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Abstract

Accurate forecasting of tsunami waves is critical to a functioning early warning
system. While physical models of tsunami waves are well-understood and solvable
on a computer, simulation of such models at high resolution is computationally
expensive and time consuming. The primary source of practical wave-height data
is supplied by the DART (Deep-ocean Assessment and Reporting of Tsunami)
Network, a series of buoys that provide wave-height measurements throughout the
ocean. The challenge we address in this work is in accurately estimating densely
sampled wave-height fields given sparse measurements obtained from the DART
network. We use an attention-based neural network designed for sparse sensing
problems in the physical sciences, and test its reconstruction accuracy on realistic
tsunami simulations with mixed initial conditions. Our experiments demonstrate
a promising new tool for obtaining densely sampled observation networks for
tsunami forecasting.

1 Introduction

Tsunamis are a devastating natural hazard, causing more than 250,000 deaths globally between 1998
and 2017, and US$280 billion in damages [4]. Each year, about 60,000 people and US$4 billion in
assets are exposed to tsunami hazard [3]. The majority of existing tsunami forecast systems employ
numerical solvers, in which an initial ocean surface displacement is derived based on estimates of
the underlying earthquake dynamics, and a shallow water type PDE model is integrated to predict
the propagation of wave fronts over the ocean basin. Such approaches provide so-called ‘full-field’
information to forecasters. Various PDE-based models are currently employed both operationally
and throughout the research communities, including NOAA’s MOST system [15], the GeoCLAW
solver [2, 7], and the Gerris/Basilisk frameworks [11, 12]. Integrating these models is an expensive
computational task, requiring massively parallel implementations and resources.
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Alternatively, data assimilation methods seek to forecast tsunamis without the need for initial source
parameters or sea surface height displacements, instead using real sensor measurements as input. In
[9], a data assimilation method is proposed that combines bottom-pressure gauges with 2D linear
long wave equations to derive wave height and velocity estimates for forecasting. While this method
can be made computationally efficient with the use of pre-computed Green’s functions [16], it relies
on a dense observation network to be effective. To address this need for dense observations, [18]
proposed an algorithm based on the Huygens-Fresnel principal to generate virtual observation points
from a sparse set of real observation points.

We propose an attention-based machine learning architecture known as the Senseiver to generate an
arbitrarily dense sample of observations from sparse measurements derived from DART buoys. While
some notable works exist in the use of basic machine learning (ML) methods [8] and Convolutional
Neural Networks (CNN) [13] to predict tsunami wave heights at fixed sensor locations, we are not
aware of any previous works where machine learning is used to solve the sparse sensing problem
encountered in the tsunami data assimilation method. To the best of our knowledge, the most similar
work to the present study is [1], where sea surface height (SSH) measurements supported on lines
are coupled with densely sampled sea surface temperature (SST) data to train an attention-based
encoder-decoder model that generates densely sampled sea surface height reconstructions in order
to estimate geostrophic currents. While their approach uses a similar ML architecture, it differs
significantly from our work in that they use full field sea temperature information in addition to height
measurements supported on lines as input, and estimate sea surface currents rather than tsunami
waves.

The code for our experiments is available on github, and the data is available on zenodo.

2 Methods

The tsunami forecast problem can be posed as a sparse sensing challenge: given a discrete set of
observations of the ocean state s = {s1, s2, . . . , sN} at locations xs = {xs
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N}, reconstruct

a set of state outputs ŝ = {ŝ1, ŝ2, . . . , ŝM} at a set of query points xq = {xq
1,x

q
2, . . . ,x

q
M}. In this

work, the input state s(xs) is taken to be the ocean surface height measured at DART buoy locations,
and the query state ŝ(xq) is the ocean surface height throughout the remainder of the global ocean
domain. Noting that DART buoys number only a few dozen, and that even relatively coarse coverage
of the global ocean requires at least several hundred thousand discrete points, the reconstruction
problem is seen to be extremely sparse, with M ≫ N . The Senseiver [14], an attention-based neural
network, has been developed to solve such problems — employing a multi-level encoder-decoder
architecture to reconstruct dense output from sparse observations. In the context of sparse sensing,
the key benefits of the attention mechanicsm are (1) the use of positional information as a feature,
(2) the ability to learn long-range spatial associations immediately, and (3) flexibility to process
arbitrarily structured data. The drawback of attention is that it scales quadratically with its input.
The Senseiver resolves this issue by mapping its input to latent arrays, and performing the bulk of
computation in a latent space. In brief, the Senseiver operates as follows: A positional encoder PE

makes a trigonometric encoding of the spatial coordinates, which are then passed, along with the
sensor values, to an attention-based encoder E that yields a compressed representation of the system.
Finally, an attention-based decoder D outputs field values at arbitrary query locations. The reader is
referred to [14] for in-depth discussions of the Senseiver architecture. The weights of the model are
optimized using Adam [6] with learning rate 1× 10−4, by minimizing the mean-squared error

L =
∑(

s(xq, tq)− ŝ(xq)
)2

, (1)

where ŝ(xq) = D (E (s(xq), PE(x
s)) , PE(x

q)) . (2)

Noting that the loss (1) is a summation over the query points xq , here taken to be a dense set covering
the global ocean domain, training the model requires that a dense set of state estimates s(xq) be
available, provided in this work by a PDE-based surrogate model. While previous experiments
of the Senseiver used data residing on a structured grid, the flexibility of the architecture allows
one to seamlessly build a model on unstructured data. Further, the choice of coordinates for the
positional encodings are not restricted to the underlying spatial coordinates. For this problem, we
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added encodings for the ocean bathymetry in addition to latitude and longitude. We also excluded
land pixels, training only on data corresponding to ocean pixels. Each model was trained for 10 hours
on 8 GPUs, however we found that the loss had converged after ∼ 6 hours of training.

3 Data generation

To generate data, we use numerical solutions of the shallow water equations (SWE), in which the
dynamics of a layer of fluid is represented by a coupled system of PDEs that govern the evolution of
the depth-averaged horizontal velocity u = u(x, t) and the fluid thickness h = h(x, t)

∂u

∂t
+ (u · ∇)u+ fu⊥ = −(1− β)g∇(h+ zb) + cd

|u|
h
u+ νuk∇ku , (3)

∂h

∂t
+∇ · (uh) = 0 . (4)

Here, zb = z(x) is the height of the bathymetry at the base of the fluid domain, g = 9.80665m s−2

is the acceleration due to gravity, and f = 2Ω sinϕ is the Coriolis parameter, with Ω = 7.292 ×
10−5 rad s−1 being the rotation rate of the Earth and ϕ the angle of latitude. u⊥ = k× u, where k is
the local vertical direction, is a tangential velocity field used to express the acceleration due to the
Coriolis tendency. β = 0.015 is a reduced gravity correction that approximates the self-attraction
and loading effects associated with tsunami waves [5].

For the mesh used in the SWE solver, each frame is output as an unstructured list of 163,842 tuples,
consisting of a longitude/latitude coordinate and a wave height. We subsample each frame by a factor
of 2, yielding frames consisting of 81,921 pixels. For each training epicenter, the simulation is run
for 288 time steps, with a time step of 50s, effectively giving 4 hour simulations. The epicenter
coordinates used in training were randomly selected from a list of historic seismic events restricted to
the coast of Japan. We split each four hour simulation into two simulations of two hours, giving two
models (one for each time regime).

To test the model, we perturbed the training epicenters to generate eight new simulations, each
consisting of frames not observed in training. We refer to this data as the "unseen epicenters". These
epicenters are depicted visually in relation to the training epicenters in the appendix. The distances of
the unseen epicenters from their closest training epicenter ranges from 2.78 miles to 119.97 miles,
such that the wave dynamics are qualitatively different due to the change in ocean bathymetry. The
error metric we use to evaluate our models is scaled by the absolute max wave height for each frame,
and is computed only over pixels achieving a value of at least 1× 10−4 in the true field. This pixel
restriction mitigates the issue of artificially low cumulative error as the pixels in the rest of the ocean
unaffected by the tsunami wave will show near-zero error. For each frame we compute the mean
absolute difference between the true and reconstructed wave height fields, and divide by the maximum
absolute true wave height for that frame. As a formula, this is:

Error(t) =
|h(t)− ĥ(t)|
max(|h(t)|)

. (5)

4 Results

Evaluating the 0-2 hour model across all epicenters and times of the training set yields an error of
5.6 × 10−2, whereas the same evaluation for the 2-4 hour model yields an error of 7.22 × 10−3.
This order of magnitude difference in error between the two models derives from the extremely
ill-posed reconstruction problem occurring for the early time frames in the 0-2 hour model. The wave
height fields at t = 0 consist of a Gaussian supported over a small neighborhood of the epicenter,
resulting in null to negligible information to the sensors. We note that this issue is common to the
original tsunami data assimilation method [9], where surface height fields are not updated until at
least one sensor has received a non-zero signal. The same issue arises in the machine learning based
forecasting framework discussed in [8]; sensor measurements can not be used for prediction until the
wave front has interacted with the sensor.
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Across the eight epicenters in the training data, we measured a mean lag period of 30.4 minutes
for the tsunami waves to register sufficient sensor information to generate a reconstruction error
no greater than 1 × 10−1. In contrast, the 2-4 hour models never exceed a reconstruction error of
2× 10−2. For the unseen epicenters, the overall error for the 0-2 hour model is 8.64× 10−2, with a
mean lag period to achieve a reconstruction error no greater than 1× 10−1 of 59.5 minutes. For the
2-4 hour model, the overall error is 2.78× 10−2.

In the first two rows of Figure 4, we contrast the reconstructions at times 12.5 minutes and 70.8
minutes for unseen epicenter (142.5◦E, 36.2◦N). The closest epicenter in the training set is separated
from this epicenter by a distance of 64.8 miles. We note that at 12.5 minutes, only two sensors register
the tsunami wave, which grows to five sensors at 70.8 minutes. Inspecting the reconstruction at 12.5
minutes, we see qualitatively a close estimate of the epicenter location, as well as a close estimate
of the support of the first spatial period of the phase. The max amplitude of the reconstruction
is ≈ 80% of the true max amplitude, and the reconstruction struggles to capture the two-period
nature of the spatial phase in the true field. For the reconstruction at 70.8 minutes, we observe much
improved reconstruction accuracy, with remarkable agreement in phase field extent. In the bottom
two rows, we present sample reconstructions from the 2-4 hour model for the unseen epicenter
at (138.9◦E, 28.1◦N) at times 133.3 minutes and 225.0 minutes. In this case, we see remarkable
resolution of fine phase field and amplitude features.

In the fourth column, we show a time series of the error for the reconstructions (top), and the
waveform estimate at a DART sensor location (bottom). The sensor corresponding to the waveform
is marked by a black circle in the corresponding reconstruction plots. Unlike the 0-2 hour model,
every frame in the 2-4 hour model has suitably informative sensor measurements to yield accurate
reconstruction, so there is no noticeable decay in the error profile. Notably, both models yield
accurate estimates for the wave forms at fixed sensor locations. As no pixels are favored during the
training process, the accurate wave form recoveries at DART locations are attributed to the attention
mechanism used in the Senseiver.

We also measured the physical consistency of the reconstructions as defined by equation 4, and
plotted the results for the epicenter at (136.7◦E, 33.1◦N) in the 2− 4 hour time regime in Figure 2.
The error is defined by balancing the wave height time derivatives with the negative of the divergence
of the product of wave height and the horizontal velocity. We found that the Senseiver reconstructions
yielded lower physical consistency errors than the inherent numerical error of the SWE solver. For
the 0-2 hour time frame, the mean physical consistency error is 6.8× 10−2, and for the 2-4 hour time
frame, the mean error is 4.0× 10−2.

5 Discussion and conclusion

Our results demonstrate remarkable full field reconstruction accuracy for unseen epicenters deriving
from incredibly sparse measurements, provided sufficiently rich information content has propagated
to the sensors. Future work can include the addition of temporal encodings, modifying the training
data to increase spatial epicenter coverage, and exploring alternative observation networks such as
the S-net [17]. Experiments can also be conducted to probe optimal placement of DART buoys, by
making the sensor locations differentiable parameters of the network [10]. We also suggest a study to
test the use of the Senseiver to generate dense observation networks in the tsunami data assimilation
method.

In conclusion, this study tested the utility of the Senseiver architecture in a more realistic, non-
academic problem. We found the Senseiver architecture capable of yielding accurate high resolution
reconstructions of tsunami waves from incredibly sparse measurements. Notably, this study show-
cased the ability of the Senseiver to extrapolate to initial conditions not seen in training, and took
advantage of its ability to handle unstructured data.
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hour regime.
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A Visual Reference for Training and Unseen Epicenters
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Figure 3: Training (black) and Unseen (red) epicenters used for synthetic tsunami generation.

B Table of Training Epicenters

Simulation Coordinates
Coordinate Epi 1 Epi 2 Epi 3 Epi 4 Epi 5 Epi 6 Epi 7 Epi 8
Longitude 136.62 139.56 139.33 138.94 140.93 135.74 141.50 142.39
Latitude 33.07 28.86 28.93 29.38 33.45 33.16 35.94 35.27

C Table Unseen Epicenters

Simulation Coordinates
Coordinate Epi 1 Epi 2 Epi 3 Epi 4 Epi 5 Epi 6 Epi 7 Epi 8
Longitude 136.65 138.20 138.90 139.50 140.20 140.50 141.50 142.50
Latitude 33.10 31.00 28.10 28.80 29.10 31.80 34.20 36.20

D Discretized Physical Consistency Equation

hn − hn−1

∆t
= − (∇ · (hu)n +∇ · (hu)n−1)

2
. (6)

E Error Plots
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Figure 4: Average per-pixel error of the training data for the 0 − 2 hour model. The large spikes
indicate the beginning of a new epicenter simulation in the training data. The total number of frames
in the data is 1160, consisting of 8 epicenter simulations of 145 times steps each. The metric at the
top of the figure is the average over all frames.

Figure 5: Average per-pixel error of the unseen data for the 0 − 2 hour model. The large spikes
indicate the beginning of a new epicenter simulation in the training data. The total number of frames
in the data is 1160, consisting of 8 epicenter simulations of 145 times steps each. The metric at the
top of the figure is the average over all frames.

Figure 6: Average per-pixel error of the training data for the 2− 4 hour model. The total number of
frames in the data is 1152, consisting of 8 epicenter simulations of 144 times steps each. The metric
at the top of the figure is the average over all frames.

8



Figure 7: Average per-pixel error of the unseen data for the 2− 4 hour model. The total number of
frames in the data is 1152, consisting of 8 epicenter simulations of 144 times steps each. The metric
at the top of the figure is the average over all frames.

Figure 8: Average per-pixel physical consistency error of the unseen data for the 0− 2 hour model.
The large spikes indicate the beginning of a new epicenter simulation in the training data. The total
number of frames in the data is 1160, consisting of 8 epicenter simulations of 145 times steps each.
The metric at the top of the figure is the average over all frames.

Figure 9: Average per-pixel physical consistency error of the unseen data for the 2− 4 hour model.
The total number of frames in the data is 1152, consisting of 8 epicenter simulations of 144 times
steps each. The metric at the top of the figure is the average over all frames.
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