Luc Dessart, Jose M. Diego, Alexei V. Filippenko, Ryan J. Foley,
Daniel Gilman, Jens Hjorth, Mathilde Jauzac, Kaisey Mandel, Martin Millon, Justin Pierel,
Keren Sharon, Stephen Thorp, Liliya Williams, Tom Broadhurst, Alan Dressler, Or Graur,
Saurabh Jha, Curtis McCully, Marc Postman, Kasper Borello Schmidt, Brad E. Tucker, and
Anja von der Linden. Constraints on the hubble constant from supernova refsdal’s reappearance.
Science, 380(6649), June 2023. ISSN 1095-9203. doi: 10.1126/science.abh1322. URL
http://dx.doi.org/10.1126/science.abh1322.

[9] Edward Karavakis, Wen Guan, Zhaoyu Yang, Tadashi Maeno, Torre Wenaus, Jennifer Adelman-
McCarthy, Fernando Barreiro Megino, Kaushik De, Richard Dubois, Michelle Gower, Tim
Jenness, Alexei Klimentov, Tatiana Korchuganova, Mikolaj Kowalik, FaHui Lin, Paul Nilsson,
Sergey Padolski, Wei Yang, and Shuwei Ye. Integrating the panda workload management
system with the vera c. rubin observatory. EPJ Web of Conferences, 295:04026, 2024. ISSN
2100-014X. doi: 10.1051/epjconf/202429504026. URL http://dx.doi.org/10.1051/
epjconf/202429504026.

[10] Nicolò Oreste Pinciroli Vago and Piero Fraternali. Deepgravilens: a multi-modal archi-
tecture for classifying gravitational lensing data. Neural Computing and Applications, 35
(26):19253–19277, June 2023. ISSN 1433-3058. doi: 10.1007/s00521-023-08766-9. URL
http://dx.doi.org/10.1007/s00521-023-08766-9.

[11] Nicolò Oreste Pinciroli Vago and Piero Fraternali. Deepgravilens, 2023. URL https://
zenodo.org/record/7860294.

6

http://dx.doi.org/10.1046/j.1365-8711.2003.06055.x
http://dx.doi.org/10.1088/1361-6633/ab4fc5
http://dx.doi.org/10.1051/0004-6361/201117995
http://dx.doi.org/10.1088/0004-637X/773/1/66
http://dx.doi.org/10.1088/0004-637X/773/1/66
http://dx.doi.org/10.3847/2041-8213/abee81
http://dx.doi.org/10.3847/2041-8213/abee81
http://dx.doi.org/10.1086/310335
http://dx.doi.org/10.1086/310335
http://dx.doi.org/10.1093/mnras/stad231
http://dx.doi.org/10.1126/science.abh1322
http://dx.doi.org/10.1051/epjconf/202429504026
http://dx.doi.org/10.1051/epjconf/202429504026
http://dx.doi.org/10.1007/s00521-023-08766-9
https://zenodo.org/record/7860294
https://zenodo.org/record/7860294


[12] CE Petrillo, CRESCENZO Tortora, S Chatterjee, G Vernardos, LVE Koopmans, G Ver-
does Kleijn, NICOLA ROSARIO Napolitano, G Covone, P Schneider, ANIELLO Grado,
et al. Finding strong gravitational lenses in the kilo degree survey with convolutional neural
networks. Monthly Notices of the Royal Astronomical Society, 472(1):1129–1150, 2017.

[13] CE Petrillo, CRESCENZO Tortora, S Chatterjee, G Vernardos, LVE Koopmans, G Ver-
does Kleijn, NICOLA ROSARIO Napolitano, G Covone, LS Kelvin, and AM Hopkins. Testing
convolutional neural networks for finding strong gravitational lenses in kids. Monthly Notices
of the Royal Astronomical Society, 482(1):807–820, 2019.

[14] R Cañameras, S Schuldt, SH Suyu, S Taubenberger, T Meinhardt, L Leal-Taixé, C Lemon,
K Rojas, and E Savary. Holismokes-ii. identifying galaxy-scale strong gravitational lenses in
pan-starrs using convolutional neural networks. Astronomy & Astrophysics, 644:A163, 2020.

[15] D Stern, SG Djorgovski, A Krone-Martins, Dominique Sluse, Ludovic Delchambre,
C Ducourant, R Teixeira, Jean Surdej, C Boehm, J Den Brok, et al. Gaia gral: Gaia dr2
gravitational lens systems. vi. spectroscopic confirmation and modeling of quadruply imaged
lensed quasars. The Astrophysical Journal, 921(1):42, 2021.

[16] G. Angora, P. Rosati, M. Meneghetti, M. Brescia, A. Mercurio, C. Grillo, P. Bergamini, A. Ace-
bron, G. Caminha, M. Nonino, L. Tortorelli, L. Bazzanini, and E. Vanzella. Searching for strong
galaxy-scale lenses in galaxy clusters with deep networks: I. methodology and network perfor-
mance. Astronomy & Astrophysics, 676:A40, August 2023. ISSN 1432-0746. doi: 10.1051/
0004-6361/202346283. URL http://dx.doi.org/10.1051/0004-6361/202346283.

[17] Cameron Lemon, Frédéric Courbin, Anupreeta More, Paul Schechter, Raoul Cañameras, Lu-
dovic Delchambre, Calvin Leung, Yiping Shu, Chiara Spiniello, Yashar Hezaveh, Jonas
Klüter, and Richard McMahon. Searching for strong gravitational lenses. Space Science
Reviews, 220(2), February 2024. ISSN 1572-9672. doi: 10.1007/s11214-024-01042-9. URL
http://dx.doi.org/10.1007/s11214-024-01042-9.

[18] Robert Morgan, Brian Nord, Keith Bechtol, SJ González, E Buckley-Geer, A Möller, JW Park,
AG Kim, S Birrer, M Aguena, et al. DeepZipper: A novel deep-learning architecture for lensed
supernovae identification. The Astrophysical Journal, 927(1):109, 2022.

[19] Robert Morgan, B Nord, K Bechtol, A Möller, WG Hartley, S Birrer, SJ González, M Martinez,
RA Gruendl, EJ Buckley-Geer, et al. Deepzipper ii: Searching for lensed supernovae in dark
energy survey data with deep learning. arXiv preprint arXiv:2204.05924, 2022.

[20] Coen de Vente, Pieter Vos, Matin Hosseinzadeh, Josien Pluim, and Mitko Veta. Deep learning
regression for prostate cancer detection and grading in bi-parametric mri. IEEE Transactions
on Biomedical Engineering, 68(2):374–383, February 2021. ISSN 1558-2531. doi: 10.1109/
tbme.2020.2993528. URL http://dx.doi.org/10.1109/TBME.2020.2993528.

[21] Jason Rennie and Nathan Srebro. Loss functions for preference levels: Regression with discrete
ordered labels. Proceedings of the IJCAI Multidisciplinary Workshop on Advances in Preference
Handling, 01 2005.

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[23] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier
Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert Layton,
Jake VanderPlas, Arnaud Joly, Brian Holt, and Gaël Varoquaux. API design for machine learning
software: experiences from the scikit-learn project. In ECML PKDD Workshop: Languages for
Data Mining and Machine Learning, pages 108–122, 2013.

7

http://dx.doi.org/10.1051/0004-6361/202346283
http://dx.doi.org/10.1007/s11214-024-01042-9
http://dx.doi.org/10.1109/TBME.2020.2993528

	Introduction
	Datasets and method
	Datasets
	Tasks, targets and outputs
	Metrics
	Architecture

	Evaluation
	Conclusions and future work

